JPH0770677B2 - Module mounting structure - Google Patents

Module mounting structure

Info

Publication number
JPH0770677B2
JPH0770677B2 JP14901587A JP14901587A JPH0770677B2 JP H0770677 B2 JPH0770677 B2 JP H0770677B2 JP 14901587 A JP14901587 A JP 14901587A JP 14901587 A JP14901587 A JP 14901587A JP H0770677 B2 JPH0770677 B2 JP H0770677B2
Authority
JP
Japan
Prior art keywords
chip
resin
thermal expansion
substrate
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14901587A
Other languages
Japanese (ja)
Other versions
JPS63313846A (en
Inventor
太佐男 曽我
弘則 児玉
一二 山田
覚 荻原
森原  淳
守 沢畠
稔 田中
二三幸 小林
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14901587A priority Critical patent/JPH0770677B2/en
Publication of JPS63313846A publication Critical patent/JPS63313846A/en
Publication of JPH0770677B2 publication Critical patent/JPH0770677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To make possible the highly reliable connection of a 10-mm square chip to a multilayered substrate having a thermal expansion coefficient comparable to that of Al2O3 by a method wherein the gap between the semiconductor chip and the surface of a carrier substrate is filled with a resin, whose thermal expansion coefficient is close to that of a solder. CONSTITUTION:A high-output (20W/chip or more) large-sized chip (the level of a 10-mm square) is formed in a face down structure) wherein the rear of the chip can be liquid cooled, and a resin 3 of a specified composition is filled in the gap between a carrier substrate 2 having the same thermal expansion coefficient as that of a multilayered substrate 7 and the chip 1. Accordingly, a shear stress which is applied to solder bumps is reduced and moreover, the chip is formed into a carrier, a resistor for characteristic impedance matching or a capacitor is incorporated and an increase in the integration of the chip can be contrived. Thereby, a highly reliable structure, which has a superior repair property and is at a level to satisfy 10-15 years being regarded as the requirement longevity of a computer, can be made possible for the large- sized chip.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な超大型コンピユータのCPUの論理LSIの
高密度モジユール実装構造に関する。
The present invention relates to a high-density module mounting structure of a logic LSI of a CPU of a novel ultra-large-sized computer.

〔従来の技術〕[Conventional technology]

第2図はフリツプチツプ構造におけるチツプ裏面から冷
却する構造の従来例である。特公昭56−31743に記載の
ようにチツプ裏面にメタライズを施し、冷却スタツド10
と接着したフリツプチツプ実装構造である。
FIG. 2 shows a conventional example of a structure for cooling from the back surface of the chip in the flip chip structure. As described in JP-B-56-31743, the back surface of the chip is metalized and the cooling stud 10
It is a flip-chip mounting structure that is adhered to.

このフリツプチツプ方式の冷却効果は十分にあるが大型
チツプを使用した場合、チツプと多層基板との熱膨張差
による熱疲労寿命が問題となつている。例えば5mm□の
チツプ(最外周のはんだバンプ間距離は6.5mm)をAl2O3
基板(6.8×10-6/℃)にフリツプチツプ接続すると、−
55〜150℃、1∞/hのサイクルで1000∞が限度である。
そこで大型フリツプチツプを多層基板に高信頼で接続す
る実装法が要求されている。
Although the cooling effect of this flip chip system is sufficient, when a large chip is used, the thermal fatigue life due to the difference in thermal expansion between the chip and the multilayer substrate poses a problem. For example, a 5 mm □ chip (the distance between the outermost solder bumps is 6.5 mm) is Al 2 O 3
Flip-chip connection to the board (6.8 × 10 -6 / ° C)
The limit is 1000∞ for a cycle of 55 to 150 ° C and 1∞ / h.
Therefore, a mounting method for connecting a large flip chip to a multilayer substrate with high reliability is required.

コンピユータの大容量化、高速化にともない、年々チツ
プの論理ゲート数の増加、配線ピツチの高密度化ととも
に大型(10mm□レベル)で、高出力(20W/チツプ以上)
で、終端抵抗付,コンデンサー付の実装が要求されるよ
うになつてきた。
Along with the increase in capacity and speed of computers, the number of logic gates in the chip increases year by year, the wiring pitch becomes higher, and the output is large (10 mm □ level) and high output (20 W / chip or more).
Therefore, mounting with a terminating resistor and a capacitor has come to be required.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、フリツプチツプ方式としての冷却効果
は十分であるが、大型チツプを使用した場合にチツプと
多層基板間での熱膨張差を縮小させる配慮がされておら
ず、耐熱疲労寿命が短かいなどの問題があつた。
The above-mentioned prior art has a sufficient cooling effect as the flip chip system, but does not consider reducing the difference in thermal expansion between the chip and the multilayer substrate when a large chip is used, and has a short thermal fatigue life. There was a problem such as.

また、高速化のため、信号の反射等のノイズを防ぐた
め、特性インピーダンスマツチング用抵抗もしくは、コ
ンデンサーの高密度実装上の問題があつた。
Further, in order to increase the speed and prevent noise such as signal reflection, there is a problem in high-density mounting of a resistor for characteristic impedance matching or a capacitor.

本発明の目的は、高出力で大型チツプを多層基板にフエ
ースダウン接続した構造で、チツプ裏面を直接もしくは
間接に液冷する方式で、かつ高速化のため特性インピー
ダンスマツチング用抵抗、もしくは、大巾な高速化が期
待できるコンデンサーを内臓させることによる高密度実
装と高信頼化(特に耐熱疲労性)とチツプリペア(取外
し、再接続)性に優れたモジユール実装構造を提供する
ことにある。
The object of the present invention is a structure in which a large chip with high output is face-down connected to a multilayer substrate, a method of directly or indirectly liquid cooling the back surface of the chip, and a characteristic impedance matching resistor or a large resistor for high speed. It is to provide a module mounting structure that is excellent in high-density mounting and high reliability (especially thermal fatigue resistance) and chip-preparation (removal, reconnection) by incorporating a capacitor that can be expected to achieve a high speed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高出力(20W/チツプ以上)大型チツプ(10mm
□レベル)に対し、チツプ裏面を液冷可能なフエースダ
ウン構造にして、多層基板と同じ熱膨張係数を有するキ
ヤリヤ基板とチツプとの間隙に特定組成の樹脂を充填す
ることによりはんだバンプにかかるせん断応力を低減
し、かつチツプキヤリヤ化し、特性インピーダンスマツ
チング用の抵抗、もしくはコンデンサーを内蔵させて高
密度化し、リペア性に優れコンピユータの要求寿命とさ
れている10〜15年を満たすレベルの高信頼化構造を大型
チツプで可能にすることができる。
The present invention, high output (20W / chip or more) large chip (10mm
□ level), the back surface of the chip has a face-down structure that can be liquid-cooled, and the solder bumps are sheared by filling the gap between the carrier substrate and the chip, which has the same coefficient of thermal expansion as the multilayer substrate, with a resin of a specific composition. Reduced stress, made into a chip carrier, made high in density by incorporating a resistor or capacitor for characteristic impedance matching, excellent in repairability, and highly reliable at a level that satisfies the required life of the computer for 10 to 15 years. The structure can be made possible with large chips.

本発明は、フリツプチツプ接続方式によりSiチツプをセ
ラミツク等のキヤリア基板にはんだ付されており、チツ
プとキヤリア基板間隙が樹脂で充填され、該キヤリア基
板のスルーホール導体を通して設けられたキヤリア基板
裏側の端子を多層基板にはんだ付してなる構造で、該チ
ツプ裏面を熱伝導媒体である金属、セラミツクス等を通
して空冷・液冷してなるモジユール実装構造にある。
According to the present invention, a Si chip is soldered to a carrier substrate such as a ceramic by a flip chip connection method, a gap between the chip and the carrier substrate is filled with resin, and a terminal on the back side of the carrier substrate provided through a through-hole conductor of the carrier substrate. Is soldered to a multi-layered substrate, and the back surface of the chip is a module mounting structure in which it is air-cooled or liquid-cooled through a heat conductive medium such as metal or ceramics.

樹脂は用いる半田の熱膨張係数の±30%以下のものが好
ましい。樹脂には石英粉を30〜60体積%を含有させるの
が好ましい。石英粉は100メツシユ以下、好ましくは10
μm以下である。また、同様にキヤリヤ基板は多層板の
熱膨張係数の±30%以下が好ましい。
It is preferable that the resin has a coefficient of thermal expansion of ± 30% or less of the solder used. The resin preferably contains 30 to 60% by volume of quartz powder. Quartz powder is 100 mesh or less, preferably 10
μm or less. Similarly, the carrier substrate preferably has a coefficient of thermal expansion of ± 30% or less of the multilayer plate.

〔作用〕[Action]

この寿命向上を可能にした原因は、1).従来の裸チツ
プのフリツプチツプ方式では最外周のはんだバンプで応
力集中していたものが、低膨張化した樹脂を充填するこ
とにより、はんだバンプにかかる応力集中を緩和して、
応力を低下させたこと、2).樹脂の熱膨張係数をはん
だのそれに合せたことにより、はんだバンプにかかる歪
を低下させたこと、3).樹脂の中に微粒で球状のポリ
ブタジエンゴムを分散させることにより、熱衝撃に対す
る応力緩和作用があること、等である。
The cause that made this life improvement possible is 1). In the conventional bare chip flip chip method, stress concentration was done at the outermost solder bumps, but by filling the resin with low expansion, the stress concentration on the solder bumps was alleviated,
Reducing stress 2). By adjusting the thermal expansion coefficient of the resin to that of the solder, the strain applied to the solder bumps was reduced 3). Dispersing fine-grained and spherical polybutadiene rubber in the resin has a stress relaxation action against thermal shock.

なお、多層基板と熱膨張係数を一致させた曲げ剛性の大
なるキヤリヤ基板を用いることにより、多層板とキヤリ
ヤ基板間のはんだ接続部に問題になるような熱応力が生
じないようにした。
By using a carrier substrate having a large flexural rigidity with a coefficient of thermal expansion that is the same as that of the multilayer substrate, thermal stress that would cause a problem is not generated in the solder connection portion between the multilayer plate and the carrier substrate.

これにより従来、不可能とされていた10mm□チツプのAl
2O3並みの熱膨張係数を有する多層基板への高信頼性接
続を可能にすることができる。
As a result, it was previously impossible to make a 10 mm square chip of Al.
It is possible to realize highly reliable connection to a multilayer substrate having a thermal expansion coefficient similar to that of 2 O 3 .

樹脂としてエポキシ樹脂,ポリイミド樹脂が用いられ
る。
Epoxy resin or polyimide resin is used as the resin.

〔実施例〕〔Example〕

第1図は本発明に係る半導体樹脂パツケージ構造の一実
施例を用いたモジユール実装構造を示し、Siチツプ1は
その裏面において低温はんだ11を介してSiチツプ冷却板
12に接続され冷却板12はニツケルベローズ8に接続さ
れ、水9により冷却される。Siチツプ1の表面は電極は
キヤリヤ基板2の上面にはんだ(Pb−5%Sn)により接
続され、Siチツプ1とキヤリヤ基板2との間隙は樹脂3
で充填される。キヤリヤ基板2の上面はんだ付け部分
と、キヤリヤ基板2のスルーホール導体5を介して電気
的に接続されたキヤリヤ基板2下面部分ははんだ6(Pb
−60%Sn)により多層基板7に接続され、ここで多層基
板7中の所定の印刷回路に接続される。第1図の構成に
おいて、Siチツプ1とキヤリア基板2をはんだ4で接続
し樹脂10を充填させたものが半導体樹脂パツケージ構造
を構成する、 樹脂3には、後に第3図等を参照して詳述するようにエ
ポキシ樹脂に石英粉等を配合した組成のものではんだ3
と同じ程度の熱膨張係数を持つようにしてある。多層基
板7にはAl2O3を用いてあり、キヤリア基板2には多層
基板7の熱膨張係数とほぼ等しい熱膨張係数を有するも
のとしてAl2O3又はムライト(Al2O3,SiO2)などを用い
る。はんだ6の組成ははんだ4の組成と異なり融点が低
く交互にはんだ付けし行るようにしてある。
FIG. 1 shows a module mounting structure using an embodiment of a semiconductor resin package structure according to the present invention, in which a Si chip 1 has a Si chip cooling plate on its back surface via a low temperature solder 11.
The cooling plate 12 connected to 12 is connected to the nickel bellows 8 and cooled by water 9. The electrode of the surface of the Si chip 1 is connected to the upper surface of the carrier substrate 2 by soldering (Pb-5% Sn), and the gap between the Si chip 1 and the carrier substrate 2 is made of resin 3
Filled with. The lower surface portion of the carrier board 2 electrically connected to the upper surface soldering portion of the carrier board 2 through the through-hole conductor 5 of the carrier board 2 is solder 6 (Pb
-60% Sn) to connect to the multilayer substrate 7, where it is connected to a predetermined printed circuit in the multilayer substrate 7. In the structure shown in FIG. 1, the Si chip 1 and the carrier substrate 2 are connected by solder 4 and filled with a resin 10 to form a semiconductor resin package structure. For the resin 3, refer to FIG. 3 and the like later. As described in detail, solder with a composition in which quartz powder is mixed with epoxy resin 3
It has the same coefficient of thermal expansion as. Al 2 O 3 is used for the multilayer substrate 7, and the carrier substrate 2 is assumed to have a coefficient of thermal expansion substantially equal to that of the multilayer substrate 7 such as Al 2 O 3 or mullite (Al 2 O 3 , SiO 2 ) And so on. The composition of the solder 6 is different from the composition of the solder 4 and has a low melting point so that they can be alternately soldered.

樹脂3の熱膨張係数をはんだ4のそれと同程度にして応
力の分散を図りかつキヤリヤ基板9の熱膨張係数を多層
基板7のそれとほぼ等しくしてキヤリヤ基板2と多層基
板7との間で問題とする程度の熱応力が生じないように
することにより、半導体チツプ1と多層基板7の熱膨張
係数の差異による熱応力の問題が解消されている。又、
これと同時に、半導体チツプ1をキヤリア基板2と共
に、半導体チツプ毎に、多層基板7とのはんだ付け替え
を容易に行い得るようにし、半導体チツプ又は半導体チ
ツプを用いた装置の検査,保守を容易にかつ経済的に行
い得るようにしてある。
The coefficient of thermal expansion of the resin 3 is set to be similar to that of the solder 4 to disperse the stress, and the coefficient of thermal expansion of the carrier substrate 9 is made substantially equal to that of the multilayer substrate 7 to cause a problem between the carrier substrate 2 and the multilayer substrate 7. The problem of thermal stress due to the difference in thermal expansion coefficient between the semiconductor chip 1 and the multilayer substrate 7 is solved by preventing the thermal stress to the extent that or,
At the same time, the semiconductor chip 1 together with the carrier substrate 2 can be easily re-soldered with the multilayer substrate 7 for each semiconductor chip, so that the semiconductor chip or an apparatus using the semiconductor chip can be easily inspected and maintained. It can be done economically.

本実施例において多層基板7は30層でタングステン
(W)導体を用い、表面導体層にはタングステン(W)
にニツケル(Ni)めつきし、金(Au)を塗つた構成がと
られ、キヤリア基板2は4層で、スルーホール導体5に
は銅めつき後に浸漬はんだめつきを施したもの等が用い
られる。半導体チツプ1の表面にはAl膜上にSiO2の膜を
形成し、電極部分ではSiO2を除去しCr−CuAuでCrが0.1
μm、Cuが3μm、Auが0.1μmの薄膜が用いられてい
る。
In this embodiment, the multilayer substrate 7 has 30 layers of tungsten (W) conductor, and the surface conductor layer is made of tungsten (W).
It has a structure in which nickel (Ni) plating and gold (Au) coating are applied, the carrier substrate 2 has four layers, and the through-hole conductor 5 is plated with copper and then subjected to immersion soldering. Used. A SiO 2 film is formed on the Al film on the surface of the semiconductor chip 1, and SiO 2 is removed at the electrode portion, and Cr is 0.1% with Cr-CuAu.
A thin film of μm, Cu of 3 μm, and Au of 0.1 μm is used.

Siチツプ裏面は直接又は間接に液体冷却するように構成
することが可能であり、又第1図に示した構造以外に
も、熱伝導媒体である金属、セラミツクス等を通して空
冷又は液冷することができる。
The back surface of the Si chip can be configured to be liquid-cooled directly or indirectly, and in addition to the structure shown in FIG. 1, it can be air-cooled or liquid-cooled through a heat transfer medium such as metal or ceramics. it can.

第3図は、−55〜150℃、1h/∞の条件における温度サイ
クル加速試験結果である。(a)はAl2O37基板に10mm□
チツプ1をはんだ付3した構造(裸チツプ)で、(b)
はAl2O3キヤリヤ基板2上にチツプをはんだ付した後、
チツプとキヤリア基板間隙に樹脂4を充填後、該キヤリ
ヤ基板Al2O3多層基板7上に低温はんだ6で搭載した構
造である。
FIG. 3 shows the results of the temperature cycle acceleration test under the conditions of −55 to 150 ° C. and 1 h / ∞. (A) is 10 mm □ on Al 2 O 3 7 substrate
Chip 1 soldered 3 structure (bare chip), (b)
After soldering the chip on the Al 2 O 3 carrier board 2,
This is a structure in which the resin 4 is filled in the gap between the chip and the carrier substrate and then mounted on the carrier substrate Al 2 O 3 multilayer substrate 7 with the low temperature solder 6.

(c)は加速試験の結果である。のチツプキヤリヤ構
造はの裸チツプ構造に比べ10倍の寿命を得ることがで
きた。この加速寿命の複対値はコンピユータ稼働寿命の
15年を十分に満たしたレベルとされている。
(C) is the result of the acceleration test. The chip carrier structure has a 10 times longer life than the bare chip structure. The double value of this accelerated life is the operating life of the computer.
It is said that the level has been sufficient for 15 years.

なお、(b)構造において、キヤリヤ用基板と多層基板
は共にAl2O3を用いたが、多層基板の熱膨張係数に合つ
たもの、もしくは近いものをキヤリヤ基板として用いる
ことにより、キヤリヤ基板と多層基板とのはんだ接合部
6には熱疲労が生じない構造とした。この時、キヤリヤ
基板の曲げ剛性は、Siチツプに比べて大きいことが必要
でこれによりキヤリヤ基板が反らなく、高信頼性を維持
できる。
In the structure (b), Al 2 O 3 was used for both the carrier substrate and the multi-layer substrate. However, by using as the carrier substrate, one having a thermal expansion coefficient that is close to or the same as the coefficient of thermal expansion of the multi-layer substrate, The solder joint portion 6 with the multilayer substrate has a structure in which thermal fatigue does not occur. At this time, the flexural rigidity of the carrier substrate needs to be higher than that of the Si chip, so that the carrier substrate does not warp and high reliability can be maintained.

キヤリヤ基板上のスルーホール導体5は銅めつき後に浸
漬はんだめつきを施したもの、もしくはW,Mo,Cu等のペ
ースト焼結導体、あるいはピン材を埋込んだ構造でも可
能である。
The through-hole conductors 5 on the carrier substrate may be copper-plated and then dip-soldered, or a sintered sintered conductor such as W, Mo, or Cu, or a structure in which a pin material is embedded.

裸チツプに比べ、チツプキヤリヤ構造が高耐熱疲労性を
示す主な理由は、有限要素法による熱弾塑性解析結果か
ら、1).樹脂が、はんだバンプの一部に集中している
応力集中を緩和させる、2).樹脂の熱膨張係数をはん
だに一致させたこと、3).樹脂中に分散している微細
球状のポリブタジユンゴム熱衝撃を緩和する、等のため
と考えられる。以下に詳細説明を示す。
The main reason why the chip carrier structure has higher thermal fatigue resistance than the bare chip is based on the thermo-elasto-plastic analysis results by the finite element method1). The resin relaxes the stress concentration concentrated on a part of the solder bump 2). Matching the thermal expansion coefficient of the resin with that of the solder 3). It is considered that this is because the thermal shock of fine spherical polybutadiyun rubber dispersed in the resin is mitigated. Detailed description will be given below.

使用した樹脂組成は、以下の通りである。The resin composition used is as follows.

エポキシ樹脂828 100部 ポリブタジエン(CTBN) 15部 ジシアンジアミド 10部 イミダゾール(2P4MHZ) 5部 A−187 2部 石英粉(EMC−Y40) 55vol% この樹脂は、はんだ並みの低膨張であるが、流動性が良
く、表面張力の作用でチツプとキヤリヤ基板間隙を浸透
して充填される。従来使用されているDual Inline Pack
age用の樹脂は圧力をかけた成型鋳込み方式のため、型
との離型性が良いことが必要である。また、チツプのフ
エースアツプ接続方式のため、樹脂の浸透は大きな問題
とならず、流動性に対する特別な考慮はなされていな
い。
Epoxy resin 828 100 parts Polybutadiene (CTBN) 15 parts Dicyandiamide 10 parts Imidazole (2P4MHZ) 5 parts A-187 2 parts Quartz powder (EMC-Y40) 55vol% This resin has low expansion like solder, but fluidity Well, due to the effect of surface tension, it penetrates and fills the gap between the chip and the carrier substrate. Conventionally used Dual Inline Pack
Since the age resin is a molding and casting method in which pressure is applied, it is necessary to have good mold releasability from the mold. In addition, because of the chip face-up connection method, resin penetration does not become a big problem, and no special consideration is given to fluidity.

このため、リード界面における樹脂の密着性が低下し、
熱衝撃,温度サイクル等により水分が界面を伝わつてチ
ツプ表面のAl導体部を腐食させて断線させる事故が起き
ている。
Therefore, the adhesiveness of the resin at the lead interface decreases,
Due to thermal shock, temperature cycle, etc., water is transmitted through the interface, corroding the Al conductor part on the chip surface and breaking the wire.

しかし、上記樹脂組成を用いたフリツプチツプ構造にお
いては、フエースダウン接続方式のためチツプとキヤリ
ヤ基板との約100μmの狭いすき間に表面張力の作用を
利用して浸透させる必要があるため、樹脂の流動性を良
くし(モールド樹脂の約10倍)、かつSiチツプ及びキヤ
リヤ基板との密着性が良くしてある。このため、水分の
浸入は少なく、耐食性が優れた構造になつている。
However, in the flip-chip structure using the above resin composition, due to the face-down connection method, it is necessary to use the surface tension effect to penetrate into the narrow gap of about 100 μm between the chip and the carrier substrate. (About 10 times that of the mold resin) and good adhesion to Si chips and carrier substrates. For this reason, the structure has a small amount of infiltration of water and excellent corrosion resistance.

温度サイクル試験条件の温度を150℃から−55℃に変化
させた時、最も大きな力を受ける最外周のはんだバンプ
近傍に作用する主応力分布は、従来のフリツプチツプ構
造(樹脂なし裸チツプ)でははんだバンプ外側とチツプ
及び基板との境界で応力集中を起こし、はんだにクラツ
クが発生し、断線に至る。場所により主応力の大小が顕
著に表われ、接合界面では特に大きな応力集中が認めら
れる。
When the temperature of the temperature cycle test condition is changed from 150 ° C to -55 ° C, the main stress distribution acting on the solder bumps on the outermost periphery, which receives the largest force, is the same as in the conventional flip chip structure (bare chip without resin). Stress concentration occurs at the boundary between the outside of the bump and the chip and the board, and cracking occurs in the solder, leading to disconnection. The magnitude of the principal stress appears remarkably depending on the location, and particularly large stress concentration is observed at the joint interface.

樹脂に充填した本発明のフリツプチツプ構造では、主応
力の場所による影響は少なく、ほぼ一様に分散されてい
る状態が観察される。また、接合界面での応力集中は認
められず応力の大きさも、従来の構造に比べて小さい。
In the flip chip structure of the present invention filled with resin, the influence of the location of the main stress is small, and a state in which the stress is dispersed almost uniformly is observed. Further, no stress concentration is observed at the joint interface, and the magnitude of stress is smaller than that of the conventional structure.

これより樹脂の効果は、はんだバンプにかかる応力集中
を緩和し、応力を分散することにより、熱疲労寿命を向
上させていると考えられる。
From this, it is considered that the effect of the resin is that the stress concentration applied to the solder bump is relaxed and the stress is dispersed, thereby improving the thermal fatigue life.

次の効果として、第4図に示す如く、従来のチツプ構造
(樹脂なし)に対する樹脂充填チツプの樹脂の熱膨張係
数を変えた場合の最外周はんだバンプに作用する最大主
応力の比を示したものである。
As the next effect, as shown in FIG. 4, the ratio of the maximum principal stress acting on the outermost peripheral solder bump when the coefficient of thermal expansion of the resin of the resin-filled chip with respect to the conventional chip structure (without resin) is changed is shown. It is a thing.

樹脂の熱膨張係数がPb−5%Snはんだに一致した位置
で、はんだにかかる最大主応力が最小になることが分か
る。樹脂の熱膨張係数がはんだのそれより小さくなつて
も最大主応力は増すことを意味している。しかし、Siチ
ツプ(素子)にかかる応力は、当然ながら、樹脂の熱膨
張係数が大きいとそれだけ大きく作用するので、Siチツ
プに対しては小さいことが望ましいが、はんだと同一の
熱膨張係数で素子に問題が起きた例は、従来のDual Inl
ine Package等ではない。
It can be seen that the maximum principal stress applied to the solder is minimized at the position where the thermal expansion coefficient of the resin matches the Pb-5% Sn solder. It means that the maximum principal stress increases even if the coefficient of thermal expansion of the resin becomes smaller than that of the solder. However, the stress applied to the Si chip (element) naturally increases as much as the thermal expansion coefficient of the resin increases, so it is desirable that it is small for the Si chip, but with the same thermal expansion coefficient as the solder An example of a problem with
It is not an ine Package.

なお、樹脂組成の選定は、特開昭60−63951号に詳細に
示されているように、樹脂の熱膨張係数ははんだ(Pb−
5%Sn)に合わせて約25×10-6/℃とした樹脂を用い
た。樹脂の熱膨張係数をはんだと同等にすることは、は
んだバンプ自体が樹脂によつて拘束されず応力集中を少
なくし従つて、はんだ自体にかかる応力、歪みは小さく
なることを意味する。しかし、Si素子そのものに対して
は樹脂とSiとの熱膨張差による応力、歪がかかるので、
熱膨張係数は小さいことが望ましいが、はんだに合せて
も素子に支障を与えるレベルではない。
Incidentally, the selection of the resin composition is as described in detail in JP-A-60-63951.
5% Sn) and a resin adjusted to about 25 × 10 −6 / ° C. was used. Making the coefficient of thermal expansion of the resin equal to that of the solder means that the solder bump itself is not constrained by the resin and stress concentration is reduced, so that the stress and strain applied to the solder itself are reduced. However, since stress and strain are applied to the Si element itself due to the difference in thermal expansion between the resin and Si,
It is desirable that the coefficient of thermal expansion be small, but it is not at a level that will hinder the device even if it is used in combination with solder.

キヤリヤ基板用樹脂の条件として、樹脂の熱膨張係数を
はんだ並みに下げること以外に構求されていることは、
チツプとキヤリヤ基板間の間隙に碁板目に分布したはん
だバンプの障壁をぬつて内部に空間を作らないように浸
透可能な流動性である。
As conditions for the resin for the carrier substrate, what is required other than lowering the thermal expansion coefficient of the resin to the level of solder is:
It is a fluidity that can penetrate into the gap between the chip and the carrier substrate without penetrating the barriers of the solder bumps distributed in the grid and creating a space inside.

エポキシ樹脂を低膨張化するために石英粉等を配合して
いくと、流動性は低下する(はんだ並みの膨張係数とす
るには約55vol%入れなければならない)。従つて、流
動性を向上させる手段として1〜5μmφの球状のポリ
ブタジエンゴムを分散させることにより、流動性の低下
をおさえることができた。また、ポリブタジエンゴムは
20%以上配合すると、分散を維持できず、一部凝集して
くるため、ポリブタジエン自体は熱膨張係数が大きい
(80×10-6/℃)ことから悪影響がでてくる。
If quartz powder or the like is added in order to lower the expansion of the epoxy resin, the fluidity will decrease (in order to obtain an expansion coefficient similar to that of solder, approximately 55 vol% must be added). Therefore, by dispersing spherical polybutadiene rubber having a diameter of 1 to 5 μm as a means for improving the fluidity, the fluidity could be suppressed from decreasing. In addition, polybutadiene rubber
If blended at 20% or more, the dispersion cannot be maintained and a part of the particles agglomerate, and polybutadiene itself has a large thermal expansion coefficient (80 × 10 -6 / ° C.), which has an adverse effect.

ポリブタジエン配合比が20%以下ならば流動性の改善
と、熱衝撃を緩和し耐熱疲労性を向上させる効果がある
ことは特開昭60−63951号に記してある。
It is described in JP-A-60-63951 that if the blending ratio of polybutadiene is 20% or less, it has the effects of improving fluidity and mitigating thermal shock to improve thermal fatigue resistance.

このメカニズムは急激な温度変化が起きた時(例えば15
0℃→室温→−55℃に変化)に、このゴムの弾性作用に
より、チツプ,基板,はんだ等への衝撃的な応力を緩和
する作用がある。
This mechanism is used when sudden temperature changes occur (eg 15
From 0 ° C to room temperature → -55 ° C), the elastic action of this rubber has the effect of relieving shocking stress on the chip, substrate, solder, etc.

なお、樹脂組成として、低膨張化材の石英粉と緩衝材の
ポリブタジエンの混入率と熱疲労寿命判定(○:良好、
△:ほぼ良好,×:不良)との関係を第1表に示す。
As the resin composition, the mixing ratio of the low expansion material quartz powder and the buffer material polybutadiene and the thermal fatigue life judgment (○: good,
Table 1 shows the relationship with (Δ: almost good, ×: bad).

石英粉の混入率は樹脂全体に対し、60〜65体積%が限界
である。ポリブタジエンの混入率は20重量部が限界であ
る。石英粉は30〜60体積%、ポリブタジエンは5〜15重
量部が望ましい。
The mixing ratio of quartz powder is limited to 60 to 65 volume% with respect to the entire resin. The mixing ratio of polybutadiene is limited to 20 parts by weight. Quartz powder is preferably 30 to 60% by volume, and polybutadiene is preferably 5 to 15 parts by weight.

樹脂の中にはカーボンブラツクを約1〜2%添加して黒
色に着色させて用いた。
About 1 to 2% of carbon black was added to the resin to be colored black for use.

なお、石英以外の低膨張化材として、アルミナ炭化シリ
コン,窒化シリコン,窒化アルミ,炭酸カルシウム、及
び酸化ベリリウムの混入された炭化シリコンの少なくと
も1つからなるものならば可能である。高熱伝導のダイ
ヤモンド,BNを入れて、高熱伝導樹脂とすることも可能
である。
The low expansion material other than quartz may be made of at least one of alumina silicon carbide, silicon nitride, aluminum nitride, calcium carbonate, and silicon carbide mixed with beryllium oxide. It is also possible to add highly heat-conducting diamond or BN to obtain a high heat-conducting resin.

ポリブタジエン以外の弾性材として、ポリイソプレン、
シリコーンの少なくとも1つからなるものも可能であ
る。特にシリコーン系ゴムは耐熱,耐温度サイクル性に
優れているため、高信頼性が要求される場合に使用す
る。
As an elastic material other than polybutadiene, polyisoprene,
It is also possible that it consists of at least one of silicones. In particular, silicone rubber is excellent in heat resistance and temperature cycle resistance, so it is used when high reliability is required.

はんだバンプ形状については、はんだバンプの寿命向
上,樹脂の浸入性を考慮すると、通常の球欠体よりも、
はんだの溶融時にチツプとキヤリヤ間隙を持ち上げるこ
とにより、つづみ型形状にすることにより、更に高信頼
性になり、樹脂の作業性も向上する。
Regarding the shape of solder bumps, considering the life of solder bumps and resin penetration, the shape of solder bumps is
When the solder is melted, the gap between the chip and the carrier is lifted to form a staggered shape, which further increases reliability and improves workability of the resin.

第5図は各種パツケージ構造の応用例を示す。FIG. 5 shows application examples of various package structures.

従つて、チツプ裏面の冷却板への接続及びキヤリヤ基板
の多層基板への接続を省略した構造とした。
Therefore, the structure in which the connection to the cooling plate on the back surface of the chip and the connection to the multilayer substrate of the carrier substrate are omitted.

(a)は樹脂がチツプ下面のみ接着されている構造 (b)は樹脂がチツプ下面のみならず、チツプ側面も接
着されている構造 (c)は樹脂がチツプ裏面以下を包んでいる構造で高熱
伝導性樹脂を用いることにより、樹脂面での熱伝導も若
干期待できる (d)はチツプ裏面とチツプより大きな寸法の熱伝導性
板(例えば熱伝導性絶縁SiC)とをはんだ付(もしくは
接着)して、横方向への熱の伝わりを良くして熱伝導性
を高めたこと、及びチツプ裏面の機械的な保護,耐湿性
向上等に効果のある構造 (e)は多層基板側の端子ピツチが大きい場合にキヤリ
ヤ基板にピツチ整合機能を持たせた構造 (f)は接続端子が周囲に配置されている例で、樹脂は
はんだバンプを包んでいるが、中央部は空洞になつてい
る構造。耐熱サイクル性は、樹脂が充填された構造と比
較してほぼ同等であることを確認したので、この種の構
造も効果がある。
(A) is a structure in which the resin is adhered only to the lower surface of the chip. (B) is a structure in which the resin is adhered not only to the lower surface of the chip, but also to the side surface of the chip. By using a conductive resin, you can expect some heat conduction on the resin surface. (D) Solder (or bond) the back surface of the chip and a heat conductive plate of a size larger than the chip (eg, heat conductive insulating SiC). The structure which is effective in improving the heat transfer in the lateral direction to improve the thermal conductivity, and mechanically protecting the back surface of the chip and improving the moisture resistance (e) is the terminal pitch on the multilayer board side. If the carrier board is large, the carrier board has a pitch matching function. (F) is an example in which the connection terminals are arranged in the periphery, and the resin wraps the solder bumps, but the center part is hollow. . Since it was confirmed that the thermal cycle resistance is almost the same as that of the structure filled with resin, this type of structure is also effective.

(g)は(f)の平面図である。(G) is a plan view of (f).

第6図は(a),(b)のパツケージ構造について、ス
タツド型多段モジユール構造に搭載した場合の断面図
(c)を示す。上段が(a)構造モデルであり、下段が
(b)構造モデルであり、水冷17用熱伝導性平面板18で
各パツケージを加圧板19によりばねを介して均一に加圧
した構造である、(a)構造のチツプ裏面、(b)構造
の冷却板面は水冷用熱伝導性平面板に接触もしくは熱導
電性グリースで接着されているが、各パツケージ間の強
い拘束はなく耐熱疲労性は確保されている。
FIG. 6 is a cross-sectional view (c) of the package structure shown in FIGS. 6A and 6B when the package structure is mounted on a stud type multistage module structure. The upper stage is the (a) structural model, the lower stage is the (b) structural model, which is a structure in which each package is uniformly pressed by a pressure plate 19 via a spring by a heat conductive flat plate 18 for water cooling 17. The back surface of the chip of (a) structure and the cooling plate surface of (b) structure are in contact with the heat conductive flat plate for water cooling or adhered with a heat conductive grease, but there is no strong restraint between each package and the heat fatigue resistance is Has been secured.

なお、各パツケージの上面は平面上にある必要性からボ
ンデイング時に強制的に平坦化させた。
The upper surface of each package was forcibly flattened during bonding because it was necessary to be flat.

第7図は(a),(b)のピンリード型パツケージ構造
を示し、第6図と同様な搭載法が可能である。チツプは
Siに限るものでなく、GaAsもしくは機能素子は搭載した
チツプすべてを含むものである。また、C,R等の素子に
対しても同様である。
FIG. 7 shows the pin lead type package structure of (a) and (b), and the mounting method similar to that of FIG. 6 is possible. The chip is
Not limited to Si, GaAs or functional elements include all mounted chips. The same applies to elements such as C and R.

第8図はフロナ液中に浸漬する沸騰冷却方式に適用した
例である。チツプ裏面にはスタツド19型フインを接合し
てある。多層基板の両面にチツプを実装できるので、高
密度化と冷却の容易さで水冷方式より優れた面がある。
FIG. 8 shows an example applied to a boiling cooling method of immersing in the Frona liquid. A stud 19 type fin is joined to the back of the chip. Since the chips can be mounted on both sides of the multi-layer board, it has an advantage over the water cooling method in terms of high density and easy cooling.

多層基板7として、Al2O3等を主成分とするセラミツク
ス基板を使用した。フロンが金属と接合している部分は
チツプ交換に必要なはんだ付部6である(Siチツプ側面
は保護用樹脂21で包んでいる)。Pb−60%Snはんだ腐食
の加速試験の結果、コンピユータ稼働条件で15年を保証
できるレベルであることから、フロン液中での本方式に
よる冷却が可能である。
As the multilayer substrate 7, a ceramics substrate containing Al 2 O 3 or the like as a main component was used. The part where the fluorocarbon is bonded to the metal is the soldering part 6 necessary for chip replacement (the side surface of the Si chip is covered with the protective resin 21). As a result of the accelerated test of Pb-60% Sn solder corrosion, it is possible to guarantee 15 years under computer operating conditions, so cooling by this method in CFC liquid is possible.

本方式の効果は、高密度実装と冷却の容易さにある。The advantages of this method are high-density mounting and easy cooling.

第9図は高出力チツプの高性能冷却方式を示す。チツプ
裏面はCuブロツクフイン32に接触し、更にSiC冷却板12
に伝導される。29はCuブロツクフインがSiチツプ及びSi
C冷却板に接するためのバネである。平面は線触媒で、
平面荒さは1〜5μmに仕上げると、He雰囲気では優れ
た熱伝導を示す。ブロツクフイン32はSiチツプ1の上下
左右の傾きに追従してチツプ面とハウジング12の冷却面
に接触してチツプ1を冷却することができる。
FIG. 9 shows a high performance cooling system for a high power chip. The bottom surface of the chip contacts the Cu block fin 32, and the SiC cooling plate 12
Is transmitted to. In 29, Cu block fin is Si chip and Si
C A spring for contacting the cooling plate. The plane is a line catalyst,
When the surface roughness is finished to 1 to 5 μm, excellent heat conduction is exhibited in a He atmosphere. The block fin 32 follows the inclination of the Si chip 1 in the vertical and horizontal directions to contact the chip surface and the cooling surface of the housing 12 to cool the chip 1.

第10図(a)はチツプキヤリヤを多層セラミツク基板7
上に搭載し、チツプ裏面を熱伝導グリース20もしくはHe
ガスを介してAlフイン30に接触させ、AlN冷却板31に伝
熱させるモジユール構造を示す。多層セラミツク基板7
はコネクターを介して多層プリント板に連結されてい
る。
FIG. 10 (a) shows a chip carrier as a multilayer ceramic substrate 7.
It is mounted on the top of the chip and the back side of the chip is the thermal grease 20 or He.
A module structure in which heat is transferred to an AlN cooling plate 31 by contacting with the Al fin 30 via gas is shown. Multilayer ceramic substrate 7
Is connected to the multilayer printed board through a connector.

以上の各種モジユール構造に対して本発明はキヤリヤ基
板2の表面に抵抗層及びコンデンサーを設けるようにし
たものである。第11図はチツプ1とキヤリヤ基板2間の
拡大図で、信号ピン33は終端抵抗(薄膜)25につながれ
ている。絶縁層(ポリイミド24もしくはSiO2)、抵抗層
25は最終的には高純度(Cl-量10ppm、α線0.5ppb)の樹
脂で保護されているため、耐湿,耐α線構造である。
With respect to the various module structures described above, the present invention provides the carrier substrate 2 with a resistance layer and a capacitor on the surface thereof. FIG. 11 is an enlarged view between the chip 1 and the carrier substrate 2, and the signal pin 33 is connected to the terminating resistor (thin film) 25. Insulation layer (polyimide 24 or SiO 2 ), resistance layer
Since 25 is finally protected by a high-purity (Cl - amount 10 ppm, α-ray 0.5 ppb) resin, it has a moisture-resistant and α-ray resistant structure.

抵抗層25の上にはCr−Cu−Au膜27の蒸着端子が形成さ
れ、スルーホール導体33に接着したAl蒸着膜26が形成さ
れている。
A vapor deposition terminal of a Cr-Cu-Au film 27 is formed on the resistance layer 25, and an Al vapor deposition film 26 adhered to the through hole conductor 33 is formed.

第12図(a)〜(c)は薄膜抵抗を内蔵させたチツプキ
ヤリヤ断面構造を示す。第11図(a)はスルーホールに
W導体5を形成後、平面研削し平坦化したアルミナ基板
上に薄膜抵抗(Cr−SiO)36を形成し、50Ωにレーザト
リミングしたパターン37を示す。抵抗体36の上にはCr−
Cu−Auの蒸着膜端子27が形成されている。チツプ1とキ
ヤリヤ基板2を高温のPb−5%Snはんだ(融点300℃)
4で接続後、樹脂3を満たして、チツプキヤリヤを作
る。第12図(b)は平面研削し、平坦化したアルミナ基
板上に耐熱衝撃緩和の軟らかいAl蒸着26を施した上に薄
膜抵抗36、更に接続端子27を形成したものである。薄膜
抵抗36のトリミングは(a)は同様に行う。薄膜抵抗36
の保護は低ヤング率(700〜1000kgf/mm2)、で高純度
(Cl-量10ppm)、低α線(0.5ppb)の樹脂で十分であ
る。キヤリヤの裏面の端子はリペア可能とするため、Ni
−Auめつきである。第1図(c)はキヤリヤ裏面側に抵
抗36を形成した例である。ポリイミド保護層24の上から
トリミングすることにより、抵抗層の保護に支障はな
い。
12 (a) to 12 (c) show a sectional structure of a chip carrier having a built-in thin film resistor. FIG. 11 (a) shows a pattern 37 in which a thin film resistor (Cr-SiO) 36 is formed on a flattened alumina substrate after forming a W conductor 5 in a through hole and laser trimmed to 50Ω. Cr− on the resistor 36
A Cu-Au vapor deposition film terminal 27 is formed. Chip 1 and carrier substrate 2 are made of high temperature Pb-5% Sn solder (melting point 300 ° C)
After connecting with 4, fill resin 3 to make a chip carrier. In FIG. 12 (b), a thin film resistor 36 and a connecting terminal 27 are formed on a flattened and flattened alumina substrate on which a soft Al vapor deposition 26 for thermal shock absorption is applied. The thin film resistor 36 is trimmed in the same manner as in (a). Thin film resistor 36
A low Young's modulus (700 to 1000 kgf / mm 2 ), high purity (Cl amount 10 ppm), and low α-ray (0.5 ppb) resin is sufficient for protection. Since the terminals on the back of the carrier can be repaired,
-Au is attached. FIG. 1 (c) shows an example in which a resistor 36 is formed on the rear surface side of the carrier. Trimming from above the polyimide protective layer 24 does not hinder the protection of the resistance layer.

〔発明の効果〕〔The invention's effect〕

本発明によれば、熱膨張係数の大きい多層基板(α=10
〜15×10-6/℃)に対しても大型チツプの高信頼搭載を
可能にする。従つて、低誘電率の有機多層基板(例えば
テフロン系)に対しても搭載が可能である。また、マイ
クロパツケージ化により、メタライズの信頼性が高いた
め保守性,リペア性,検査性等にも優れるため、高信頼
化に大きく寄与する。
According to the present invention, a multilayer substrate having a large coefficient of thermal expansion (α = 10
Enables highly reliable mounting of large chips even at ~ 15 × 10 -6 / ° C). Therefore, it can be mounted on a low dielectric constant organic multilayer substrate (for example, Teflon-based). Further, due to the micro-packaging, the reliability of metallization is high and the maintainability, repairability, and inspectability are also excellent, which greatly contributes to the high reliability.

終端抵抗を内蔵させることにより、抵抗チツプ搭載不要
となり、より高密度実装,高速化を可能にする。
By incorporating a terminating resistor, it is not necessary to mount a resistance chip, enabling higher density mounting and higher speed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構造を示す断面図、第2図は従来例の
断面図、第3図は、(a)は従来の断面構造で、(b)
は本発明の断面構造、(c)は両者の信頼性データの比
較、第4図は、樹脂の熱膨張係数とはんだに作用する最
大主応力の比との関係を示す線図、第5図(a)〜
(f)は、各種パツケージ構造の応用例を示す断面図、
第6図は、マルチチツプモジユールに適用した場合の断
面図、第7図は、ピンリード型構造の断面図、第8図は
フロン液による沸騰冷却方式に適用したモジユールの断
面図、第9図はHe雰囲気の接触熱伝導型モジユールの断
面図、第10図はくし歯型冷却フインを備えた本発明のモ
ジユール構造の断面図、第11図は薄膜抵抗内蔵チツプキ
ヤリヤを搭載した本発明のモジユールの断面図、第12図
(a)〜(c)は抵抗内蔵チツプキヤリヤを備えたモジ
ユール構造の断面図である。 1……Siチツプ、2……キヤリヤ基板、3……樹脂、4
……はんだ(Pb−5%Sn)、5……スルーホール導体、
6,13……はんだ(Pb−60%Sn)、7……多層基板、8…
…Niベローズ、10……スタツド、11……低温はんだ、12
……SiC冷却板、16……空隙、17……水、18……水冷用
熱導性平面板、19……スタツド型フイン、20……接触部
(グリース)、21……保護用樹脂、22……コネクター、
23……多層プリント板、24……ポリイミド、25……薄膜
抵抗、26……Al導体、27……Cr−Cu−Au薄膜端子、28…
…薄膜整合層及び抵抗層、29……ばね、30……Alフイ
ン、31……AlN冷却板、32……Cuブロツクフイン、33…
…ピン、34……Ni−Auめつき端子、35……SiO2、36……
薄膜抵抗層、37……トミリング部分、38……Cr−Cu−Ni
−Au端子。
FIG. 1 is a sectional view showing the structure of the present invention, FIG. 2 is a sectional view of a conventional example, and FIG. 3 (a) is a conventional sectional structure, (b)
Is a cross-sectional structure of the present invention, (c) is a comparison of reliability data of both, FIG. 4 is a diagram showing the relationship between the thermal expansion coefficient of the resin and the ratio of the maximum principal stress acting on the solder, FIG. (A) ~
(F) is a cross-sectional view showing an application example of various package structures,
FIG. 6 is a cross-sectional view when applied to a multi-chip module, FIG. 7 is a cross-sectional view of a pin lead type structure, FIG. 8 is a cross-sectional view of a module applied to a boiling cooling system using a CFC liquid, and FIG. Is a cross-sectional view of a contact heat conduction type module of He atmosphere, FIG. 10 is a cross-sectional view of a module structure of the present invention having a comb-shaped cooling fin, and FIG. 11 is a cross-section of the module of the present invention equipped with a chip carrier with a built-in thin film resistor. FIGS. 12 (a) to 12 (c) are cross-sectional views of a module structure having a chip carrier with a built-in resistor. 1 ... Si chip, 2 ... Carrier substrate, 3 ... Resin, 4
…… Solder (Pb-5% Sn), 5 …… Through-hole conductor,
6,13 ...... Solder (Pb-60% Sn), 7 ... Multilayer substrate, 8 ...
… Ni bellows, 10 …… stud, 11 …… low temperature solder, 12
…… SiC cooling plate, 16 …… void, 17 …… water, 18 …… water cooling heat conductive flat plate, 19 …… stud fin, 20 …… contact part (grease), 21 …… protective resin, 22 …… Connector,
23 …… Multilayer printed circuit board, 24 …… Polyimide, 25 …… Thin film resistor, 26 …… Al conductor, 27 …… Cr-Cu-Au thin film terminal, 28…
… Thin film matching layer and resistance layer, 29 …… Spring, 30 …… Al fin, 31 …… AlN cooling plate, 32 …… Cu block fin, 33…
… Pin, 34 …… Ni-Au plated terminal, 35 …… SiO 2 , 36 ……
Thin film resistance layer, 37 ... Tomiling part, 38 ... Cr-Cu-Ni
-Au terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荻原 覚 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 森原 淳 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 沢畠 守 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 田中 稔 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 小林 二三幸 神奈川県秦野市堀山下1番地 株式会社日 立製作所神奈川工場内 (72)発明者 大塚 寛治 東京都小平市上水本町1450番地 株式会社 日立製作所コンピュータ事業本部デバイス 開発センタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Ogihara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Research Institute, Ltd. (72) Inventor Atsushi Morihara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Nitate Works Co., Ltd. Inside Hitachi Research Laboratory (72) Inventor Mamoru Sawahata 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hiritsu Manufacturing Co., Ltd. Inside Hitachi Research Laboratory (72) Minoru Tanaka 292 Yoshida-cho, Totsuka-ku, Yokohama City, Kanagawa Prefectural Corporation Hitachi Manufacturing Technology Inside the laboratory (72) Inventor Fumiyuki Kobayashi 1 Horiyamashita, Horiyamashita, Hadano, Kanagawa Prefecture Kanagawa Factory, Kanagawa Plant (72) Inventor Kanji Otsuka 1450, Kamimizuhonmachi, Kodaira, Tokyo Hitachi, Ltd. Computer Business Division In device development center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】フリツプチツプ接続方式によるチツプ裏面
を冷却するモジユール実製構造であつて、半導体チツプ
と、多層基体と、半導体チツプと多層基板との間に置か
れ、多層基板の熱膨張係数に近い熱膨張係数の持つキヤ
リア基板であつて、スルーホール導体が取付けられたス
ルーホールを有し、半導体チツプと対向する面において
半導体チツプとスルーホール導体とがはんだ付けされか
つ半導体チツプとキヤリア基板の前記面との間隙が、そ
の熱膨張係数がはんだの熱膨張係数に近い樹脂で充填さ
れ多層基板と対向する面においてスルーホール導体と多
層基板とがはんだ付けされた前記キヤリア基板と、前記
半導体チツプの裏面に接触して設けられた冷却用熱伝導
体と、前記キヤリア基板面に設けられたスルーホール導
体に電気的に接続した抵抗薄膜とを有することを特徴と
するモジユール実装構造。
1. A module actual structure for cooling the back surface of a chip by a flip chip connection method, which is placed between a semiconductor chip, a multilayer substrate, and a semiconductor chip and a multilayer substrate, and has a thermal expansion coefficient close to that of the multilayer substrate. A carrier substrate having a coefficient of thermal expansion, having a through hole to which a through-hole conductor is attached, the semiconductor chip and the through-hole conductor being soldered on the surface facing the semiconductor chip, and the semiconductor chip and the carrier substrate The carrier substrate in which the through hole conductor and the multilayer substrate are soldered on the surface facing the multilayer substrate in which the gap between the surface and the coefficient of thermal expansion is filled with resin whose thermal expansion coefficient is close to the thermal expansion coefficient of the solder, and the semiconductor chip. Electrically connected to the cooling heat conductor provided in contact with the back surface and the through-hole conductor provided on the carrier board surface. Modules mounted structure characterized by having a resistor film.
【請求項2】特許請求の範囲第1項において、樹脂はは
んだに近い熱膨張係数を有するモジユール実装構造。
2. The module mounting structure according to claim 1, wherein the resin has a thermal expansion coefficient close to that of solder.
【請求項3】特許請求の範囲第1項又は第2項におい
て、キヤリア基板は多層板に近い熱膨張係数を有するモ
ジユール実装構造。
3. The module mounting structure according to claim 1, wherein the carrier substrate has a thermal expansion coefficient close to that of a multilayer board.
【請求項4】特許請求の範囲第1項乃至第3項のいずれ
かにおいて、石英粉30〜60体積%を配合させたエポキシ
樹脂又はポリイミド樹脂を用いたモジユール実装構造。
4. A module mounting structure according to any one of claims 1 to 3, which uses an epoxy resin or a polyimide resin mixed with 30 to 60% by volume of quartz powder.
【請求項5】特許請求の範囲第1項乃至第3項のいずれ
かにおいて、ポリブタジエン5〜15重量部を配合させた
エポキシ樹脂を用いたモジユール実装構造。
5. A module mounting structure according to any one of claims 1 to 3, wherein the epoxy resin contains 5 to 15 parts by weight of polybutadiene.
【請求項6】特許請求の範囲第1項乃至第5項のいずれ
かにおいて、該キヤリア基板の表面もしくは内部に抵
抗,コンデンサーを設けたモジユール実装構造。
6. A module mounting structure according to any one of claims 1 to 5, wherein a resistor and a capacitor are provided on the surface or inside of the carrier substrate.
【請求項7】特許請求の範囲第6項において、該抵抗も
しくはコンデンサーの一部にトリミングによる調節部を
設けたモジユール実装構造。
7. A module mounting structure according to claim 6, wherein an adjusting portion by trimming is provided in a part of the resistor or the capacitor.
【請求項8】特許請求の範囲第1項乃至第7項のいずれ
かにおいて、該キヤリア基板表面を平面研削加工後に薄
膜抵抗もしくはコンデンサーを形成させたモジユール実
装構造。
8. A module mounting structure according to any one of claims 1 to 7, wherein a thin film resistor or a capacitor is formed after the surface of the carrier substrate is ground.
JP14901587A 1987-06-17 1987-06-17 Module mounting structure Expired - Fee Related JPH0770677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14901587A JPH0770677B2 (en) 1987-06-17 1987-06-17 Module mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14901587A JPH0770677B2 (en) 1987-06-17 1987-06-17 Module mounting structure

Publications (2)

Publication Number Publication Date
JPS63313846A JPS63313846A (en) 1988-12-21
JPH0770677B2 true JPH0770677B2 (en) 1995-07-31

Family

ID=15465809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14901587A Expired - Fee Related JPH0770677B2 (en) 1987-06-17 1987-06-17 Module mounting structure

Country Status (1)

Country Link
JP (1) JPH0770677B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550408A (en) * 1992-11-18 1996-08-27 Matsushita Electronics Corporation Semiconductor device
US5436503A (en) * 1992-11-18 1995-07-25 Matsushita Electronics Corporation Semiconductor device and method of manufacturing the same
JP3632930B2 (en) * 1993-12-27 2005-03-30 株式会社ルネサステクノロジ Ball grid array semiconductor device
US6300686B1 (en) 1997-10-02 2001-10-09 Matsushita Electric Industrial Co., Ltd. Semiconductor chip bonded to a thermal conductive sheet having a filled through hole for electrical connection
US6940712B2 (en) 2002-07-17 2005-09-06 International Business Machines Corporation Electronic device substrate assembly with multilayer impermeable barrier and method of making

Also Published As

Publication number Publication date
JPS63313846A (en) 1988-12-21

Similar Documents

Publication Publication Date Title
US4825284A (en) Semiconductor resin package structure
JP2548602B2 (en) Semiconductor mounting module
US7224048B1 (en) Flip chip ball grid array package
US5753974A (en) Electronic device assembly
US4724472A (en) Semiconductor device
US7005320B2 (en) Method for manufacturing flip chip package devices with a heat spreader
JP2002359341A (en) Semiconductor module and its manufacturing method
JP2000269369A (en) Semiconductor device
JP2000269371A (en) Semiconductor device and semiconductor mounting structure member
KR20060101340A (en) Stacked semiconductor package
JPH10256429A (en) Semiconductor package
JP3492025B2 (en) Circuit board structure
US20070130554A1 (en) Integrated Circuit With Dual Electrical Attachment Pad Configuration
JP2713994B2 (en) Package structure
JPH0770677B2 (en) Module mounting structure
JPH11260962A (en) Ball grid array type of semiconductor device
JP4577980B2 (en) Mounting board
JP2001102475A (en) Package for semiconductor element and its mouning structure
JPH0773110B2 (en) Semiconductor integrated circuit device
JP3422243B2 (en) Resin film
JP3432552B2 (en) Aluminum nitride multilayer substrate
JP3426827B2 (en) Semiconductor device
JP3865957B2 (en) Thermally conductive compounds
JPH0283963A (en) Organic and inorganic composite multilayer board
WO2023021888A1 (en) Electronic component module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees