JP2000180627A - Polarizing separation element - Google Patents

Polarizing separation element

Info

Publication number
JP2000180627A
JP2000180627A JP10354797A JP35479798A JP2000180627A JP 2000180627 A JP2000180627 A JP 2000180627A JP 10354797 A JP10354797 A JP 10354797A JP 35479798 A JP35479798 A JP 35479798A JP 2000180627 A JP2000180627 A JP 2000180627A
Authority
JP
Japan
Prior art keywords
diffraction grating
refractive index
optically
optically isotropic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354797A
Other languages
Japanese (ja)
Inventor
Takeshi Suzutsuchi
剛 鈴▲土▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10354797A priority Critical patent/JP2000180627A/en
Publication of JP2000180627A publication Critical patent/JP2000180627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarizing separation element of diffraction grating type easy to fabricate at a low cost and capable of increasing the polarizing angle and/or the efficiency. SOLUTION: A polarizing separation element is composed of a first element 2 of such a structure that a first diffraction grating shape 6 having surface unevenness is formed on the surface of an optically anisotropic film 5 provided on a first optically isotropic board 4 and a second element 3 having the same refractive index as that of the anisotropic film 5 in the abnormal beam direction (or the refractive index in the normal beam direction) and structutred so that a second diffraction grating shape 9 having surface unevenness is formed on the surface of an optically anisotropic film 8 provided on a second optically isotropic board 7, and the intended polarizing separator element 1 can be fabricated easily by adhering the two elements 2 and 3 to each other through engagement of the surface unevennesses of the two members furnished with grating shapes 6 and 9, wherein the works to put a filler in grooves in the first diffraction grating shape 6 do not require much labor and can manage with a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ピックアップ等
に用いられて光の偏光方向によって素子を完全に透過す
る偏光方向と回折される偏光方向とに分離する機能を持
つ回折格子型の偏光分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffraction grating type polarization separator which is used in an optical pickup or the like and has a function of separating a polarization direction completely transmitting through an element and a polarization direction diffracted according to the polarization direction of light. Related to the element.

【0002】[0002]

【従来の技術】光ディスクや光磁気ディスクなどに対す
る光ピックアップ用の光学部品、或いは、光アイソレー
タ等として用いられ、偏光方向によって回折効率を異な
らせた偏光分離素子として種々のものが提案されてい
る。その数例を挙げて説明する。
2. Description of the Related Art Various types of polarization splitting elements have been proposed which are used as optical components for optical pickups for optical disks, magneto-optical disks, or the like, or as optical isolators, and differ in diffraction efficiency depending on the polarization direction. A description will be given using several examples.

【0003】第一の従来例として、例えば、特開平7−
287117号公報に示されるように、光学的異方性基
板上に回折格子形状を形成し、この回折格子形状の溝部
に屈折率を規定した材料を充填してなる偏光ビームスプ
リッタがある。これにより、偏光の分離角度や効率を向
上させることができ、かつ、充填する材料の屈折率を規
定することにより材料の選択肢が広がるというものであ
る。
A first conventional example is disclosed in, for example,
As shown in Japanese Patent No. 287117, there is a polarizing beam splitter in which a diffraction grating shape is formed on an optically anisotropic substrate, and a groove having the diffraction grating shape is filled with a material having a defined refractive index. As a result, the polarization separation angle and efficiency can be improved, and the range of materials can be increased by defining the refractive index of the material to be filled.

【0004】第二の従来例として、特開平9−6162
7号公報に示される偏光ビームスプリッタがある。これ
は、上記の特開平7−287117号公報提案例を改善
したもので、光学的異方性膜として酸化チタン膜を使用
し、屈折率の異方性の大きさを大きくし、格子深さや膜
厚などを改善したものである。また、温度に対して屈折
率が安定な膜であり安定性も向上するというものであ
る。
[0004] As a second conventional example, Japanese Patent Application Laid-Open No. 9-6162 is disclosed.
There is a polarizing beam splitter disclosed in Japanese Patent Application Laid-Open No. 7-107. This is an improvement of the example proposed in JP-A-7-287117, in which a titanium oxide film is used as the optically anisotropic film, the magnitude of the anisotropy of the refractive index is increased, and the lattice depth and the like are increased. The film thickness is improved. In addition, the film has a stable refractive index with respect to temperature and improves stability.

【0005】第三の従来例として、特開平9−1273
33号公報に示されるように、光学的な異方性基板上に
回折格子形状を形成することで、偏光を分離する素子で
あって、回折格子形状部分と光学素子とを接着剤等を用
いて接着することにより、埃等の影響を受けないように
したものがある。
[0005] As a third conventional example, Japanese Patent Laid-Open No. 9-1273 is disclosed.
As shown in Japanese Patent Publication No. 33, an element that separates polarized light by forming a diffraction grating shape on an optically anisotropic substrate, wherein the diffraction grating shape portion and the optical element are bonded using an adhesive or the like. In some cases, it is not affected by dust or the like by bonding.

【0006】[0006]

【発明が解決しようとする課題】ところが、第一の従来
例のような構成によっても、偏光の分離角度を大きくす
るような設計や効率を大きくするような設計を行なう場
合には、回折格子ピッチの小ピッチ化や回折格子の深さ
を深く形成しなければならなくなる。この結果、溝部分
に材料を充填することが困難となり、充填のための工程
も複雑となる。また、液状部材を塗布することで溝部分
に充填する場合であっても表面に大きなうねりを生じて
しまい、波面の乱れを起こしてしまう可能性がある。同
時に、第一の従来例の構成では、光学的異方性を持つ結
晶を基板として用いているため、コスト的にも高価とな
ってしまう。これらの点に関しては、第二の従来例によ
る場合も同様である。
However, even with the configuration as in the first conventional example, when a design for increasing the polarization separation angle or a design for increasing the efficiency is performed, the diffraction grating pitch is increased. In this case, the pitch must be reduced and the diffraction grating must be formed deep. As a result, it becomes difficult to fill the groove portion with the material, and the filling process becomes complicated. Further, even when the groove is filled by applying the liquid member, a large undulation may be generated on the surface, and the wavefront may be disturbed. At the same time, in the configuration of the first conventional example, since a crystal having optical anisotropy is used as a substrate, the cost is high. These points are the same in the case of the second conventional example.

【0007】また、第三の従来例のような構成では、接
着剤の選定(屈折率)が限られてくることや接着剤を介
して光学素子を完全に一体化しているために、平行度の
ずれが生ずる場合や、それによる作製工程の増加が予測
される。また、平行度のずれによって光学的なばらつき
が生じてしまい、歩留まりの低下も懸念される。
Further, in the configuration of the third conventional example, the selection (refractive index) of the adhesive is limited, and the optical element is completely integrated via the adhesive. It is expected that the deviation will occur and that the number of manufacturing steps will increase. In addition, optical deviation occurs due to the shift in parallelism, and there is a concern that the yield may decrease.

【0008】つまり、これらの従来例による場合、偏光
角度や効率を大きくし得る偏光分離素子を作製する上
で、容易に作製することが困難な状況にあるといえる。
In other words, according to these conventional examples, it can be said that it is difficult to easily manufacture a polarization beam splitting element that can increase the polarization angle and efficiency.

【0009】そこで、本発明は、作製容易で低コストに
して偏光角度や効率を大きくし得る回折格子型の偏光分
離素子を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a diffraction grating type polarization splitting element which can be easily manufactured at low cost and can increase the polarization angle and efficiency.

【0010】また、本発明は、上記目的を実現する上
で、屈折率の整合を容易にとることができ、特性の面内
均一性をとれる偏光分離素子を提供することを目的とす
る。
Another object of the present invention is to provide a polarization beam splitting element that can easily match the refractive index and achieve in-plane uniformity of the characteristics in order to realize the above object.

【0011】加えて、本発明は、上記目的を実現する上
で、効率の向上やより一層の低コスト化や高効率化を図
れる偏光分離素子を提供することを目的とする。
In addition, another object of the present invention is to provide a polarization beam splitting element capable of improving the efficiency and further reducing the cost and increasing the efficiency in realizing the above object.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明は、
第1の光学的等方性基板上に製膜された光学的異方性膜
表面に凹凸状の第1の回折格子形状を形成してなる第1
の要素と、前記光学的異方性膜の常光線方向屈折率と異
常光線方向屈折率との何れか一方と同一の屈折率を持つ
光学的等方性膜が第2の光学的等方性基板上に製膜され
て前記第1の要素の前記第1の回折格子形状に噛み合い
接着される凹凸状の第2の回折格子形状が前記光学的等
方性膜表面に形成された第2の要素と、を備える。
According to the first aspect of the present invention,
A first optically anisotropic film formed on a first optically isotropic substrate, the first of which is formed with an uneven first diffraction grating shape on the surface thereof.
And the optically isotropic film having the same refractive index as one of the ordinary light direction refractive index and the extraordinary light direction refractive index of the optically anisotropic film is a second optically isotropic film. A second diffractive grating having a concave-convex shape formed on a substrate and meshed with and adhered to the first diffractive grating of the first element, formed on the surface of the optically isotropic film; And an element.

【0013】光学的異方性膜に形成された第1の回折格
子形状によって回折が行われるが、これだけでは偏光の
方向を問わず回折が起こり、偏光を分離できない。ここ
に、この光学的異方性膜の常光線方向屈折率と異常光線
方向屈折率、即ち、進相軸方向の屈折率と遅相軸方向の
屈折率との何れか一方と同一の屈折率の光学的等方性膜
により形成される第2の回折格子形状を有する第2の要
素を第1の要素の回折格子形状面に合せて互いに凹凸を
噛み合わせて接着することで、一方の偏光方向に対して
は回折格子を感じない構造となり、その偏光方向の光は
素子をそのまま透過することとなる。一方、直交する他
の偏光方向の光に関しては周期的な屈折率変化が存在す
るので回折され、透過する偏光方向の光と分離される。
よって、第1の要素と第2の要素との回折格子形状面同
士の凹凸の噛み合わせ接着で偏光分離素子を容易に作製
できることとなり、回折格子形状の溝部分に対する材料
の充填の手間を要せず、低コストで済む。
[0013] Diffraction is performed by the first diffraction grating shape formed on the optically anisotropic film, but this alone causes diffraction irrespective of the direction of polarized light and cannot separate polarized light. Here, the refractive index in the ordinary ray direction and the extraordinary ray direction refractive index of the optically anisotropic film, that is, the same refractive index as one of the refractive index in the fast axis direction and the slow axis direction The second element having the second diffraction grating shape formed by the optically isotropic film of the above is aligned with the diffraction grating shape surface of the first element, and the irregularities are mutually engaged and adhered to each other, whereby one polarized light is formed. The structure does not sense the diffraction grating in the direction, and the light in the polarization direction is transmitted through the element as it is. On the other hand, light in another orthogonal polarization direction has a periodic change in refractive index and is diffracted and separated from light in the transmitted polarization direction.
Therefore, the polarization separation element can be easily manufactured by engaging and bonding the unevenness between the diffraction grating-shaped surfaces of the first element and the second element, and it takes time and effort to fill the groove portion of the diffraction grating with the material. Low cost.

【0014】請求項2記載の発明は、請求項1記載の偏
光分離素子の前記第1の回折格子形状と前記第2の回折
格子形状との凹凸形状が同一である。
According to a second aspect of the present invention, the first diffraction grating shape and the second diffraction grating shape of the polarization splitting element of the first aspect have the same concavo-convex shape.

【0015】従って、請求項1記載の偏光分離素子を実
現する上で第1,2の要素で噛み合わされる凹凸形状が
同一であるため、面合わせ精度が高くて均一な偏光分離
素子を作製できる。
Therefore, in realizing the polarized light separating element according to the first aspect, since the concave and convex shapes engaged by the first and second elements are the same, a uniform polarized light separating element with high surface alignment accuracy can be manufactured. .

【0016】請求項3記載の発明は、請求項1又は2記
載の偏光分離素子の前記光学的異方性膜と前記光学的等
方性膜との材料が同一である。
According to a third aspect of the present invention, the material of the optically anisotropic film and the optically isotropic film of the polarized light separating element of the first or second aspect is the same.

【0017】従って、請求項1又は2記載の偏光分離素
子を実現する上で屈折率の整合を容易にとることがで
き、結果として、特性の面内均一性も確保でき、同一材
料を用いればよいため、材料の選択も容易となる。
Therefore, it is possible to easily match the refractive index in realizing the polarized light separating element according to the first or second aspect. As a result, in-plane uniformity of the characteristics can be ensured. Because it is good, the selection of the material is also easy.

【0018】請求項4記載の発明は、請求項1,2又は
3記載の偏光分離素子の互いに噛み合う凹凸状の前記第
1の回折格子形状と前記第2の回折格子形状とが光学的
に透明な樹脂により接着されている。
According to a fourth aspect of the present invention, the first and second diffraction grating shapes of the concavo-convex shape of the polarization splitting element of the first, second or third aspect are optically transparent. It is bonded by a suitable resin.

【0019】従って、接着部分で光の散乱を生じたり透
過率を損なうことなく請求項1,2又は3記載の偏光分
離素子を実現できる。
Accordingly, the polarized light separating element according to the first, second or third aspect can be realized without causing light scattering at the bonding portion or impairing the transmittance.

【0020】請求項5記載の発明は、請求項4記載の偏
光分離素子の前記樹脂の屈折率が前記光学的等方性膜の
屈折率と同一である。
According to a fifth aspect of the present invention, the refractive index of the resin of the polarized light separating element of the fourth aspect is the same as the refractive index of the optically isotropic film.

【0021】従って、請求項4記載の偏光分離素子を実
現する上で素子の効率を向上させることができる。
Therefore, the efficiency of the device can be improved in realizing the polarized light separating device according to the fourth aspect.

【0022】請求項6記載の発明は、請求項1ないし5
の何れか一に記載の偏光分離素子が前記第1の光学的等
方性基板と前記第2の光学的等方性基板との何れか一方
に他方に対する位置合わせ用のガイドを有する。
The invention according to claim 6 is the invention according to claims 1 to 5
The polarizing beam splitter according to any one of the above, has a guide for positioning with respect to one of the first optically isotropic substrate and the second optically isotropic substrate.

【0023】従って、請求項1ないし5の何れか一に記
載の偏光分離素子を実現する上で、その組付け工程の簡
略化を図れる。
Accordingly, in realizing the polarized light separating element according to any one of claims 1 to 5, the assembly process can be simplified.

【0024】請求項7記載の発明は、請求項1ないし6
の何れか一に記載の偏光分離素子の前記光学的異方性膜
が斜め蒸着により製膜されている。
The invention according to claim 7 is the invention according to claims 1 to 6
The optically anisotropic film of the polarization beam splitting element according to any one of the above, is formed by oblique evaporation.

【0025】従って、請求項1ないし6の何れか一に記
載の偏光分離素子を実現する上で、斜め蒸着によれば光
学的な異方性を大きくすることができ、効率や回折格子
形状の設計の幅を広げることができる。
Therefore, in order to realize the polarization beam splitting device according to any one of claims 1 to 6, the oblique vapor deposition can increase the optical anisotropy and improve the efficiency and the diffraction grating shape. The range of design can be expanded.

【0026】請求項8記載の発明は、請求項7記載の偏
光分離素子の前記光学的異方性膜の材料が酸化タンタル
である。
According to an eighth aspect of the present invention, the material of the optically anisotropic film of the polarization beam splitting element according to the seventh aspect is tantalum oxide.

【0027】従って、請求項7記載の偏光分離素子を好
適に実現できる。
Accordingly, the polarized light separating element according to claim 7 can be suitably realized.

【0028】[0028]

【発明の実施の形態】本発明の第一の実施の形態を図1
に基づいて説明する。本実施の形態の偏光分離素子1は
第1の要素2と第2の要素3との組合せ構造とされてい
る。第1の要素2は、光学的等方性基板(第1の光学的
等方性基板)4上に光学的異方性膜5を製膜し、光学的
異方性膜5の表面に周期的な凹凸状の回折格子形状(第
1の回折格子形状)6を形成したものである。第2の要
素3は、光学的等方性基板(第2の光学的等方性基板)
7上に光学的等方性膜8を製膜し、光学的等方性膜8の
表面に周期的な凹凸状の回折格子形状(第2の回折格子
形状)9を形成したものである。ここに、光学的等方性
膜8としては、光学的異方性膜5の常光線方向屈折率と
異常光線方向屈折率との何れか一方と同一の屈折率を持
つものが用いられている。このような第1の要素2と第
2の要素3とが、回折格子形状6,9が形成された面を
合せてそれらの凹凸が互いに噛み合うようにして接着固
定されている。この接着には、光学的等方性膜8と同一
の屈折率を持つ光学的に透明な樹脂が用いられている。
FIG. 1 shows a first embodiment of the present invention.
It will be described based on. The polarization beam splitter 1 of the present embodiment has a combination structure of a first element 2 and a second element 3. The first element 2 is formed by forming an optically anisotropic film 5 on an optically isotropic substrate (first optically isotropic substrate) 4, and forming a periodic film on the surface of the optically anisotropic film 5. In this case, a rough irregular diffraction grating shape (first diffraction grating shape) 6 is formed. The second element 3 is an optically isotropic substrate (a second optically isotropic substrate)
An optically isotropic film 8 is formed on 7, and a periodic uneven diffraction grating shape (second diffraction grating shape) 9 is formed on the surface of the optically isotropic film 8. Here, as the optically isotropic film 8, a film having the same refractive index as one of the ordinary light direction refractive index and the extraordinary light direction refractive index of the optically anisotropic film 5 is used. . The first element 2 and the second element 3 are bonded and fixed such that the surfaces on which the diffraction grating shapes 6 and 9 are formed are aligned with each other so that their irregularities mesh with each other. For this bonding, an optically transparent resin having the same refractive index as the optically isotropic film 8 is used.

【0029】各部についてより詳細に説明する。光学的
等方性基板4,7にはパイレックスガラスが用いられて
いる。光学的異方性膜5は斜め蒸着により作製された五
酸化タンタル膜であり、膜厚は5μmとされている。こ
の光学的異方性膜5に関して、異方性を示す常光線方向
と異常光線方向との屈折率差は0.06である。即ち、
適用波長を635nmとした場合、常光線方向の屈折率
は1.65であり、異常光線方向の屈折率は1.59で
ある。回折格子形状6は、1μmライン(凸部分)と1
μmスペース(凹部分)との周期的な繰返しによる2μ
m周期の凹凸パターンであり、その格子深さは5.3μ
mとされている。このような矩形状の回折格子が並んだ
状態の回折格子形状6は、光学的異方性膜5に対してレ
ジストマスクを用いた異方性ドライエッチングにより形
成される。この場合のエッチングガスとしてはフッ素系
のCF4 ガスやCHF3 ガスなどが用いられる。
Each part will be described in more detail. Pyrex glass is used for the optically isotropic substrates 4 and 7. The optically anisotropic film 5 is a tantalum pentoxide film produced by oblique evaporation, and has a thickness of 5 μm. Regarding the optically anisotropic film 5, the refractive index difference between the ordinary ray direction and the extraordinary ray direction showing anisotropy is 0.06. That is,
When the applied wavelength is 635 nm, the refractive index in the ordinary ray direction is 1.65, and the refractive index in the extraordinary ray direction is 1.59. The diffraction grating shape 6 has a 1 μm line (convex portion) and a 1 μm line.
2μ due to periodic repetition with μm space (recess)
It is an irregular pattern with m periods, and its lattice depth is 5.3μ.
m. The diffraction grating shape 6 in which such rectangular diffraction gratings are arranged is formed on the optically anisotropic film 5 by anisotropic dry etching using a resist mask. In this case, a fluorine-based CF 4 gas, CHF 3 gas, or the like is used as an etching gas.

【0030】光学的等方性膜8は光学的等方性基板7上
にアクリル系の樹脂を塗布し熱硬化させることにより形
成されたもので、膜厚は6μmとされている。ここに、
本実施の形態では、このアクリル系の樹脂として屈折率
が1.59の樹脂、即ち、光学的異方性膜5における異
常光線方向の屈折率1.59に合せた樹脂が用いられて
いる。回折格子形状9は、1μmライン(凸部分)と1
μmスペース(凹部分)との周期的な繰返しによる2μ
m周期の凹凸パターンであり、その格子深さは5.3μ
mとされている。即ち、周期も含めて回折格子形状6と
全く同一の凹凸形状の回折格子形状9とされている。こ
のような矩形状の回折格子が並んだ状態の回折格子形状
9は、光学的等方性膜8に対してレジストマスクを用い
た異方性ドライエッチングにより形成される。この場合
のエッチングガスとしては酸素ガスが用いられる。
The optically isotropic film 8 is formed by applying an acrylic resin on the optically isotropic substrate 7 and thermally curing the same, and has a thickness of 6 μm. here,
In the present embodiment, a resin having a refractive index of 1.59, that is, a resin adjusted to a refractive index of 1.59 in the extraordinary ray direction in the optically anisotropic film 5 is used as the acrylic resin. The diffraction grating shape 9 has a 1 μm line (convex portion) and a 1 μm line.
2μ due to periodic repetition with μm space (recess)
It is an irregular pattern with m periods, and its lattice depth is 5.3μ.
m. That is, the diffraction grating shape 9 has the same irregularities as the diffraction grating shape 6 including the period. The diffraction grating shape 9 in which such rectangular diffraction gratings are arranged is formed on the optically isotropic film 8 by anisotropic dry etching using a resist mask. In this case, an oxygen gas is used as an etching gas.

【0031】このような構成において、図1で、光学的
異方性膜5の常光線屈折率方向を紙面に平行な方向と
し、異常光線屈折率方向を紙面に垂直な方向とすると、
光学的異方性膜5の常光線方向では回折格子の凹部分に
異常光線方向と同一の屈折率の材料が充填されていると
同様となり、屈折率差が0.06の回折格子が存在する
ことになる。即ち、常光線方向の偏光方向の光は偏光分
離素子1を通過することで回折が起き、回折光が発生す
ることになるが、異常光線方向の偏光方向の光に関して
は屈折率の周期構造が存在しないものと等価な状態とな
り、回折を生ずることなく偏光分離素子1を透過するこ
とになる。ここで、異常光線屈折率方向の偏光に関して
も、0次回折光は存在する。これは、透過光となるが、
回折格子部分の溝深さを5.3μmとすることにより、
高屈折率部分と低屈折率部分との透過光同士の位相が半
波長ずれることより打ち消し合い、0次回折光による透
過光が存在しないことになる。これによって、偏光を完
全に分離することができる。
In such a configuration, in FIG. 1, if the direction of the ordinary ray refractive index of the optically anisotropic film 5 is a direction parallel to the page and the direction of the extraordinary ray is perpendicular to the page,
In the ordinary ray direction of the optically anisotropic film 5, it is the same as the case where the concave portion of the diffraction grating is filled with a material having the same refractive index as the extraordinary ray direction, and there is a diffraction grating having a refractive index difference of 0.06. Will be. That is, light in the polarization direction in the ordinary ray direction is diffracted by passing through the polarization splitting element 1, and diffracted light is generated. However, for light in the polarization direction in the extraordinary ray direction, the periodic structure of refractive index has a periodic structure. A state equivalent to the non-existent one is transmitted through the polarization beam splitter 1 without causing diffraction. Here, even for the polarized light in the extraordinary ray refractive index direction, the zero-order diffracted light exists. This is transmitted light,
By setting the groove depth of the diffraction grating portion to 5.3 μm,
The phase of the transmitted light in the high refractive index portion and the phase of the transmitted light in the low refractive index portion are canceled by a half wavelength shift, and the transmitted light by the zero-order diffracted light does not exist. Thereby, the polarized light can be completely separated.

【0032】このような偏光分離機能を示す本実施の形
態の偏光分離素子1は、第1の要素2と第2の要素3と
を、回折格子形状6,9が形成された面を合せてそれら
の凹凸が互いに噛み合うようにして接着固定することに
より形成されており、回折格子部分に対する液状樹脂の
充填等の作業を要せず、低コストにて容易に作製するこ
とができる。この際、回折格子形状6,9の周期が全く
同一であるので、低コストにて回折格子面の合わせ精
度、即ち、素子の精度を高くすることができる。また、
このような第1,2の要素2,3の接着に、光学的に透
明で光学的等方性膜8と同一の屈折率の樹脂を用いてい
るので、接着部分での光の散乱や効率低下を防止するこ
とができ、素子の効率向上を図れる。加えて、光学的異
方性膜5を五酸化タンタルによる斜め蒸着で形成してい
るので、屈折率の制御性や屈折率分布を小さくすること
ができ、素子の一層の高効率化を図ることができる。
In the polarization beam splitting element 1 of the present embodiment exhibiting such a polarization beam splitting function, the first element 2 and the second element 3 are aligned with the surfaces on which the diffraction grating shapes 6 and 9 are formed. The projections and depressions are formed by adhering and fixing them so as to mesh with each other, and do not require any operation such as filling the diffraction grating portion with a liquid resin, and can be easily manufactured at low cost. At this time, since the periods of the diffraction grating shapes 6 and 9 are exactly the same, the alignment accuracy of the diffraction grating surfaces, that is, the accuracy of the element can be increased at low cost. Also,
Since the optically transparent resin having the same refractive index as that of the optically isotropic film 8 is used to bond the first and second elements 2 and 3 to each other, light scattering and efficiency at the bonded portion are reduced. The reduction can be prevented, and the efficiency of the device can be improved. In addition, since the optically anisotropic film 5 is formed by oblique vapor deposition of tantalum pentoxide, the controllability of the refractive index and the refractive index distribution can be reduced, and the efficiency of the device can be further improved. Can be.

【0033】本発明の第二の実施の形態を図2に基づい
て説明する。第一の実施の形態(図1)で示した部分と
同一部分は同一符号を用いて示し、説明も省略する(以
降の実施の形態でも同様とする)。本実施の形態の偏光
分離素子11も基本的には偏光分離素子1と同様な構成
であるが、第2の要素3側の光学的等方性基板7上の光
学的等方性膜12が光学的異方性膜5と同一材料、即
ち、五酸化タンタル膜の斜め蒸着により形成されてい
る。この光学的等方性膜12の膜厚は6μm、屈折率は
1.59(これは、光学的異方性膜5における異常光線
方向の屈折率1.59と同じ)とされている。この他の
点は第一の実施の形態の場合と同様である。
A second embodiment of the present invention will be described with reference to FIG. The same parts as those described in the first embodiment (FIG. 1) are denoted by the same reference numerals, and description thereof is omitted (the same applies to the following embodiments). The polarization splitting element 11 of the present embodiment has basically the same configuration as the polarization splitting element 1 except that the optically isotropic film 12 on the optically isotropic substrate 7 on the second element 3 side is formed. It is formed by the same material as the optically anisotropic film 5, that is, by oblique evaporation of a tantalum pentoxide film. The thickness of the optically isotropic film 12 is 6 μm, and the refractive index is 1.59 (the same as the refractive index of the optically anisotropic film 5 in the extraordinary ray direction 1.59). Other points are the same as those in the first embodiment.

【0034】このような偏光分離素子11による場合も
その偏光分離機能は偏光分離素子1の場合と同様であ
る。
The polarization splitting function of the polarization splitting element 11 is the same as that of the polarization splitting element 1.

【0035】本実施の形態の偏光分離素子11による場
合も偏光分離素子1の場合と同様な効果が得られるが、
特に、本実施の形態においては、光学的等方性膜12が
光学的異方性膜5と同一材料により形成されているの
で、両者間の屈折率の整合性を容易かつ確実にとること
ができ、同一にすればよいので材料の選択肢も広がり、
低コスト化を図る上で有利となる。
The same effect as that of the polarization beam splitting element 1 can be obtained by the polarization beam splitting element 11 of the present embodiment.
In particular, in the present embodiment, since the optically isotropic film 12 is formed of the same material as the optically anisotropic film 5, it is possible to easily and surely match the refractive indexes between the two. It is possible to make it the same, so the choice of materials is expanded,
This is advantageous in reducing costs.

【0036】本発明の第三の実施の形態を図3に基づい
て説明する。本実施の形態の偏光分離素子21も基本的
には偏光分離素子11(もちろん、偏光分離素子1でも
よい)と同様な構成であるが、光学的等方性基板4,7
の一方(ここでは、光学的等方性基板7)の両端上に面
合わせ用のガイド22が一体的に突出形成されている。
このガイド22は第1,2の要素2,3間の位置ずれや
面の平行出しをするためのもので、第2の要素3におけ
る光学的等方性膜12のドライエッチング時に同時に作
製される。この他の点は第二の実施の形態の場合と同様
である。
A third embodiment of the present invention will be described with reference to FIG. The polarization beam splitting element 21 of the present embodiment has basically the same configuration as the polarization beam splitting element 11 (of course, the polarization beam splitting element 1 may be used).
A guide 22 for surface alignment is integrally formed on both ends of one of the two (here, the optically isotropic substrate 7).
The guide 22 is used to shift the positions of the first and second elements 2 and 3 and to make the surfaces parallel. The guide 22 is formed simultaneously with the dry etching of the optically isotropic film 12 in the second element 3. . Other points are the same as those in the second embodiment.

【0037】このような偏光分離素子21による場合も
その偏光分離機能は偏光分離素子11の場合と同様であ
る。
The polarization splitting function of the polarization splitting element 21 is the same as that of the polarization splitting element 11.

【0038】本実施の形態の偏光分離素子21による場
合も偏光分離素子11の場合と同様な効果が得られる
が、特に、本実施の形態においては、第1,2の要素
2,3間の位置合わせ用のガイド22を備えているの
で、回折面の噛み合わせ接着に際してガイド22を利用
することにより組立てが容易で面合わせの精度が上がる
上に、平行度も上げることができ、素子性能が向上す
る。
Although the same effects as those of the polarization splitting element 11 can be obtained by the polarization splitting element 21 of the present embodiment, in particular, in the present embodiment, the first and second elements 2 and 3 Since the alignment guide 22 is provided, the use of the guide 22 during the meshing and bonding of the diffractive surfaces facilitates assembly, improves the accuracy of the alignment, and increases the parallelism, thereby improving the element performance. improves.

【0039】なお、回折格子形状のピッチ、溝深さ等は
偏光分離素子の用途に応じて適宜設定されるものであ
り、これらの実施の形態で示した数値例は一例に過ぎ
ず、様々な値を取り得る。光学的異方性膜や光学的等方
性膜の材料についても同様であり、適宜材料を用い得
る。
The pitch, groove depth, etc. of the shape of the diffraction grating are appropriately set according to the use of the polarized light separating element. The numerical examples shown in these embodiments are merely examples, and may be various. Can take a value. The same applies to the material of the optically anisotropic film or the optically isotropic film, and a material may be used as appropriate.

【0040】[0040]

【発明の効果】請求項1記載の発明によれば、第1の要
素と第2の要素との回折格子形状面同士の凹凸の噛み合
わせ接着で偏光分離素子を容易に作製することができ、
回折格子形状の溝部分に対する材料の充填の手間を要せ
ず、低コストで済む。
According to the first aspect of the present invention, a polarization separation element can be easily manufactured by engaging and bonding irregularities between diffraction grating-shaped surfaces of a first element and a second element.
There is no need to load the material into the grooves of the diffraction grating shape, and the cost can be reduced.

【0041】請求項2記載の発明によれば、請求項1記
載の偏光分離素子を実現する上で第1,2の要素が噛み
合される回折格子形状の凹凸形状が同一であるので、面
合わせ精度が高くて均一な偏光分離素子を作製すること
ができる。
According to the second aspect of the present invention, in order to realize the polarization beam splitting element according to the first aspect, the unevenness of the diffraction grating shape in which the first and second elements are engaged is the same. A uniform polarization separation element having high alignment accuracy can be manufactured.

【0042】請求項3記載の発明によれば、請求項1又
は2記載の偏光分離素子を実現する上で屈折率の整合を
容易にとることができ、結果として、特性の面内均一性
も確保でき、同一材料を用いればよいため、材料の選択
も容易となる。
According to the third aspect of the present invention, it is possible to easily match the refractive index in realizing the polarized light separating element according to the first or second aspect, and as a result, the in-plane uniformity of the characteristics is also improved. Since the same material can be used, the material can be easily selected.

【0043】請求項4記載の発明によれば、接着部分で
光の散乱を生じたり透過率を損なうことなく請求項1,
2又は3記載の偏光分離素子を実現することができる。
According to the fourth aspect of the present invention, light is not scattered at the bonding portion and the transmittance is not impaired.
The polarization separation element described in 2 or 3 can be realized.

【0044】請求項5記載の発明によれば、請求項4記
載の偏光分離素子を実現する上で素子の効率を向上させ
ることができる。
According to the fifth aspect of the invention, the efficiency of the element can be improved in realizing the polarization splitting element of the fourth aspect.

【0045】請求項6記載の発明によれば、請求項1な
いし5の何れか一に記載の偏光分離素子を実現する上
で、その組付け工程の簡略化を図りつつ、面合わせの精
度を向上させることができる。
According to the sixth aspect of the present invention, in realizing the polarized light separating element according to any one of the first to fifth aspects, it is possible to simplify the assembling process and improve the accuracy of the surface alignment. Can be improved.

【0046】請求項7記載の発明によれば、請求項1な
いし6の何れか一に記載の偏光分離素子を実現する上
で、光学的異方性膜が斜め蒸着により形成されているた
め光学的な異方性を大きくすることができ、効率や回折
格子形状の設計の幅を広げることができる。
According to the seventh aspect of the present invention, the optically anisotropic film is formed by oblique deposition to realize the polarization separation element according to any one of the first to sixth aspects. The anisotropy can be increased, and the design range of the efficiency and the shape of the diffraction grating can be widened.

【0047】請求項8記載の発明によれば、光学的異方
性膜の材料として酸化タンタルを用いることで、請求項
7記載の偏光分離素子を好適に実現することができる。
According to the eighth aspect of the present invention, by using tantalum oxide as the material of the optically anisotropic film, the polarization separation element according to the seventh aspect can be suitably realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態の偏光分離素子を示
す断面構造図である。
FIG. 1 is a sectional structural view showing a polarization splitting element according to a first embodiment of the present invention.

【図2】本発明の第二の実施の形態の偏光分離素子を示
す断面構造図である。
FIG. 2 is a sectional structural view showing a polarization beam splitter according to a second embodiment of the present invention.

【図3】本発明の第三の実施の形態の偏光分離素子を示
す断面構造図である。
FIG. 3 is a sectional structural view showing a polarization beam splitter according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 第1の要素 3 第2の要素 4 第1の光学的等方性基板 5 光学的異方性膜 6 第1の回折格子形状 7 第2の光学的等方性基板 8 光学的等方性膜 9 第2の回折格子形状 12 光学的等方性膜 22 ガイド 2 first element 3 second element 4 first optically isotropic substrate 5 optically anisotropic film 6 first diffraction grating shape 7 second optically isotropic substrate 8 optically isotropic Film 9 Second diffraction grating shape 12 Optically isotropic film 22 Guide

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1の光学的等方性基板上に製膜された
光学的異方性膜表面に凹凸状の第1の回折格子形状を形
成してなる第1の要素と、 前記光学的異方性膜の常光線方向屈折率と異常光線方向
屈折率との何れか一方と同一の屈折率を持つ光学的等方
性膜が第2の光学的等方性基板上に製膜されて前記第1
の要素の前記第1の回折格子形状に噛み合い接着される
凹凸状の第2の回折格子形状が前記光学的等方性膜表面
に形成された第2の要素と、を備える偏光分離素子。
An optically anisotropic film formed on a first optically isotropic substrate, a first element having an uneven first diffraction grating formed on a surface thereof, and An optically isotropic film having the same refractive index as one of the ordinary light direction refractive index and the extraordinary light direction refractive index of the optically anisotropic film is formed on the second optically isotropic substrate. The first
A second element formed on the surface of the optically isotropic film with a concave-convex second diffraction grating shape meshed with and adhered to the first diffraction grating shape of the element.
【請求項2】 前記第1の回折格子形状と前記第2の回
折格子形状との凹凸形状が同一である請求項1記載の偏
光分離素子。
2. The polarization separation element according to claim 1, wherein the first and second diffraction gratings have the same concavo-convex shape.
【請求項3】 前記光学的異方性膜と前記光学的等方性
膜との材料が同一である請求項1又は2記載の偏光分離
素子。
3. The polarization separation element according to claim 1, wherein the material of the optically anisotropic film and the material of the optically isotropic film are the same.
【請求項4】 互いに噛み合う凹凸状の前記第1の回折
格子形状と前記第2の回折格子形状とが光学的に透明な
樹脂により接着されている請求項1,2又は3記載の偏
光分離素子。
4. The polarization splitting element according to claim 1, wherein said first and second diffraction grating shapes having a concave and convex shape which mesh with each other are bonded by an optically transparent resin. .
【請求項5】 前記樹脂の屈折率が前記光学的等方性膜
の屈折率と同一である請求項4記載の偏光分離素子。
5. The polarization separation element according to claim 4, wherein the refractive index of the resin is the same as the refractive index of the optically isotropic film.
【請求項6】 前記第1の光学的等方性基板と前記第2
の光学的等方性基板との何れか一方に他方に対する位置
合わせ用のガイドを有する請求項1ないし5の何れか一
に記載の偏光分離素子。
6. The first optically isotropic substrate and the second optically isotropic substrate.
The polarization separation element according to any one of claims 1 to 5, further comprising a guide for alignment with one of the optically isotropic substrates described above.
【請求項7】 前記光学的異方性膜が斜め蒸着により製
膜されている請求項1ないし6の何れか一に記載の偏光
分離素子。
7. The polarization separation element according to claim 1, wherein the optically anisotropic film is formed by oblique evaporation.
【請求項8】 前記光学的異方性膜の材料が酸化タンタ
ルである請求項7記載の偏光分離素子。
8. The polarization separation element according to claim 7, wherein the material of the optically anisotropic film is tantalum oxide.
JP10354797A 1998-12-14 1998-12-14 Polarizing separation element Pending JP2000180627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354797A JP2000180627A (en) 1998-12-14 1998-12-14 Polarizing separation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354797A JP2000180627A (en) 1998-12-14 1998-12-14 Polarizing separation element

Publications (1)

Publication Number Publication Date
JP2000180627A true JP2000180627A (en) 2000-06-30

Family

ID=18439977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354797A Pending JP2000180627A (en) 1998-12-14 1998-12-14 Polarizing separation element

Country Status (1)

Country Link
JP (1) JP2000180627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829572B1 (en) 2006-11-01 2008-05-14 삼성전자주식회사 Polarization separating film and illumination apparatus for display device using the same
CN113325503A (en) * 2021-05-31 2021-08-31 江西欧迈斯微电子有限公司 Diffractive optical element and optical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829572B1 (en) 2006-11-01 2008-05-14 삼성전자주식회사 Polarization separating film and illumination apparatus for display device using the same
CN113325503A (en) * 2021-05-31 2021-08-31 江西欧迈斯微电子有限公司 Diffractive optical element and optical apparatus

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
US5029988A (en) Birefringence diffraction grating type polarizer
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
WO2009084604A1 (en) Liquid crystal element, optical head device, and variable optical modulation element
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
JP2005534981A (en) Precision phase lag device and method of manufacturing the same
KR101259537B1 (en) Optical element, polarization filter, optical isolator, and optical apparatus
JP2850878B2 (en) Polarizing beam splitter and method of manufacturing the same
JP4792679B2 (en) Isolator and variable voltage attenuator
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP2009085974A (en) Polarizing element and method for fabricating the same
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP2594548B2 (en) Polarizing beam splitter
JP2000180627A (en) Polarizing separation element
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
JP2973254B2 (en) Birefringent structure
JP2687451B2 (en) Polarizing element
JP2001066428A (en) Polarization separation device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP5152366B2 (en) Isolator and variable voltage attenuator
JP2541548B2 (en) Diffraction grating type optical polarizer
JPH1010307A (en) Production of optical diffraction gating and optical head device formed by using the same
JP2004077806A (en) Phase plate optical element
JPH1069673A (en) Optical head device and composite anisotropic diffraction element using therefor
JPH02205802A (en) Polarizing element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004