JP2000183252A - Heat transfer property compound - Google Patents

Heat transfer property compound

Info

Publication number
JP2000183252A
JP2000183252A JP10361442A JP36144298A JP2000183252A JP 2000183252 A JP2000183252 A JP 2000183252A JP 10361442 A JP10361442 A JP 10361442A JP 36144298 A JP36144298 A JP 36144298A JP 2000183252 A JP2000183252 A JP 2000183252A
Authority
JP
Japan
Prior art keywords
heat conductive
semiconductor element
organic
filler particles
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10361442A
Other languages
Japanese (ja)
Other versions
JP3865957B2 (en
Inventor
Toshihiko Maeda
敏彦 前田
Kunihide Yomo
邦英 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36144298A priority Critical patent/JP3865957B2/en
Publication of JP2000183252A publication Critical patent/JP2000183252A/en
Application granted granted Critical
Publication of JP3865957B2 publication Critical patent/JP3865957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PROBLEM TO BE SOLVED: To always control the temperature of a semiconductor element at a proper temperature for stably actuating the element extending over a long period, by a method wherein a specified amount of a dispersant consisting of at least one kind of organic silane or organic titanate of organic silanes or organic titanates having a hydrophilic group and a hydropholic group by outer addition is added to heat transfer property filler particles of a specified thermal conductivity. SOLUTION: A radiator 6 is bonded to the upper surface of a semiconductor element 3 via a heat transfer property compound 5. The compound 5 consists of 20 to 60 wt.% of a thermosetting carrier resin consisting of a rubber modified epoxy resin and a modified amine cure agent, and 40 to 80% of heat transfer property filler particles dispersed in a carrier resin and have a heat conductivity higher than 30 W/m.K. The element 3 is formed of the heat transfer property filler particles formed by adding 0.5 to 5 pts.wt. of a dispersant, which consists of at least one kind of organic silane or organic titanate of organic silanes or organic titanates, having a hydrophilic group and a hydropholic group by outer addition, to 100 pts.wt. of heat transfer property filler particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子の作動に
より生じる熱を半導体素子から放熱体に速やかに伝える
ための伝熱手段として好適に使用される伝熱性化合物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive compound suitably used as a heat transfer means for quickly transferring heat generated by the operation of a semiconductor element from the semiconductor element to a radiator.

【0002】[0002]

【従来の技術】近年、半導体素子収納用パッケージや混
成集積回路基板等を構成する配線基板への半導体素子の
実装方法としては、配線基板の表面に設けられ配線導体
と接続された接続パッドに、半導体素子の電極を半田等
から成るボール状の金属バンプを介して直接接続する、
いわゆるフリップチップ方式の実装方法が多用されるに
至っている。
2. Description of the Related Art In recent years, as a method for mounting a semiconductor element on a wiring board constituting a package for housing a semiconductor element, a hybrid integrated circuit board, or the like, a connection pad provided on the surface of the wiring board and connected to a wiring conductor has been used. The electrodes of the semiconductor element are directly connected via ball-shaped metal bumps made of solder or the like,
A so-called flip-chip type mounting method has been frequently used.

【0003】このフリップチップ方式の接続方法に用い
られる半導体素子収納用パッケージや混成集積回路基板
等に用いられる配線基板は、一般に、酸化アルミニウム
質焼結体等の電気絶縁材料から成る絶縁基体と、この絶
縁基体の内部および/または表面に形成されたタングス
テン、モリブデン、マンガン等の高融点金属材料から成
る配線導体と、この配線導体に電気的に接続するように
形成されたタングステン、モリブデン、マンガン等の高
融点金属材料から成る接続パッドとから構成されてお
り、このような配線基板の絶縁基体表面の接続パッドに
半導体素子の下面に形成された電極を半田ボール等から
成る金属バンプを介して接続することによって半導体素
子の各電極が配線導体に接続されて半導体装置として完
成することとなる。
[0003] A wiring board used for a package for housing a semiconductor element, a hybrid integrated circuit board, or the like used in the flip-chip type connection method generally includes an insulating base made of an electrically insulating material such as an aluminum oxide sintered body; A wiring conductor formed of a high melting point metal material such as tungsten, molybdenum, or manganese formed inside and / or on the surface of the insulating base, and tungsten, molybdenum, manganese, or the like formed to be electrically connected to the wiring conductor And a connection pad made of a high melting point metal material, and connecting an electrode formed on the lower surface of the semiconductor element to a connection pad on the surface of the insulating base of such a wiring board via a metal bump made of a solder ball or the like. By doing so, each electrode of the semiconductor element is connected to the wiring conductor, and the semiconductor device is completed.

【0004】また、配線基板上に半導体素子を半田ボー
ル等から成る金属バンプにて接合した後、配線基板と半
導体素子との接合をより強固にするために、いわゆるア
ンダーフィル材と呼ばれる樹脂、例えばエポキシ樹脂等
の有機樹脂にフィラーとしてシリカや窒化アルミニウム
等の無機充填剤を添加混合した接着材としての樹脂を配
線基板と半導体素子との間に形成される空隙内に充填
し、これを加熱硬化させることによって配線基板と半導
体素子とを強固に接着させることが実施されている。
Further, after bonding a semiconductor element on a wiring board with a metal bump made of a solder ball or the like, a resin called a so-called underfill material, for example, a resin such as an underfill material, is used to further strengthen the bonding between the wiring board and the semiconductor element. An organic resin such as an epoxy resin is mixed with an inorganic filler such as silica or aluminum nitride as a filler, and a resin serving as an adhesive is filled in a gap formed between the wiring board and the semiconductor element, and is cured by heating. By doing so, the wiring board and the semiconductor element are firmly adhered to each other.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この従
来の半導体装置においては、半導体素子と半田ボール等
の金属バンプとの接続面積は、半導体素子の面積に比べ
て極めて小さなものであることから、半導体素子が作動
時に発した熱は前記金属バンプに吸収され難く半導体素
子内に残留し、その結果、半導体素子に熱破壊が発生し
たり、特性に熱劣化が発生したりするという問題があっ
た。
However, in this conventional semiconductor device, the connection area between the semiconductor element and a metal bump such as a solder ball is extremely small as compared with the area of the semiconductor element. The heat generated during the operation of the device is hardly absorbed by the metal bumps and remains in the semiconductor device. As a result, there is a problem that the semiconductor device is thermally degraded or its characteristics are deteriorated by heat.

【0006】また、半導体素子と配線基板との間にアン
ダーフィル材を充填させた場合であっても、このような
アンダーフィル材の熱伝導率が0.2〜0.7W/m・
K程度と低いことから半導体素子で発した熱を効果的に
吸収することができず、上記同様に半導体素子に熱破壊
が発生したり、特性に熱劣化が発生したりするという問
題があった。
Further, even when an underfill material is filled between a semiconductor element and a wiring board, such an underfill material has a thermal conductivity of 0.2 to 0.7 W / m ·
Since the temperature is as low as about K, the heat generated by the semiconductor element cannot be effectively absorbed, so that there is a problem that the semiconductor element is thermally destroyed or the characteristics are deteriorated as described above. .

【0007】本発明は上記欠点に鑑みて案出されたもの
であり、その目的は、絶縁基体上に実装された半導体素
子の上面に放熱体を接合させつつ支持し、かつ半導体素
子が作動時に発する熱を放熱体に伝達させ、半導体素子
を常に適温として長期間にわたり正常、かつ安定に作動
させることができる伝熱性化合物を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has as its object to support a heat radiator joined to an upper surface of a semiconductor element mounted on an insulating base, and to allow the semiconductor element to operate during operation. It is an object of the present invention to provide a heat conductive compound capable of transmitting generated heat to a heat radiator and constantly operating a semiconductor element at an appropriate temperature for normal and stable operation for a long period of time.

【0008】[0008]

【課題を解決するための手段】本発明の伝熱性化合物
は、ゴム変性エポキシ樹脂と変性アミン型硬化剤とから
成る熱硬化性の担体樹脂20乃至60重量%と、該担体
樹脂中に分散された熱伝導率が30W/m・K以上の伝
熱性フィラー粒子40乃至80重量%とから成り、かつ
外添加で親水性基および疎水性基を有する有機シラン類
もしくは有機チタネート類の少なくとも1種から成る分
散剤が前記伝熱性フィラー粒子100重量部に対し0.
5乃至5重量部添加されていることを特徴とするもので
ある。
The heat conductive compound of the present invention is dispersed in the carrier resin by 20 to 60% by weight of a thermosetting carrier resin comprising a rubber-modified epoxy resin and a modified amine type curing agent. From 40 to 80% by weight of heat conductive filler particles having a thermal conductivity of 30 W / m · K or more, and from at least one of organic silanes or organic titanates having a hydrophilic group and a hydrophobic group by external addition. The dispersing agent is used in an amount of 0.1 to 100 parts by weight of the heat conductive filler particles.
It is characterized in that 5 to 5 parts by weight are added.

【0009】また本発明は、前記伝熱性フィラー粒子が
窒化アルミニウム、窒化ホウ素、酸化アルミニウム、ダ
イヤモンド、アルミニウム、銅の少なくとも1種から成
ることを特徴とするものである。
Further, the present invention is characterized in that the heat conductive filler particles are made of at least one of aluminum nitride, boron nitride, aluminum oxide, diamond, aluminum and copper.

【0010】本発明の伝熱性化合物によれば、担体樹脂
中に、例えば、窒化アルミニウム、窒化ホウ素、酸化ア
ルミニウム、ダイヤモンド、アルミニウム、銅等の熱伝
導率が30W/m・K以上と高い伝熱性フィラー粒子を
分散させたことから1W/m・K以上の熱伝導率を有し
ており、そのため半導体素子の上面にこの伝熱性化合物
を介して放熱体を接合させた場合、半導体素子の作動時
に発した熱は伝熱性化合物を介して放熱体に効率良く伝
達されるとともに放熱体を通して大気中に放散されるこ
ととなり、その結果、半導体素子は常に適温となり、半
導体素子を長期間にわたり正常、かつ安定に作動させる
こが可能となる。
According to the heat conductive compound of the present invention, the heat conductivity of the carrier resin, for example, aluminum nitride, boron nitride, aluminum oxide, diamond, aluminum, copper, etc. is as high as 30 W / m · K or more. Since the filler particles are dispersed, it has a thermal conductivity of 1 W / m · K or more. Therefore, when a radiator is bonded to the upper surface of the semiconductor element via the heat conductive compound, The generated heat is efficiently transmitted to the radiator through the heat transfer compound and is radiated into the atmosphere through the radiator.As a result, the semiconductor element is always at an appropriate temperature, and the semiconductor element is kept normal for a long time, and It is possible to operate stably.

【0011】また本発明の伝熱性化合物によれば、担体
樹脂をゴム変性エポキシ樹脂と変性アミン型硬化剤とか
ら成る熱硬化性の樹脂としたことから、半導体素子の上
面にこの伝熱性化合物を介して放熱体を接合させた場
合、担体樹脂が熱硬化する際に半導体素子及び放熱体と
化学的に結合して接着材として作用し、半導体素子と放
熱体とを強固に接合することができる。
According to the heat conductive compound of the present invention, since the carrier resin is a thermosetting resin comprising a rubber-modified epoxy resin and a modified amine-type curing agent, the heat-conductive compound is applied to the upper surface of the semiconductor element. When the heat radiator is joined via the heat sink, the semiconductor resin and the heat radiator are chemically bonded and act as an adhesive when the carrier resin is thermally cured, so that the semiconductor element and the heat radiator can be firmly bonded. .

【0012】同時に前記担体樹脂は硬化により3次元網
目構造を有して機械的強度が優れたものとなり、半導体
素子の上面に接合された放熱体を支えて保持することが
できる。
At the same time, the carrier resin has a three-dimensional network structure due to curing and has excellent mechanical strength, and can support and hold the radiator joined to the upper surface of the semiconductor element.

【0013】[0013]

【発明の実施の形態】次に本発明の伝熱性化合物を用い
て製作した半導体装置について、図1に示す実施例に基
づいて説明する。図1は本発明の伝熱性化合物を用いて
製作した半導体装置の実施の形態の一例を示す断面図で
あり、1は絶縁基体、2は絶縁基体1の表面および内部
に形成されている配線導体、3は半導体素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a semiconductor device manufactured by using the heat conductive compound of the present invention will be described with reference to the embodiment shown in FIG. FIG. 1 is a cross-sectional view showing an example of an embodiment of a semiconductor device manufactured using the heat conductive compound of the present invention, wherein 1 is an insulating substrate, 2 is a wiring conductor formed on the surface and inside of the insulating substrate 1. Reference numeral 3 denotes a semiconductor element.

【0014】前記絶縁基体1は、酸化アルミニウム質焼
結体や窒化アルミニウム質焼結体、ムライト質焼結体、
ガラスセラミックス焼結体、結晶化ガラス質焼結体等の
セラミックス材料やエポキシ樹脂、ガラスエポキシ、ポ
リイミド樹脂等の有機系材料等の電気絶縁材料から形成
され、例えば酸化アルミニウム質焼結体から成る場合で
あれば、酸化アルミニウム、酸化珪素、酸化マグネシウ
ム、酸化カルシウム等の原料粉末に適当な有機バインダ
ー、溶剤等を添加混合して泥漿物を作るとともに該泥漿
物をドクターブレード法やカレンダーロール法等により
シート状に成形してセラミックグリーンシートを得、し
かる後、前記セラミックグリーンシートに適当な打ち抜
き加工および穴あけ加工を施すとともにこれを複数枚積
層し、約1600℃の高温で焼成することによって製作
される。
The insulating substrate 1 is made of an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body,
When formed from a ceramic material such as a glass ceramic sintered body or a crystallized vitreous sintered body or an electrical insulating material such as an organic material such as epoxy resin, glass epoxy, or polyimide resin, for example, when formed of an aluminum oxide sintered body Then, an appropriate organic binder, a solvent, etc. are added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to form a slurry, and the slurry is formed by a doctor blade method, a calendar roll method, or the like. A ceramic green sheet is obtained by forming the sheet into a sheet shape, and thereafter, the ceramic green sheet is subjected to appropriate punching and drilling, and a plurality of the sheets are laminated and fired at a high temperature of about 1600 ° C. .

【0015】また前記絶縁基体1はその上面から内部を
介し下面にかけて配線導体2が形成されており、該配線
導体2は半導体素子3の各電極を外部電気回路に接続す
る作用をなし、配線導体2のうち絶縁基体1の上面に露
出する部分には半導体素子3の電極が金属バンプ4を介
して接合され、また絶縁基体1の下面に露出する部分は
外部電気回路基板の配線導体に接続される。
The insulating substrate 1 has a wiring conductor 2 formed from the upper surface to the lower surface through the inside, and the wiring conductor 2 serves to connect each electrode of the semiconductor element 3 to an external electric circuit. The electrode of the semiconductor element 3 is bonded to the portion of the insulating substrate 1 exposed on the upper surface of the insulating substrate 1 via the metal bump 4, and the portion exposed on the lower surface of the insulating substrate 1 is connected to the wiring conductor of the external electric circuit board. You.

【0016】前記配線導体2は、金、銀、白金、パラジ
ウム、銅、ニッケル、タングステン、モリブデン、マン
ガン等の金属またはこれらの合金、あるいはこれらを主
成分とする合金等から成り、例えば、タングステン、モ
リブデン、マンガン等の高融点金属から成る場合であれ
ば、高融点金属の粉末に適当な有機溶剤、溶媒を添加混
合して金属ペーストを得、該金属ペーストを従来周知の
スクリーン印刷法等の厚膜手法を採用し、絶縁基体1と
なるセラミックグリーンシートの表面及びセラミックグ
リーンシートに開けられた貫通孔内に予め所定パターン
に塗布充填しておくことによって絶縁基体1の上面から
内部を介し下面にかけて被着形成される。
The wiring conductor 2 is made of a metal such as gold, silver, platinum, palladium, copper, nickel, tungsten, molybdenum, manganese, or an alloy thereof, or an alloy containing these as a main component. In the case of a high melting point metal such as molybdenum and manganese, a suitable organic solvent and a solvent are added to and mixed with a powder of the high melting point metal to obtain a metal paste. By adopting a film method and applying and filling a predetermined pattern in advance on the surface of the ceramic green sheet serving as the insulating substrate 1 and the through holes formed in the ceramic green sheet, from the upper surface of the insulating substrate 1 to the lower surface via the inside. Is formed.

【0017】また、前記配線導体2はその露出する表面
にニッケル、金等の耐食性に優れ、且つハンダと濡れ性
の良い金属をメッキ法により1乃至20μmの厚みに被
着させておくと、配線導体2の酸化腐食を有効に防止す
ることができるとともに配線導体2と金属バンプ4との
接合を強固なものとなすことができる。従って、前記配
線導体2はその露出する表面にニッケル、金等の耐食性
に優れ、且つロウ材と濡れ性の良い金属をメッキ法によ
り1乃至20μmの厚みに被着させておくことが好まし
い。
If the wiring conductor 2 is coated with a metal having excellent corrosion resistance such as nickel and gold and good wettability with solder to a thickness of 1 to 20 μm by a plating method, the wiring Oxidative corrosion of the conductor 2 can be effectively prevented, and the bonding between the wiring conductor 2 and the metal bump 4 can be made strong. Therefore, the wiring conductor 2 is preferably coated with a metal having excellent corrosion resistance, such as nickel and gold, and a good wettability with a brazing material to a thickness of 1 to 20 μm on the exposed surface by plating.

【0018】更に前記絶縁基体1はその上面に半導体素
子3がフリップチップ方式、具体的には半導体素子3の
下面に形成されている電極を絶縁基体1の上面に露出す
る配線導体2にハンダから成る金属バンプ4を介して接
合することによって実装されている。
Further, the semiconductor element 3 is flip-chip mounted on the upper surface of the insulating substrate 1, specifically, an electrode formed on the lower surface of the semiconductor element 3 is connected to the wiring conductor 2 exposed on the upper surface of the insulating substrate 1 by soldering. It is mounted by bonding via the metal bumps 4 formed.

【0019】前記絶縁基体1の上面に実装された半導体
素子3は更にその上面にフィンを多数有した放熱体6が
伝熱性化合物5を介して接合されており、該放熱体6は
半導体素子3が作動時に発した熱を吸収するとともに大
気中に良好に放散させる作用をなし、これによって半導
体素子3は常に適温となり、半導体素子3を長期間にわ
たり正常、かつ安定に作動させることができる。
The semiconductor element 3 mounted on the upper surface of the insulating base 1 is further joined with a heat radiator 6 having a large number of fins on the upper surface thereof through a heat conductive compound 5. Has the function of absorbing the heat generated during operation and dissipating it well into the atmosphere, so that the semiconductor element 3 always has an appropriate temperature, and the semiconductor element 3 can be operated normally and stably for a long period of time.

【0020】前記放熱体6は銅、アルミニウム、銅−タ
ングステン等の金属や、窒化アルミニウム等のセラミッ
ク部材、あるいは厚み方向に配列した炭素繊維を炭素で
結合した一方向性複合材料等の伝熱性に優れた材料によ
り形成され、例えば銅から成る場合であれば銅のインゴ
ット(塊)に圧延加工、切断加工等の周知の金属加工法
を施すことによって所定の形状に加工される。
The heat radiator 6 is made of a metal such as copper, aluminum, copper-tungsten, a ceramic member such as aluminum nitride, or a unidirectional composite material in which carbon fibers arranged in the thickness direction are bonded with carbon. It is formed of an excellent material. For example, when it is made of copper, it is processed into a predetermined shape by subjecting a copper ingot (lumps) to a known metal working method such as rolling and cutting.

【0021】なお、前記放熱体6はフィンを多数有する
ものに限定されるものではなく、平板状であってもよ
い。
The radiator 6 is not limited to one having a large number of fins, but may be a flat plate.

【0022】また前記放熱体6は半導体素子3の上面に
伝熱性化合物5を介して接合されており、該伝熱性化合
物5はゴム変性エポキシ樹脂と変性アミン型硬化剤とか
ら成る熱硬化性の担体樹脂20乃至60重量%と、該担
体樹脂中に分散された熱伝導率が30W/m・K以上の
伝熱性フィラー粒子40乃至80重量%とから成り、か
つ外添加で親水性基および疎水性基を有する有機シラン
類もしくは有機チタネート類の少なくとも1種から成る
分散剤が前記伝熱性フィラー粒子100重量部に対し
0.5乃至5重量部添加されたもので形成されている。
The heat radiator 6 is joined to the upper surface of the semiconductor element 3 via a heat conductive compound 5, and the heat conductive compound 5 is a thermosetting compound comprising a rubber-modified epoxy resin and a modified amine-type curing agent. 20 to 60% by weight of a carrier resin, 40 to 80% by weight of thermally conductive filler particles having a thermal conductivity of 30 W / m · K or more dispersed in the carrier resin, and a hydrophilic group and a hydrophobic A dispersant comprising at least one of organic silanes or organic titanates having a functional group is formed by adding 0.5 to 5 parts by weight to 100 parts by weight of the heat conductive filler particles.

【0023】前記伝熱性化合物5による半導体素子3上
面への放熱体6の接合は、例えば、半導体素子3の上面
と放熱体6の下面との間に、ゴム変性エポキシ樹脂前駆
体と変性アミン型硬化剤とから成る液状の混合物中に、
有機シラン類もしくは有機チタネート類の少なくとも1
種から成る分散剤と、熱伝導率が30W/m・K以上と
高い伝熱性フィラー粒子とを添加混合して得たペースト
を配し、該ペーストを加熱硬化させることによって行わ
れる。この場合、ゴム変性エポキシ樹脂と変性アミン型
硬化剤とから成る熱硬化性の担体樹脂は熱硬化する際に
半導体素子3及び放熱体6と化学的に結合して接着材と
して作用し、その結果、この伝熱性化合物5を介して半
導体素子3と放熱体6とは強固に接合することとなる。
The bonding of the heat radiator 6 to the upper surface of the semiconductor element 3 by the heat conductive compound 5 is performed, for example, by connecting a rubber-modified epoxy resin precursor and a modified amine type between the upper surface of the semiconductor element 3 and the lower surface of the heat radiator 6. In a liquid mixture consisting of a curing agent and
At least one of organic silanes or organic titanates
This is carried out by disposing a paste obtained by adding and mixing a dispersant composed of a seed and heat conductive filler particles having a high thermal conductivity of 30 W / m · K or more, and curing the paste by heating. In this case, the thermosetting carrier resin composed of the rubber-modified epoxy resin and the modified amine-type curing agent is chemically bonded to the semiconductor element 3 and the heat radiator 6 during thermosetting to act as an adhesive. The semiconductor element 3 and the radiator 6 are firmly joined via the heat conductive compound 5.

【0024】また前記伝熱性化合物5の熱硬化性の担体
樹脂はゴム変性エポキシ樹脂と変性アミン型硬化剤の硬
化の反応によって3次元網目構造となっており、そのた
め例えば剪断強度が20〜30Kgf/cm2 と強く、
機械的強度に優れており、半導体素子3の上面に接合し
た放熱体6を支えて保持することが可能となる。
The thermosetting carrier resin of the heat conductive compound 5 has a three-dimensional network structure by a reaction between the rubber-modified epoxy resin and the modified amine-type curing agent, and thus has a shear strength of, for example, 20 to 30 kgf /. cm 2 strong
It has excellent mechanical strength, and can support and hold the radiator 6 bonded to the upper surface of the semiconductor element 3.

【0025】さらに前記伝熱性化合物5の熱硬化性の担
体樹脂は、複素環式基を含む炭化水素基の両端に官能基
であるアミンが結合した構造で分子鎖の変形の自由度が
大きい変性アミン型硬化剤を、ゴム状の弾性を有するゴ
ム変性エポキシ樹脂の前駆体に混合させて熱硬化させた
ものであることから可撓性を有しており、そのため放熱
体6を熱伝導率が高く放熱性に優れるが半導体素子3と
熱膨張係数が大きく相違する銅やアルミニウム(シリコ
ンの熱膨張係数は2.4×10-6/℃であるのに対し、
銅の熱膨張係数は1.678×10-5/℃、アルミニウ
ムの熱膨張係数は2.313×10-5/℃)で形成した
場合であっても、半導体素子3と放熱体6との間に両者
の熱膨張係数の相違に起因して発生する応力は熱硬化性
の担体樹脂を変形させることによって吸収緩和され、そ
の結果、半導体素子3と放熱体6とを極めて強固に接合
させておくことができる。
Further, the thermosetting carrier resin of the heat conductive compound 5 has a structure in which an amine as a functional group is bonded to both ends of a hydrocarbon group containing a heterocyclic group, and has a high degree of freedom of deformation of a molecular chain. An amine type curing agent is mixed with a precursor of a rubber-modified epoxy resin having rubber-like elasticity and heat-cured, so that it has flexibility. Copper or aluminum (coefficient of thermal expansion of silicon is 2.4 × 10 −6 / ° C., whereas copper and aluminum have a high coefficient of thermal expansion and a large difference in thermal expansion coefficient from semiconductor element 3,
Even when copper has a coefficient of thermal expansion of 1.678 × 10 −5 / ° C. and aluminum has a coefficient of thermal expansion of 2.313 × 10 −5 / ° C.), the semiconductor element 3 and the heat radiator 6 cannot be connected. The stress generated due to the difference in the thermal expansion coefficient between the two is absorbed and relaxed by deforming the thermosetting carrier resin, and as a result, the semiconductor element 3 and the radiator 6 are bonded very firmly. I can put it.

【0026】また更に前記伝熱性化合物5の熱硬化性の
担体樹脂には熱伝導率が30W/m・K以上と高い伝熱
性フィラー粒子が分散されており、該伝熱性フィラー粒
子によって伝熱性化合物5の熱伝導率が1W/m・K以
上となり、半導体素子3が作動時に発した熱を伝熱性化
合物5を介して放熱体6に効率良く伝達吸収させること
ができる。
Further, the thermosetting carrier resin of the heat conductive compound 5 is dispersed with heat conductive filler particles having a high heat conductivity of 30 W / m · K or more, and the heat conductive compound particles are dispersed by the heat conductive filler particles. 5 has a thermal conductivity of 1 W / m · K or more, and the heat generated during operation of the semiconductor element 3 can be efficiently transmitted to and absorbed by the radiator 6 via the heat conductive compound 5.

【0027】前記伝熱性フィラー粒子しては、例えば、
窒化アルミニウム、窒化ホウ素、酸化アルミニウム、ア
ルミニウム、銅、ダイヤモンドの少なくとも1種が好適
に使用される。
The heat conductive filler particles include, for example,
At least one of aluminum nitride, boron nitride, aluminum oxide, aluminum, copper, and diamond is preferably used.

【0028】前記伝熱性化合物5の熱硬化性の担体樹脂
には更に親水性基および疎水性基を有する有機シラン類
もしくは有機チタネート類の少なくとも1種から成る分
散剤が添加されており、該親水性基によって伝熱性のフ
ィラー粒子表面に吸着するとともに、疎水性基の作用に
よりゴム変性エポキシ樹脂前駆体と変性アミン型硬化剤
とから成る液状の混合物中に拡散して均一に分散し、こ
れにより伝熱性フィラー粒子を担体樹脂中に均一に分散
させる作用をなす。
The thermosetting carrier resin of the heat conductive compound 5 is further added with a dispersant comprising at least one of an organic silane or an organic titanate having a hydrophilic group and a hydrophobic group. While being adsorbed on the surface of the heat conductive filler particles by the functional group, it diffuses and uniformly disperses into the liquid mixture composed of the rubber-modified epoxy resin precursor and the modified amine-type curing agent by the action of the hydrophobic group, It functions to uniformly disperse the heat conductive filler particles in the carrier resin.

【0029】前記親水性基および疎水性基を有する有機
シラン類とは、シラン(SiH4 )の水素(H)を親水
性基および疎水性基で置換したものであり、例えば、ビ
ニルトリエトキシシラン、ビニルトリス(β−メトキシ
エトキシ)シラン、β−(3、4−エポキシシクロヘキ
シル)エチルトリメトキシシラン、γ−グリセドキシプ
ロピルトリメトキシシラン、γ−メタクリロキシプロピ
ルトリメトキシシラン、N−β−(アミノエチル)−γ
−アミノプロピルトリメトキシシラン、N−β−(アミ
ノエチル)−γ−アミノプロピルメチルジメトキシシラ
ン、γ−アミノプロピルトリエトキシシラン、γ−プロ
ピルトリメトキシシラン、γ−メルカプトプロピルトリ
メトキシシラン等があり、これらにおいてメトキシ基
(−OCH3 )、エトキシ基(−OC2 5 )、β−メ
トキシエトキシ基(−OC2 4 −OCH3 )等のアル
コキシ基およびその誘導体が親水性基であり、その他の
置換基が疎水性基である。
The organic silanes having a hydrophilic group and a hydrophobic group are those obtained by replacing hydrogen (H) of silane (SiH 4 ) with a hydrophilic group and a hydrophobic group, and include, for example, vinyltriethoxysilane. , Vinyltris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycedoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β- (amino Ethyl) -γ
-Aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-propyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and the like. In these, alkoxy groups such as methoxy group (—OCH 3 ), ethoxy group (—OC 2 H 5 ), β-methoxyethoxy group (—OC 2 H 4 —OCH 3 ) and derivatives thereof are hydrophilic groups, Is a hydrophobic group.

【0030】また、親水性基および疎水性基を有する有
機チタネート類とは、アルコキシ基やその誘導体、また
はグリコール酸等の親水性基と、炭素数が8以上のアル
キル基によるリン酸エステルや、水に不溶性の高級脂肪
酸等の疎水性基とがチタン(Ti)と結合したものが用
いられ、例えば、イソプロピルトリイソステアロイルチ
タネート、イソプロピルトリス(ジオクチルパイロホス
フェート)チタネート、ビス(ジオクチルパイロホスフ
ェート)オキシアセテートチタネート、ビス(ジオクチ
ルパイロホスフェート)エチレンチタネート、テトライ
ソプロピルビス(ジオクチルホスファイト)チタネー
ト、テトラオクチルビス(ジトリデシルホスファイト)
チタネート等があり、これらにおいてアルコキシ基およ
びその誘導体はフィラー粒子表面の吸着水や空気中の水
分等と加水分解反応を起こすことにより水素結合し得る
ようになり親水性基として作用し、アルキル基およびそ
の誘導体は疎水性基として作用する。
The organic titanates having a hydrophilic group and a hydrophobic group include an alkoxy group or a derivative thereof, a phosphoric acid ester having a hydrophilic group such as glycolic acid and an alkyl group having 8 or more carbon atoms, The one in which a hydrophobic group such as a water-insoluble higher fatty acid is bonded to titanium (Ti) is used. Titanate, bis (dioctyl pyrophosphate) ethylene titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite)
There are titanates and the like, in which alkoxy groups and derivatives thereof can be hydrogen-bonded by causing a hydrolysis reaction with water adsorbed on the surface of the filler particles or moisture in the air, thereby acting as a hydrophilic group, The derivative acts as a hydrophobic group.

【0031】なお、前記伝熱性化合物5においてゴム変
性エポキシ樹脂と変性アミン型硬化剤とから成る熱硬化
性の担体樹脂の含有量が20重量%未満になると、伝熱
経路を形成した状態で伝熱性フィラー粒子を保持するこ
とができなくなり、また60重量%を超えると伝熱性部
材5の熱伝導率が1W/m・K未満と低くなって半導体
素子3で生じた熱を効率良く放熱体6に伝達することが
できなくなってしまう。従って、伝熱性化合物5中の伝
熱性フィラー粒子の含有量は20乃至60重量%の範囲
に特定される。
When the content of the thermosetting carrier resin composed of the rubber-modified epoxy resin and the modified amine-type curing agent in the heat conductive compound 5 is less than 20% by weight, the heat transfer is performed in a state where the heat transfer path is formed. When the heat conductive filler particles exceed 60% by weight, the thermal conductivity of the heat conductive member 5 becomes lower than 1 W / m · K, and the heat generated in the semiconductor element 3 can be efficiently dissipated by the heat radiator 6. Can not be transmitted to Therefore, the content of the heat conductive filler particles in the heat conductive compound 5 is specified in the range of 20 to 60% by weight.

【0032】また、熱硬化性の担体樹脂におけるゴム変
性エポキシ樹脂と変性アミン型硬化剤との混合比は、エ
ポキシ価(エポキシ樹脂のエポキシ基の数)とアミン価
(硬化剤のアミノ基数)との比が1:1となるような割
合としておくと、熱硬化を均一、かつ速やかにに行わせ
ることができ、担体樹脂の硬化の化学反応による過熱や
硬化した樹脂の変色等の不具合を生じる恐れがない。従
って、ゴム変性エポキシ樹脂と変性アミン型硬化剤との
混合比はエポキシ価とアミン価との比が1:1となるよ
うな割合としておくことが好ましい。
The mixing ratio between the rubber-modified epoxy resin and the modified amine-type curing agent in the thermosetting carrier resin is determined by the epoxy value (the number of epoxy groups in the epoxy resin) and the amine value (the number of amino groups in the curing agent). When the ratio is set to 1: 1, the thermosetting can be performed uniformly and promptly, resulting in problems such as overheating due to the chemical reaction of the curing of the carrier resin and discoloration of the cured resin. There is no fear. Therefore, it is preferable that the mixing ratio between the rubber-modified epoxy resin and the modified amine-type curing agent is such that the ratio of the epoxy value to the amine value is 1: 1.

【0033】更に前記伝熱性化合物5において伝熱性フ
ィラー粒子の含有量が40重量%未満となると、伝熱性
フィラー粒子同士の接触が少なくなって良好な伝熱経路
が形成され難いため伝熱性化合物5の熱伝導率が1W/
m・K未満と低くなって半導体素子3で生じた熱を効率
良く放熱体6に伝達することができなくなり、80重量
%を超えると伝熱性フィラー粒子を担体樹脂によって保
持することができなくなる。従って、伝熱性化合物5中
の伝熱性フィラー粒子の含有量は40乃至80重量%の
範囲に特定される。
Further, when the content of the heat conductive filler particles in the heat conductive compound 5 is less than 40% by weight, the contact between the heat conductive filler particles is reduced, and it is difficult to form a good heat transfer path. Has a thermal conductivity of 1 W /
When the temperature is lower than m · K, the heat generated in the semiconductor element 3 cannot be efficiently transmitted to the heat radiator 6, and when the weight exceeds 80% by weight, the heat conductive filler particles cannot be held by the carrier resin. Therefore, the content of the heat conductive filler particles in the heat conductive compound 5 is specified in the range of 40 to 80% by weight.

【0034】また更に前記伝熱性化合物5において分散
剤の含有量が伝熱性フィラー粒子100重量部に対して
0.5重量部未満となると、伝熱性フィラー粒子を均一
に分散させることができなくなり、5重量部を超えると
過剰に添加された分散剤により担体樹脂の硬化が部分的
に妨げられて機械的強度が劣化しやすくなる。従って、
伝熱性化合物5中の分散剤の含有量は伝熱性フィラー粒
子100重量部に対して0.5乃至5重量部の範囲に特
定される。
Further, when the content of the dispersant in the heat conductive compound 5 is less than 0.5 part by weight with respect to 100 parts by weight of the heat conductive filler particles, the heat conductive filler particles cannot be uniformly dispersed, If the amount exceeds 5 parts by weight, the curing of the carrier resin is partially hindered by the excessively added dispersant, and the mechanical strength is liable to deteriorate. Therefore,
The content of the dispersant in the heat conductive compound 5 is specified in the range of 0.5 to 5 parts by weight based on 100 parts by weight of the heat conductive filler particles.

【0035】前記伝熱性フィラー粒子は、その平均粒径
が1μm未満になると伝熱性化合物5中の伝熱経路にお
いて伝熱性フィラー粒子同士の接触界面を経る頻度が高
くなり、このような粒子界面での熱伝導が粒子内部での
熱伝導に比べて劣ることから伝熱性化合物5の熱伝導率
を高くすることが困難となる傾向にある。従って、伝熱
性フィラー粒子はその粒径が1μm以上のものとしてお
くことが好ましい。
When the average particle diameter of the heat conductive filler particles is less than 1 μm, the frequency of the heat conductive paths in the heat conductive compound 5 through the contact interface between the heat conductive filler particles increases, and Is inferior to the heat conduction inside the particles, so that it tends to be difficult to increase the heat conductivity of the heat conductive compound 5. Therefore, it is preferable that the heat conductive filler particles have a particle diameter of 1 μm or more.

【0036】かくして上述の半導体装置によれば、絶縁
基体1に形成されている配線導体2を介して絶縁基体1
に実装されている半導体素子3と外部電気回路とを電気
的に接続し、半導体素子3と外部電気回路との間に電気
信号を入出力させることによって半導体素子3は所定の
作動を行う。この時、半導体素子3の発した熱は伝熱性
化合物5を通して放熱体6に伝達され、放熱体6を介し
て大気中に放散されることとなる。
Thus, according to the above-described semiconductor device, the insulating base 1 is interposed via the wiring conductor 2 formed on the insulating base 1.
The semiconductor device 3 performs a predetermined operation by electrically connecting the semiconductor device 3 mounted on the semiconductor device 3 to an external electric circuit and inputting / outputting an electric signal between the semiconductor device 3 and the external electric circuit. At this time, the heat generated by the semiconductor element 3 is transmitted to the heat radiator 6 through the heat conductive compound 5 and is radiated to the atmosphere via the heat radiator 6.

【0037】[0037]

【発明の効果】本発明の伝熱性化合物によれば、担体樹
脂中に、例えば、窒化アルミニウム、窒化ホウ素、酸化
アルミニウム、ダイヤモンド、アルミニウム、銅等の熱
伝導率が30W/m・K以上と高い伝熱性フィラー粒子
を分散させたことから1W/m・K以上の熱伝導率を有
しており、そのため半導体素子の上面にこの伝熱性化合
物を介して放熱体を接合させた場合、半導体素子の作動
時に発した熱は伝熱性化合物を介して放熱体に効率良く
伝達されるとともに放熱体を通して大気中に放散される
こととなり、その結果、半導体素子は常に適温となり、
半導体素子を長期間にわたり正常、かつ安定に作動させ
るこが可能となる。
According to the heat conductive compound of the present invention, the thermal conductivity of, for example, aluminum nitride, boron nitride, aluminum oxide, diamond, aluminum, copper and the like in the carrier resin is as high as 30 W / m · K or more. Since the heat conductive filler particles are dispersed, the conductive material has a thermal conductivity of 1 W / m · K or more. Therefore, when a heat radiator is bonded to the upper surface of the semiconductor device via the heat conductive compound, The heat generated during operation is efficiently transmitted to the radiator through the heat transfer compound and is radiated to the atmosphere through the radiator. As a result, the semiconductor element is always at an appropriate temperature,
The semiconductor element can be operated normally and stably for a long period of time.

【0038】また本発明の伝熱性化合物によれば、担体
樹脂をゴム変性エポキシ樹脂と変性アミン型硬化剤とか
ら成る熱硬化性の樹脂としたことから、半導体素子の上
面にこの伝熱性化合物を介して放熱体を接合させた場
合、担体樹脂が熱硬化する際に半導体素子及び放熱体と
化学的に結合して接着材として作用し、半導体素子と放
熱体とを強固に接合することができる。
According to the heat conductive compound of the present invention, the carrier resin is a thermosetting resin comprising a rubber-modified epoxy resin and a modified amine-type curing agent. When the heat radiator is joined via the heat sink, the semiconductor resin and the heat radiator are chemically bonded and act as an adhesive when the carrier resin is thermally cured, so that the semiconductor element and the heat radiator can be firmly bonded. .

【0039】同時に前記担体樹脂は硬化により3次元網
目構造を有して機械的強度が優れたものとなり、半導体
素子の上面に接合された放熱体を支えて保持することが
できる。
At the same time, the carrier resin has a three-dimensional network structure due to curing and has excellent mechanical strength, and can support and hold the radiator joined to the upper surface of the semiconductor element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の伝熱性化合物を用いて製作した半導体
装置の一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor device manufactured using the heat conductive compound of the present invention.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・配線導体 3・・・半導体素子 4・・・金属バンプ 5・・・伝熱性化合物 6・・・放熱体 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Wiring conductor 3 ... Semiconductor element 4 ... Metal bump 5 ... Heat conductive compound 6 ... Heat radiator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ゴム変性エポキシ樹脂と変性アミン型硬化
剤とから成る熱硬化性の担体樹脂20乃至60重量%
と、該担体樹脂中に分散された熱伝導率が30W/m・
K以上の伝熱性フィラー粒子40乃至80重量%とから
成り、かつ外添加で親水性基および疎水性基を有する有
機シラン類もしくは有機チタネート類の少なくとも1種
から成る分散剤が前記伝熱性フィラー粒子100重量部
に対し0.5乃至5重量部添加されていることを特徴と
する伝熱性化合物。
1. A thermosetting carrier resin comprising a rubber-modified epoxy resin and a modified amine-type curing agent in an amount of 20 to 60% by weight.
And the thermal conductivity dispersed in the carrier resin is 30 W / m ·
K to 40% to 80% by weight of the heat conductive filler particles, and a dispersant comprising at least one kind of an organic silane or an organic titanate having a hydrophilic group and a hydrophobic group by external addition. A heat conductive compound, wherein 0.5 to 5 parts by weight is added to 100 parts by weight.
【請求項2】前記伝熱性フィラー粒子が窒化アルミニウ
ム、窒化ホウ素、酸化アルミニウム、ダイヤモンド、ア
ルミニウム、銅の少なくとも1種から成ることを特徴と
する請求項1に記載の伝熱性化合物。
2. The heat conductive compound according to claim 1, wherein said heat conductive filler particles comprise at least one of aluminum nitride, boron nitride, aluminum oxide, diamond, aluminum and copper.
JP36144298A 1998-12-18 1998-12-18 Thermally conductive compounds Expired - Fee Related JP3865957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36144298A JP3865957B2 (en) 1998-12-18 1998-12-18 Thermally conductive compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36144298A JP3865957B2 (en) 1998-12-18 1998-12-18 Thermally conductive compounds

Publications (2)

Publication Number Publication Date
JP2000183252A true JP2000183252A (en) 2000-06-30
JP3865957B2 JP3865957B2 (en) 2007-01-10

Family

ID=18473602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36144298A Expired - Fee Related JP3865957B2 (en) 1998-12-18 1998-12-18 Thermally conductive compounds

Country Status (1)

Country Link
JP (1) JP3865957B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343935A (en) * 2001-05-11 2002-11-29 Sansha Electric Mfg Co Ltd Power semiconductor module
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343935A (en) * 2001-05-11 2002-11-29 Sansha Electric Mfg Co Ltd Power semiconductor module
JP4672902B2 (en) * 2001-05-11 2011-04-20 株式会社三社電機製作所 Power semiconductor module
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus
US8181356B2 (en) 2006-06-26 2012-05-22 Tokyo Electron Limited Substrate processing method
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger

Also Published As

Publication number Publication date
JP3865957B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US7393771B2 (en) Method for mounting an electronic part on a substrate using a liquid containing metal particles
JP2548602B2 (en) Semiconductor mounting module
JPH1145965A (en) Heat conductive compound and semiconductor device using the same
JP4030930B2 (en) Semiconductor power module
JP3865957B2 (en) Thermally conductive compounds
JP3631638B2 (en) Mounting structure of semiconductor device package
JP3865956B2 (en) Semiconductor device
JP3793562B2 (en) Ceramic circuit board
JPH10275522A (en) Conductive resin paste, package board using it, and semi-conductor package
JP2004296726A (en) Heat dissipating member, package for containing semiconductor element, and semiconductor device
JPH0770677B2 (en) Module mounting structure
JP3987649B2 (en) Package for storing semiconductor elements
JP2003068954A (en) Package for housing semiconductor element
JP2001244390A (en) Package for semiconductor device and mounting structure
CN1497716A (en) Package for semiconductor chip and semiconductor device
JP2002076213A (en) Semiconductor device module
JPH10275878A (en) Semiconductor package
JP3306613B2 (en) Semiconductor device and electronic device using the same
JP2003188295A (en) Heat sink for semiconductor element receiving package and for optical communication module package
JPH10135405A (en) Wiring board module
JPH08204301A (en) Metallic base circuit board and module using it
JP3971592B2 (en) Package for storing semiconductor elements
JP4574071B2 (en) Package for housing heat dissipation member and semiconductor element
JP4596698B2 (en) Package for housing heat dissipation member and semiconductor element
JPH08293569A (en) Bonded structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees