JP2000178612A - Method and case for hydrogen pulverizing in rare earth magnetic material - Google Patents

Method and case for hydrogen pulverizing in rare earth magnetic material

Info

Publication number
JP2000178612A
JP2000178612A JP11265399A JP26539999A JP2000178612A JP 2000178612 A JP2000178612 A JP 2000178612A JP 11265399 A JP11265399 A JP 11265399A JP 26539999 A JP26539999 A JP 26539999A JP 2000178612 A JP2000178612 A JP 2000178612A
Authority
JP
Japan
Prior art keywords
case
hydrogen
magnetic material
earth magnetic
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11265399A
Other languages
Japanese (ja)
Other versions
JP3120080B2 (en
Inventor
Yasuhiko Imai
康彦 今井
Hiroki Tokuhara
宏樹 徳原
Katsumi Okayama
克己 岡山
Akiyasu Ota
晶康 太田
Akihito Tsujimoto
章仁 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11265399A priority Critical patent/JP3120080B2/en
Publication of JP2000178612A publication Critical patent/JP2000178612A/en
Application granted granted Critical
Publication of JP3120080B2 publication Critical patent/JP3120080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Disintegrating Or Milling (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture powder in a short time by specifying the heat conductivity of a case body to be used in pulverizing a rate earth magnetic material through the hydrogen occlusion to uniformly and rapidly conduct the heat. SOLUTION: In a case for hydrogen pulverizing of a rare earth magnetic material, a case body 11 is a rectangular parallelepiped box formed of a copper plate of about 1.3 mm in thickness, and its heat conductivity is >=1 W/cm.deg. A member 14 for heat conduction and radiation comprising three hollow copper pipes which are about 12 mm in outside diameter and about 9 mm in inside diameter and communicating with the outside atmosphere is fitted close to a center in height of side walls 12 between the shorter side walls 12 of the case body 11 in a condition where opening parts 14a on both ends communicates with an opening 12b made in the case side wall 12. Similarly, a member 14 for heat conduction and radiation comprising two hollow copper pipes of about 10 mm in outside diameter and about 8 mm in inside diameter is fitted between the longer side walls 12 above the hollow copper pipes in a condition where opening parts 14a on both ends communicate with an opening 12b provided in the case side wall 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばR(但し、
RはYを包含する希土類元素のうち少なくとも1種)、
B、Feを主成分とする永久磁石用合金粉末の製造等に
おける、希土類系磁性材料の水素粉砕方法並びにその方
法に用いられる水素粉砕用ケースに関する。
TECHNICAL FIELD The present invention relates to, for example, R (however,
R is at least one of rare earth elements including Y),
The present invention relates to a method of hydrogen grinding rare earth magnetic materials and a case for hydrogen grinding used in the method in the production of alloy powder for permanent magnets containing B and Fe as main components.

【0002】[0002]

【従来の技術】従来、この種の磁性材料の粉砕処理は、
例えば、特公平3−40082号公報に開示されるよう
に、製造すべき希土類系磁石の組成に合わせた所用の組
成の合金鋳塊にそのH吸蔵性を利用して、H雰囲気
中でHを吸蔵させることにより崩壊させ、効率よく、
短時間での希土類系磁性材料粉末の製造を行っている。
2. Description of the Related Art Conventionally, this kind of crushing of a magnetic material
For example, as disclosed in Japanese Patent Publication No. Hei 3-40082, an alloy ingot having a required composition in accordance with the composition of a rare earth magnet to be manufactured is used in an H 2 atmosphere by utilizing its H 2 storage properties. of H 2 to collapse by occluding efficiently,
We manufacture rare earth magnetic material powder in a short time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の希土類系磁性材料の水素粉砕では、磁性材料は水素
を吸蔵することで粉化し、水素吸蔵時に発熱反応によっ
て300℃〜350℃まで昇温する。その後、粉化した
磁性材料の耐酸化性を高めるために、更に、真空中、或
いは、不活性雰囲気中で400℃〜600℃まで加熱
し、吸蔵させた水素の一部を放出(脱水素)させる必要
がある。また、水素を放出させた後でも高温では希土類
系磁性材料は活性で酸化しやすいため、アルゴンガス等
の不活性ガスにより、20℃〜30℃程度まで冷却した
後に、大気中に取出す必要がある。特に、後述するスト
リップキャスト法によって製造される希土類系磁性材料
はフレーク状となっているため、金型鋳造法に比べて粉
砕後における表面積が大きく、20℃〜30℃程度まで
確実に冷却した後、取り出さないと発火する恐れがあ
る。また、特許第2,665,590号公報に示される
ようなストリップキャスト法によって製造されたフレー
ク状の希土類系磁性材料は、金型鋳造法によって製造さ
れたインゴット状の希土類系磁性材料に比べて、粉砕容
器に入れた時にフレーク同士が重なってしまうために、
内部ほど冷却しにくくなる。従って、このような加熱、
冷却という熱処理に支配される水素粉砕方法において
は、短時間での加熱、冷却が生産性を上げるための課題
となっている。本発明はかかる課題を解決し、短時間で
の加熱、冷却を可能とし、極めて生産性のよい、希土類
系磁性材料の粉砕方法とこの方法に使用するのに好適な
水素粉砕用ケースを提供することを目的とする。
However, in the conventional pulverization of the rare-earth magnetic material with hydrogen, the magnetic material is powdered by absorbing hydrogen, and the temperature rises to 300 ° C. to 350 ° C. due to an exothermic reaction when hydrogen is absorbed. . Thereafter, in order to increase the oxidation resistance of the powdered magnetic material, the material is further heated to 400 ° C. to 600 ° C. in a vacuum or in an inert atmosphere to release a part of the occluded hydrogen (dehydrogenation). Need to be done. Also, even after releasing hydrogen, the rare earth magnetic material is active and easily oxidized at a high temperature. Therefore, it is necessary to take out to the atmosphere after cooling to about 20 ° C. to 30 ° C. with an inert gas such as argon gas. . In particular, since the rare-earth-based magnetic material manufactured by the strip casting method described below is in a flake shape, the surface area after pulverization is larger than that of the die casting method, and after being surely cooled to about 20 ° C. to 30 ° C. If not removed, fire may occur. Further, a flake-shaped rare earth magnetic material manufactured by a strip casting method as disclosed in Japanese Patent No. 2,665,590 is compared with an ingot-shaped rare earth magnetic material manufactured by a mold casting method. Because, when put in a crushing container, the flakes overlap,
The more it is inside, the more difficult it is to cool. Therefore, such heating,
In the hydrogen pulverization method dominated by the heat treatment of cooling, heating and cooling in a short time have been a problem for increasing productivity. The present invention solves the above problems, and provides a method of grinding a rare earth magnetic material, which enables heating and cooling in a short time and has extremely high productivity, and a case for hydrogen grinding suitable for use in this method. The purpose is to:

【0004】[0004]

【課題を解決するための手段】本発明の希土類系磁性材
料の水素粉砕用ケースは、前記課題を解決するべく、請
求項1記載の通り、希土類系磁性材料を収容して水素吸
蔵による粉砕を行うための水素粉砕用ケースであって、
ケース本体を熱伝導率1W/cm・deg以上の材料で
構成することを特徴とする。また、請求項2記載の希土
類系磁性材料の水素粉砕用ケースは、請求項1記載の希
土類系磁性材料の水素粉砕用ケースにおいて、前記ケー
ス本体を熱伝導率2.35W/cm・deg以上の材料
で構成したことを特徴とする。また、請求項3記載の希
土類系磁性材料の水素粉砕用ケースは、請求項2記載の
希土類系磁性材料の水素粉砕用ケースにおいて、前記ケ
ース本体を銅もしくは銅合金で構成したことを特徴とす
る。また、請求項4記載の希土類系磁性材料の水素粉砕
用ケースは、請求項1乃至3の何れかに記載の希土類系
磁性材料の水素粉砕用ケースにおいて、 前記ケース本
体に熱伝導率1W/cm・deg以上の材料で構成した
伝熱・放熱用部材を設けたことを特徴とする。また、請
求項5記載の希土類系磁性材料の水素粉砕用ケースは、
請求項4記載の希土類系磁性材料の水素粉砕用ケースに
おいて、前記伝熱・放熱用部材を熱伝導率2.35W/
cm・deg以上の材料で構成したことを特徴とする。
また、請求項6記載の希土類系磁性材料の水素粉砕用ケ
ースは、請求項5記載の希土類系磁性材料の水素粉砕用
ケースにおいて、前記伝熱・放熱用部材を銅もしくは銅
合金で構成したことを特徴とする。また、請求項7記載
の希土類系磁性材料の水素粉砕用ケースは、請求項4乃
至6の何れかに記載の希土類系磁性材料の水素粉砕用ケ
ースにおいて、前記伝熱・放熱用部材は伝熱・放熱フィ
ンであることを特徴とする。また、請求項8記載の希土
類系磁性材料の水素粉砕用ケースは、請求項4乃至6の
何れかに記載の希土類系磁性材料の水素粉砕用ケースに
おいて、前記伝熱・放熱用部材はケース本体の側壁間に
橋渡された棒状部材であることを特徴とする。また、請
求項9記載の希土類系磁性材料の水素粉砕用ケースは、
請求項8記載の希土類系磁性材料の水素粉砕用ケースに
おいて、前記棒状部材は両端開口部をケース側壁に設け
た開口に連通させた中空パイプであることを特徴とす
る。また、請求項10記載の希土類系磁性材料の水素粉
砕用ケースは、請求項4乃至9の何れかに記載の希土類
系磁性材料の水素粉砕用ケースにおいて、前記伝熱・放
熱用部材を磁性材料内に埋設される位置に設けたことを
特徴とする。また、請求項11記載の希土類系磁性材料
の水素粉砕用ケースは、希土類系磁性材料を収容して水
素吸蔵による粉砕を行うための水素粉砕用ケースであっ
て、両端開口部を介して外気と連通させた中空パイプか
らなる伝熱・放熱用部材を、ケース本体のケース側壁間
に橋渡し、磁性材料内に埋設される位置に設けたことを
特徴とする。また、請求項12記載の希土類系磁性材料
の水素粉砕用ケースは、請求項1乃至11の何れかに記
載の希土類系磁性材料の水素粉砕用ケースにおいて、前
記ケース本体を、熱伝導率1W/cm・deg以上の材
料で構成されてケース本体の底部全体を囲繞する補強用
下枠内に載置させたことを特徴とする。また、請求項1
3記載の希土類系磁性材料の水素粉砕用ケースは、請求
項12記載の希土類系磁性材料の水素粉砕用ケースにお
いて、前記補強用下枠を熱伝導率2.35W/cm・d
eg以上の材料で構成したことを特徴とする。また、請
求項14記載の希土類系磁性材料の水素粉砕用ケース
は、請求項13記載の希土類系磁性材料の水素粉砕用ケ
ースにおいて、前記補強用下枠を銅もしくは銅合金で構
成したことを特徴とする。また、請求項15記載の希土
類系磁性材料の水素粉砕用ケースは、請求項1乃至14
の何れかに記載の希土類系磁性材料の水素粉砕用ケース
において、前記ケース本体の側壁上端縁に補強部材を巻
き込んだ補強用耳部を形成したことを特徴とする。ま
た、本発明の希土類系磁性材料の水素粉砕方法は、請求
項16記載の通り、希土類系磁性材料に水素を吸蔵させ
て粉砕を行う希土類系磁性材料の水素粉砕方法であっ
て、前記請求項1乃至15の何れかに記載の水素粉砕用
ケース内に希土類系磁性材料を収容して水素吸蔵による
粉砕処理を行うことを特徴とする。また、請求項17記
載の希土類系磁性材料の水素粉砕方法は、請求項16記
載の希土類系磁性材料の水素粉砕方法において、前記希
土類系磁性材料は、平均厚さ0.1mm〜2.0mmの
フレーク状のR−FeーB系合金であることを特徴とす
る。
According to a first aspect of the present invention, there is provided a case for crushing a rare earth magnetic material with hydrogen according to the present invention. A case for hydrogen grinding to perform,
The case body is made of a material having a thermal conductivity of 1 W / cm · deg or more. The case for hydrogen grinding of a rare earth magnetic material according to claim 2 is the case for hydrogen grinding of a rare earth magnetic material according to claim 1, wherein the case body has a thermal conductivity of 2.35 W / cm · deg or more. It is characterized by being composed of a material. The case for hydrogen grinding of rare earth magnetic material according to claim 3 is the case for hydrogen grinding of rare earth magnetic material according to claim 2, characterized in that the case body is made of copper or a copper alloy. . The case for hydrogen grinding of a rare earth magnetic material according to claim 4 is the case for hydrogen grinding of a rare earth magnetic material according to any one of claims 1 to 3, wherein the case body has a thermal conductivity of 1 W / cm. -A heat transfer / radiation member made of a material of deg or more is provided. Further, the case for crushing hydrogen of a rare earth magnetic material according to claim 5 is:
5. The case for hydrogen pulverization of a rare earth magnetic material according to claim 4, wherein the heat transfer / radiation member has a thermal conductivity of 2.35 W /.
It is characterized by being made of a material of cm · deg or more.
The case for hydrogen grinding of a rare earth magnetic material according to claim 6 is the case for hydrogen grinding of a rare earth magnetic material according to claim 5, wherein the heat transfer / radiation member is made of copper or a copper alloy. It is characterized by. The case for crushing hydrogen of a rare earth magnetic material according to claim 7 is the case for crushing hydrogen of rare earth magnetic material according to any one of claims 4 to 6, wherein the heat transfer / radiation member is a heat transfer member. -It is characterized by being a radiation fin. The case for crushing hydrogen of a rare earth magnetic material according to claim 8 is the case for crushing hydrogen of rare earth magnetic material according to any one of claims 4 to 6, wherein the heat transfer / radiation member is a case body. Characterized in that it is a rod-like member bridged between the side walls. The case for hydrogen pulverization of a rare earth magnetic material according to claim 9 is:
The case for crushing hydrogen of a rare-earth magnetic material according to claim 8, wherein the rod-shaped member is a hollow pipe having both ends opened to communicate with openings provided in the case side wall. The case for crushing hydrogen of a rare earth magnetic material according to claim 10 is the case for crushing hydrogen of rare earth magnetic material according to any one of claims 4 to 9, wherein the heat transfer / radiation member is made of a magnetic material. It is provided at a position buried inside. Further, the hydrogen crushing case for a rare earth magnetic material according to claim 11 is a hydrogen crushing case for containing the rare earth magnetic material and performing crushing by hydrogen absorption, and is connected to outside air through both end openings. A heat transfer / radiation member made of a hollow pipe communicated with the case body is provided at a position bridging between the case side walls of the case body and embedded in the magnetic material. The case for hydrogen grinding of rare earth magnetic material according to claim 12 is the case for hydrogen grinding of rare earth magnetic material according to any one of claims 1 to 11, wherein the case body has a thermal conductivity of 1 W / It is characterized by being placed in a lower reinforcing frame made of a material of not less than cm · deg and surrounding the entire bottom of the case body. Claim 1
The case for hydrogen grinding of rare earth magnetic material according to claim 3 is the case for hydrogen grinding of rare earth magnetic material according to claim 12, wherein the lower frame for reinforcement has a thermal conductivity of 2.35 W / cm · d.
EG or more. The case for hydrogen grinding of a rare earth magnetic material according to claim 14 is the case for hydrogen grinding of a rare earth magnetic material according to claim 13, wherein the lower frame for reinforcement is made of copper or a copper alloy. And Further, the case for crushing hydrogen of a rare-earth magnetic material according to claim 15 is provided by claims 1 to 14.
The case for grinding hydrogen with a rare-earth magnetic material according to any one of the above, characterized in that a reinforcing ear portion in which a reinforcing member is wound is formed at an upper end edge of a side wall of the case body. The method for grinding hydrogen of a rare-earth magnetic material according to the present invention is a method for grinding hydrogen of a rare-earth magnetic material, wherein the rare-earth magnetic material is ground by absorbing hydrogen as described in claim 16. 15. A pulverizing process by storing a rare earth magnetic material in the hydrogen pulverizing case according to any one of 1 to 15 and storing hydrogen. The method of pulverizing a rare earth magnetic material with hydrogen according to claim 17 is the method of pulverizing hydrogen with a rare earth magnetic material according to claim 16, wherein the rare earth magnetic material has an average thickness of 0.1 mm to 2.0 mm. It is a flaky R-Fe-B alloy.

【0005】[0005]

【実施例】以下、図面に基づき、本発明の実施例につき
説明する。図中10は本発明希土類系磁性材料の水素粉
砕用ケースを示すもので、ケース本体11は、厚み1.
3mmの銅板材1から構成された上部開口の直方体形状
の函体(255mm×185mm×70mm)として形
成されるもので、図2に示す展開形状の銅板材1から折
り曲げ、溶接により図1の函体形状に形成されたもので
ある。
Embodiments of the present invention will be described below with reference to the drawings. In the figure, reference numeral 10 denotes a case for crushing hydrogen of the rare-earth magnetic material of the present invention.
It is formed as a rectangular parallelepiped box (255 mm x 185 mm x 70 mm) with an upper opening made of a 3 mm copper plate 1, and is bent and welded from the unfolded copper plate 1 shown in FIG. 2. It is formed in a body shape.

【0006】このケース本体11の側壁12の上端縁1
2aは図3に示すように巻き込んで耳部13を形成して
補強し、加熱された際にも変形しにくくすることによ
り、ケース本体11に形状保持性を与えるようにした。
また、この構成により銅板材1の厚みを1.3mmと薄
くすることができ、加熱、放熱にかかる時間を短縮する
ことができた。
The upper edge 1 of the side wall 12 of the case body 11
As shown in FIG. 3, 2a is wrapped around to form and reinforce the ear portion 13 so that it is hardly deformed even when heated, so that the case body 11 is given shape retention.
Further, with this configuration, the thickness of the copper plate material 1 can be reduced to 1.3 mm, and the time required for heating and heat radiation can be reduced.

【0007】このように、ケース本体を熱伝導率1W/
cm・deg以上の材料で構成した希土類系磁性材料の
水素粉砕用ケースを用いて水素粉砕を行うことにより、
吸蔵水素の放出時の加熱処理の際には、良好な熱伝導に
より、ケース内の磁性材料に熱が均一、且つ、急速に伝
導して、短時間での良好な加熱処理が可能となる。ま
た、水素放出後の冷却時には、やはり、良好な熱伝導に
より、ケース内の磁性材料から均一、且つ、急速に熱放
出が行われる。このため、極めて生産性のよい、希土類
系磁性材料の水素粉砕が可能となる。
As described above, the case body is made to have a thermal conductivity of 1 W /
By performing hydrogen pulverization using a case for hydrogen pulverization of a rare earth magnetic material composed of a material of cm cm or more,
At the time of the heat treatment at the time of releasing the stored hydrogen, the heat is uniformly and rapidly transmitted to the magnetic material in the case due to good heat conduction, so that a good heat treatment can be performed in a short time. Also, at the time of cooling after releasing hydrogen, the heat is uniformly and rapidly released from the magnetic material in the case due to good heat conduction. For this reason, it is possible to extremely rarely grind the rare earth magnetic material with hydrogen.

【0008】尚、本実施例では、ケース本体11を銅材
で構成したが、アルミ合金等、熱伝導率が1W/cm・
deg以上の材料であれば前記効果が得られものである
が、前記銅やアルミ等、熱伝導率2.35W/cm・d
eg以上の材料で構成するのが好ましい。また、熱伝導
率がよく耐水素性がある材料としては、銀,銅,モリブ
デン等の材料が挙げられるが、貴金属である銀はコスト
面で現実的でない。また、溶接する等の加工性を考慮す
ると、モリブデンは加工が難しく、また、銅の方がモリ
ブデンより熱伝導率がよいため、銅もしくは銅を主体と
する合金が望ましいと考えられる。また、後述する伝熱
・放熱用部材や補強用下枠についても同様の理由で銅も
しくは銅合金が望ましい。
In this embodiment, the case body 11 is made of a copper material. However, the case body 11 has a thermal conductivity of 1 W / cm.
If the material is not less than deg, the above-mentioned effect can be obtained.
It is preferable to use a material having a thickness of at least eg. Materials having good thermal conductivity and high hydrogen resistance include silver, copper, molybdenum, and the like, but silver, which is a noble metal, is not practical in terms of cost. Further, considering workability such as welding, molybdenum is difficult to process, and copper has a higher thermal conductivity than molybdenum. Therefore, it is considered that copper or an alloy mainly containing copper is preferable. In addition, copper or a copper alloy is also desirable for a heat transfer / radiation member and a reinforcing lower frame to be described later for the same reason.

【0009】また、本実施例では、前記ケース本体11
の短かい方の側壁12,12間には、側壁12の高さの
真中辺りに外径12mm、内径9mmの3本の外気と連
通させた中空銅パイプからなる伝熱・放熱用部材14を
その両端開口部14aをケース側壁12に設けた開口1
2bに連通させた状態で取り付けてある。また、長い方
の側壁12,12間にも、前記中空銅パイプの上方にお
いて、外径10mm、内径8mmの2本の中空銅パイプ
からなる伝熱・放熱用部材14をその両端開口部14a
をケース側壁12に設けた開口12bに連通させた状態
で取り付けてある。本実施例のように、ケース本体11
に伝熱・放熱用部材を設けることにより、磁性材料がス
トリップキャスト法によるフレーク状のものであって
も、これら伝熱・放熱用部材14を介してケース本体1
1内に収容される磁性材料に対して迅速に加熱を加え、
また、磁性材料の有する熱を迅速に放冷させることがで
きる。
In this embodiment, the case body 11
A heat transfer / radiation member 14 composed of a hollow copper pipe communicated with three outside airs having an outer diameter of 12 mm and an inner diameter of 9 mm is provided in the middle of the height of the side wall 12 between the short side walls 12, 12. An opening 1 in which both end openings 14a are provided in the case side wall 12
It is attached in a state of communicating with 2b. Also, between the longer side walls 12 and 12, above the hollow copper pipe, a heat transfer / radiation member 14 composed of two hollow copper pipes having an outer diameter of 10 mm and an inner diameter of 8 mm is formed at both ends of the opening 14a.
Is connected to an opening 12 b provided in the case side wall 12. As in the present embodiment, the case body 11
By providing the heat transfer / radiation member to the case body 1 via the heat transfer / radiation member 14, even if the magnetic material is in the form of a flake by the strip casting method.
Heat is rapidly applied to the magnetic material contained in 1,
Further, the heat of the magnetic material can be rapidly cooled.

【0010】特に、この伝熱・放熱用部材14を前記実
施例のようにケース本体11内の磁性材料に埋設される
位置に設けることにより、ケース本体11内の磁性材料
の内部への加熱、内部からの放冷が可能となり、極めて
良好な加熱・放冷作用が得られる。更に、このような伝
熱・放熱用部材を設けることによって、ケース本体11
の側壁強度を向上させることができるため、板材1を薄
くすることができる。その結果、板材1を介しての加熱
・放熱処理を素早く行うことができる。
In particular, by providing the heat transfer / radiation member 14 at a position buried in the magnetic material in the case body 11 as in the above-described embodiment, heating of the magnetic material in the case body 11 to the inside can be achieved. Cooling from inside is enabled, and an extremely good heating / cooling action is obtained. Further, by providing such a heat transfer / radiation member, the case body 11
Since the side wall strength can be improved, the thickness of the plate member 1 can be reduced. As a result, the heating / radiating treatment via the plate 1 can be performed quickly.

【0011】尚、本実施例では、前記伝熱・放熱用部材
14として中空銅パイプを用いたが、このような中空パ
イプ形状に限定されるものではなく、丸棒材や角棒材等
の任意の形状の棒状材、或いは、図4、図5に示すよう
なフィン形状等とすることができ、また、その数、配置
場所等は任意である。尚、図4、図5中、前記実施例と
同一部材には同一符号を付してその説明は省略する。
In this embodiment, a hollow copper pipe is used as the heat transfer / radiation member 14. However, the present invention is not limited to such a hollow pipe shape. A rod-shaped material having an arbitrary shape or a fin shape as shown in FIGS. 4 and 5 can be used, and the number, arrangement location, and the like are arbitrary. 4 and 5, the same members as those of the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

【0012】また、本実施例では、前記伝熱・放熱用部
材14を銅材で構成するようにしたが、ケース本体11
と同様、アルミ合金等、熱伝導率1W/cm・deg以
上の材料であれば前記効果が得られるものであるが、前
記銅やアルミ等、熱伝導率2.35W/cm・deg以
上の材料で構成するのが好ましい。
In this embodiment, the heat transfer / radiation member 14 is made of a copper material.
Similarly to the above, if the material has a thermal conductivity of 1 W / cm · deg or more, such as an aluminum alloy, the above effect can be obtained. However, a material having a thermal conductivity of 2.35 W / cm · deg or more, such as the copper and aluminum, It is preferable to configure with.

【0013】図6は本発明水素粉砕用ケースの他実施例
を示すもので、ケース本体11は、量産性を考慮して、
前記実施例よりも長手の上部開口の直方体形状の函体
(500mm×185mm×85mm)として形成した
ものである。ケース本体11の中央部に銅材からなる仕
切板15が設けられている。前記ケース本体11の短い
方の側壁12,12間には、側壁12の高さの真中辺り
に外径12mm、内径9mmの3本の中空銅パイプから
なる伝熱・放熱用部材14を前記仕切板15を貫通させ
て、その両端開口部14aをケース側壁12に設けた開
口12bに連通させた状態で取り付けてある。また、長
い方の側壁12,12間には、前記中空銅パイプの上方
において、外径10mm、内径8mmの6本の中空銅パ
イプからなる伝熱・放熱用部材14をその両端開口部1
4aをケース側壁12に設けた開口12bに連通させた
状態で取り付けてある。尚、前記実施例では、中空銅パ
イプからなる伝熱・放熱用部材14はケース側壁12に
設けた開口12bに対して面一状態で連通させるように
したが、伝熱・放熱用部材14はケース側壁12から突
出させて設けてもよい。要は、中空パイプ内を両端開口
部を介して外気と連通状態にできればよい。
FIG. 6 shows another embodiment of the hydrogen crushing case according to the present invention. The case main body 11 is made in consideration of mass productivity.
It is formed as a rectangular parallelepiped box (500 mm x 185 mm x 85 mm) with an upper opening that is longer than in the above embodiment. A partition plate 15 made of a copper material is provided at the center of the case body 11. Between the shorter side walls 12 of the case body 11, a heat transfer / radiation member 14 composed of three hollow copper pipes having an outer diameter of 12 mm and an inner diameter of 9 mm is provided in the middle of the height of the side wall 12. The plate 15 is penetrated so that the openings 14 a at both ends thereof are connected to the openings 12 b provided in the case side wall 12. A heat transfer / radiation member 14 composed of six hollow copper pipes having an outer diameter of 10 mm and an inner diameter of 8 mm is provided between the longer side walls 12 and 12 above the hollow copper pipe.
4a is attached so as to communicate with an opening 12b provided in the case side wall 12. In the above-described embodiment, the heat transfer / radiation member 14 made of a hollow copper pipe is made to communicate with the opening 12b provided in the case side wall 12 in a flush state. It may be provided so as to protrude from the case side wall 12. In short, it is only necessary that the inside of the hollow pipe can be communicated with the outside air through the openings at both ends.

【0014】本実施例は図1の水素粉砕用ケースの処理
時間と同一の時間で1回の処理量を増加させることを目
的としたものである。ケースを大型化しつつ処理時間を
短くさせようとすると、ケースは図6に示すように、深
くなると磁性材料内部の加熱・冷却に時間がかかるた
め、深さには限界があり、薄型にならざるを得ない。本
実施例では、磁性材料を充填した状態では20kg〜2
5kgの重さとなり、人力での取り扱いは難しく、自動
化ラインで取り扱うため、特に、ケース上部の強度が要
求される。そのため、本実施例では、図7に示すよう
に、ケース本体11の側壁12上端縁に形成される補強
用耳部13にステンレス材16を巻き込んでより強度の
大きな補強用耳部13を形成するようにした。これによ
り、側壁を厚くすることなく、十分な強度が得られたた
め、図1の実施例と同様の熱伝導性を確保できた。
The purpose of this embodiment is to increase the amount of one treatment in the same time as the treatment time of the hydrogen crushing case of FIG. In order to shorten the processing time while increasing the size of the case, as shown in FIG. 6, the deeper the case, the longer it takes to heat and cool the inside of the magnetic material, so there is a limit to the depth and the case cannot be made thin. Not get. In this embodiment, when the magnetic material is filled, 20 kg to 2 kg
It weighs 5 kg, is difficult to handle manually, and is handled on an automated line. In particular, the strength of the upper part of the case is required. Therefore, in the present embodiment, as shown in FIG. 7, the stainless steel material 16 is wound around the reinforcing ear 13 formed on the upper end edge of the side wall 12 of the case body 11 to form the reinforcing ear 13 having greater strength. I did it. As a result, sufficient strength was obtained without increasing the thickness of the side wall, so that the same thermal conductivity as the embodiment of FIG. 1 could be secured.

【0015】また、自動化ラインではケースはローラ上
を搬送され、水素炉内に対してケース側面に力を加えて
機械で挿入し、取り出されるため、銅等の柔らかい材料
で構成されている場合は、耐久性に問題が生じる。した
がって、本実施例の場合、図8、図9に示すように、ケ
ース本体11は、ケース本体11の底部全体を囲繞する
ように構成され、底部に開口17aを有する銅材からな
る皿状の補強用下枠17上に載置するようにした。
In the automation line, the case is transported on rollers, and the case is inserted into and removed from the hydrogen furnace by applying a force to the side of the case, so that the case is made of a soft material such as copper. This causes a problem in durability. Therefore, in the case of the present embodiment, as shown in FIGS. 8 and 9, the case main body 11 is configured to surround the entire bottom of the case main body 11 and has a dish-like shape made of a copper material having an opening 17 a at the bottom. It was set on the reinforcing lower frame 17.

【0016】尚、本実施例では、補強用下枠を銅材で構
成するようにしたが、ケース本体、或いは、伝熱・放熱
用部材と同様、アルミ合金等、熱伝導率1W/cm・d
eg以上の材料であれば前記効果が得られるものである
が、前記銅やアルミ等、熱伝導率2.35W/cm・d
eg以上の材料で構成するのが好ましい。しかし、熱伝
導率よりも強度を重視する場合には、ステンレス等で構
成する必要がある。
In this embodiment, the lower frame for reinforcement is made of a copper material. However, similarly to the case body or the member for heat transfer / radiation, a heat conductivity of 1 W / cm. d
If the material is not less than eg, the above-mentioned effect can be obtained.
It is preferable to use a material having a thickness of at least eg. However, when the strength is more important than the thermal conductivity, it is necessary to be made of stainless steel or the like.

【0017】次に、図6に示した前記大型の水素粉砕用
ケースを用いて、実際に、R(但し、RはYを包含する
希土類元素のうち少なくとも1種)、B、Feを主成分
とする永久磁石用合金粉末の製造における磁性材料の水
素粉砕を行ってみた。この粉砕処理には、図10に示す
ようなバッチ炉20が用いられる。このバッチ炉20に
は、内部を冷却するためのチラー21と、H供給パイ
プ22、Ar供給パイプ23、真空ポンプに接続される
真空排気用パイプ24が取付けられている。尚、磁性材
料が収容されたケースは図示されるように炉内ではラッ
ク25に収められている。尚、図中26は炉の蓋を示
し、27は炉の支持脚を示す。粉砕用の磁性材料とし
て、31Ndー1Bー68Fe(wt%)なる組成の磁
性材料を用意して、これを前記実施例の水素粉砕用ケー
ス内に18kg収容し、このケースごと水素粉砕処理室
内に入れ、0.05Torrになるまで真空引きした
後、水素ガスを導入し、処理室内部を2気圧の水素ガス
雰囲気として磁性材料に水素ガスを吸蔵させた。この
時、水素吸蔵が発熱反応であるため、ケース内部の磁性
材料は350℃にまで昇温した。
Next, using the large hydrogen crushing case shown in FIG. 6, R (where R is at least one of the rare earth elements including Y), B, and Fe are mainly used. Hydrogen pulverization of a magnetic material in the production of an alloy powder for a permanent magnet was performed. For this pulverizing process, a batch furnace 20 as shown in FIG. 10 is used. A chiller 21 for cooling the inside, an H 2 supply pipe 22, an Ar supply pipe 23, and a vacuum exhaust pipe 24 connected to a vacuum pump are attached to the batch furnace 20. The case containing the magnetic material is housed in a rack 25 in the furnace as shown. In the drawings, reference numeral 26 denotes a furnace lid, and reference numeral 27 denotes a support leg of the furnace. A magnetic material having a composition of 31Nd-1B-68Fe (wt%) was prepared as a magnetic material for grinding, and 18 kg of the magnetic material was accommodated in the hydrogen grinding case of the above-described embodiment. Then, after evacuation was performed until the pressure became 0.05 Torr, hydrogen gas was introduced, and the inside of the processing chamber was set to a hydrogen gas atmosphere of 2 atm to occlude hydrogen gas in the magnetic material. At this time, since the hydrogen absorption was an exothermic reaction, the temperature of the magnetic material inside the case rose to 350 ° C.

【0018】次に、磁性材料に吸蔵された水素を磁性材
料から放出させて磁性材料の耐酸化性を高めるために、
処理室内を真空引きしながら、炉内に設けられた図略の
ヒータにより、温度を600℃まで昇温させた。処理室
内の真空度が0.1Torrになるまで加熱、真空引き
を維持した。その後、1気圧のArガスを導入し、チラ
ー21を動作させながら、ファン冷却で室温まで冷却さ
せた。この時、水素放出のための加熱には、4.7時間
を要し、また、室温への放冷には5.2時間を要した。
Next, in order to release hydrogen absorbed by the magnetic material from the magnetic material to increase the oxidation resistance of the magnetic material,
While evacuating the processing chamber, the temperature was increased to 600 ° C. by a heater (not shown) provided in the furnace. Heating and evacuation were maintained until the degree of vacuum in the processing chamber reached 0.1 Torr. Thereafter, Ar gas at 1 atm was introduced, and the chiller 21 was operated and cooled to room temperature by fan cooling while operating. At this time, heating for releasing hydrogen required 4.7 hours, and cooling to room temperature required 5.2 hours.

【0019】尚、前記磁性材料としては、ストリップキ
ャスト法により製造されたものを用いた。具体的には、
前記磁性材料は、例えば、特許第2,665,590号
に示されるような、31Ndー1Bー68Fe(wt
%)なる組成の合金を、Ar雰囲気の下、高周波溶解に
て溶解物とし、次いで、得られた溶解物を1350℃に
保持した後、単ロール上で急冷することにより製造され
る。このときの冷却条件は、ロール周速約1m/秒、冷
却速度500℃/秒、過冷度200℃とした。このよう
にして、急冷凝固させることにより、平均厚さ0.3m
mのフレーク状合金鋳塊を得た。また、上記合金の組成
のうち、Feの一部をCoで置換することは可能であ
り、その他出願人が米国特許第4,770,723号に
示した組成のものも使用できる。
As the magnetic material, a material manufactured by a strip casting method was used. In particular,
The magnetic material is, for example, 31Nd-1B-68Fe (wt) as disclosed in Japanese Patent No. 2,665,590.
%), Is melted by high-frequency melting under an Ar atmosphere, and then the obtained melt is maintained at 1350 ° C. and then quenched on a single roll. The cooling conditions at this time were a roll peripheral speed of about 1 m / sec, a cooling rate of 500 ° C./sec, and a degree of supercooling of 200 ° C. In this way, by rapid solidification, the average thickness is 0.3 m.
m of flake-like alloy ingot was obtained. In the above alloy composition, it is possible to replace a part of Fe with Co, and it is also possible to use another alloy having the composition shown in US Pat. No. 4,770,723.

【0020】得られた合金をフェザーミルにより大きさ
5mm程度のフレーク状に粗粉砕し、次いで、上記処理
により粗粉砕された合金をジェットミルで平均粒径3.
5ミクロンに微粉砕した後、16kOeの磁界中で配向
させ、1.5t/cmの圧力で加圧成形し、幅10m
m、高さ10mm、長さ20mmの成形体を得た。この
成形体をAr雰囲気で1050℃にて1時間燒結した。
次いで、Ar雰囲気中で600℃にて1時間時効処理
し、燒結磁石を得た。この磁石の磁気特性は、保持力1
3.5kOe、残留磁束密度13.9kOe、最大エネ
ルギー積47.1MGOeであった。
The obtained alloy is roughly pulverized by a feather mill into flakes having a size of about 5 mm.
After finely pulverizing to 5 microns, it is oriented in a magnetic field of 16 kOe, pressed under a pressure of 1.5 t / cm 2 , and has a width of 10 m.
m, a height of 10 mm and a length of 20 mm were obtained. This molded body was sintered at 1050 ° C. for 1 hour in an Ar atmosphere.
Next, aging treatment was performed at 600 ° C. for 1 hour in an Ar atmosphere to obtain a sintered magnet. The magnetic properties of this magnet have a holding force of 1
It was 3.5 kOe, the residual magnetic flux density was 13.9 kOe, and the maximum energy product was 47.1 MGOe.

【0021】次に、比較として、前記銅製の水素粉砕用
ケースに代えて、SUS304からなるステンレス製の
単なる箱体からなる同じ大きさの水素粉砕用ケースを用
いて、前記と同様の磁性材料の水素粉砕を行った。この
場合、前記実施例とは異なり、水素放出の加熱に6.2
時間も要し、また、その後の冷却に6時間も要した。こ
のように、従来の水素粉砕用ケースを用いる場合に比し
て、本実施例の場合、極めて、加熱、冷却が短時間で効
率よく行えることが確認できた。
Next, for comparison, instead of the copper hydrogen grinding case, a hydrogen grinding case of the same size consisting of a simple stainless steel box made of SUS304 was used, and the same magnetic material as described above was used. Hydrogen grinding was performed. In this case, unlike the above-described embodiment, 6.2 for heating the hydrogen release.
It took time, and the subsequent cooling took 6 hours. As described above, it was confirmed that heating and cooling can be performed extremely efficiently in a short time in the case of the present example, as compared with the case of using the conventional case for hydrogen grinding.

【0022】[0022]

【発明の効果】このように、本発明によれば、短時間で
の放冷、加熱を可能とし、極めて生産性のよい、希土類
系磁性材料の粉砕方法とこの方法に使用するのに好適な
水素粉砕用ケースを提供できる。
As described above, according to the present invention, a method of pulverizing a rare-earth magnetic material, which enables cooling and heating in a short time and has extremely high productivity, and is suitable for use in this method. A case for hydrogen grinding can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明希土類系磁性材料の水素粉砕用ケース
の一実施例の斜視図
FIG. 1 is a perspective view of an embodiment of a case for crushing hydrogen of a rare earth magnetic material of the present invention.

【図2】 前記水素粉砕用ケースのケース本体を形成す
るための銅板材の展開図
FIG. 2 is a development view of a copper plate material for forming a case body of the hydrogen crushing case.

【図3】 前記水素粉砕用ケースの耳部の拡大断面図FIG. 3 is an enlarged cross-sectional view of an ear portion of the hydrogen crushing case.

【図4】 本発明希土類系磁性材料の水素粉砕用ケース
の他実施例の斜視図
FIG. 4 is a perspective view of another embodiment of the case for crushing hydrogen of the rare earth magnetic material of the present invention.

【図5】 本発明希土類系磁性材料の水素粉砕用ケース
の他実施例の斜視図
FIG. 5 is a perspective view of another embodiment of the case for crushing hydrogen of the rare earth magnetic material of the present invention.

【図6】 本発明希土類系磁性材料の水素粉砕用ケース
の他実施例の斜視図
FIG. 6 is a perspective view of another embodiment of the case for crushing hydrogen of the rare earth magnetic material of the present invention.

【図7】 前記水素粉砕用ケースの耳部の拡大断面図FIG. 7 is an enlarged cross-sectional view of an ear portion of the hydrogen crushing case.

【図8】 補強用下枠の斜視図FIG. 8 is a perspective view of a lower frame for reinforcement.

【図9】 前記補強用下枠を取り付けた状態の水素粉砕
用ケースの側面図
FIG. 9 is a side view of the hydrogen crushing case with the reinforcing lower frame attached.

【図10】 内部に前記水素粉砕ケースを収容した水素
粉砕処理用のバッチ炉の正面断面図
FIG. 10 is a front sectional view of a batch furnace for hydrogen crushing processing in which the hydrogen crushing case is accommodated.

【符号の説明】[Explanation of symbols]

1 銅板材 10 水素粉砕用ケース 11 ケース本体 12 側壁 12a側壁上縁部 12b開口 13 耳部 14 伝熱・放冷部材 14a開口部 15 仕切板 16 ステンレス材 17 補強用下枠 17a開口 20 バッチ炉 21 チラー 22 H供給パイプ 23 Ar供給パイプ 24 真空排気用パイプ 25 ラック 26 蓋 27 支持脚DESCRIPTION OF SYMBOLS 1 Copper plate material 10 Hydrogen crushing case 11 Case main body 12 Side wall 12a Upper edge of side wall 12b opening 13 Ear part 14 Heat transfer / cooling member 14a opening 15 Partition plate 16 Stainless steel material 17 Reinforcement lower frame 17a opening 20 Batch furnace 21 Chiller 22 H 2 supply pipe 23 Ar supply pipe 24 Vacuum exhaust pipe 25 Rack 26 Lid 27 Support leg

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡山 克己 和歌山県和歌山市湊1850番地 住友特殊金 属株式会社和歌山事業所内 (72)発明者 太田 晶康 大阪府三島郡島本町2丁目15番17号 住友 特殊金属株式会社山崎製作所内 (72)発明者 辻本 章仁 和歌山県和歌山市湊1850番地 住友特殊金 属株式会社和歌山事業所内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Katsumi Okayama 1850 Minato, Wakayama-shi, Wakayama Sumitomo Special Metals Co., Ltd. (72) Inventor: Akihito Tsujimoto 1850 Minato, Wakayama-shi, Wakayama Pref.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 希土類系磁性材料を収容して水素吸蔵に
よる粉砕を行うための水素粉砕用ケースであって、ケー
ス本体を熱伝導率1W/cm・deg以上の材料で構成
することを特徴とする希土類系磁性材料の水素粉砕用ケ
ース。
1. A hydrogen crushing case for containing a rare earth magnetic material and crushing by hydrogen absorption, wherein the case body is made of a material having a thermal conductivity of 1 W / cm · deg or more. For grinding hydrogen with rare earth magnetic materials.
【請求項2】 前記ケース本体を熱伝導率2.35W/
cm・deg以上の材料で構成したことを特徴とする請
求項1記載の希土類系磁性材料の水素粉砕用ケース。
2. The case body has a thermal conductivity of 2.35 W /
2. The case for grinding hydrogen of a rare earth magnetic material according to claim 1, wherein the case is made of a material having a diameter of at least cm.deg.
【請求項3】 前記ケース本体を銅もしくは銅合金で構
成したことを特徴とする請求項2記載の希土類系磁性材
料の水素粉砕用ケース。
3. The case for pulverizing hydrogen of a rare earth magnetic material according to claim 2, wherein the case body is made of copper or a copper alloy.
【請求項4】 前記ケース本体に熱伝導率1W/cm・
deg以上の材料で構成した伝熱・放熱用部材を設けた
ことを特徴とする請求項1乃至3の何れかに記載の希土
類系磁性材料の水素粉砕用ケース。
4. A thermal conductivity of 1 W / cm.
The case for crushing hydrogen of a rare-earth magnetic material according to any one of claims 1 to 3, further comprising a heat transfer / radiation member made of a material of deg or more.
【請求項5】 前記伝熱・放熱用部材を熱伝導率2.3
5W/cm・deg以上の材料で構成したことを特徴と
する請求項4記載の希土類系磁性材料の水素粉砕用ケー
ス。
5. The heat transfer / radiation member has a thermal conductivity of 2.3.
The case for hydrogen pulverization of a rare earth magnetic material according to claim 4, wherein the case is made of a material of 5 W / cm · deg or more.
【請求項6】 前記伝熱・放熱用部材を銅もしくは銅合
金で構成したことを特徴とする請求項5記載の希土類系
磁性材料の水素粉砕用ケース。
6. The case for pulverizing a rare earth magnetic material with hydrogen according to claim 5, wherein the heat transfer / radiation member is made of copper or a copper alloy.
【請求項7】 前記伝熱・放熱用部材は伝熱・放熱フィ
ンであることを特徴とする請求項4乃至6の何れかに記
載の希土類系磁性材料の水素粉砕用ケース。
7. The case for crushing a rare-earth magnetic material with hydrogen according to claim 4, wherein the heat transfer / radiation member is a heat transfer / radiation fin.
【請求項8】 前記伝熱・放熱用部材はケース本体の側
壁間に橋渡された棒状部材であることを特徴とする請求
項4乃至6の何れかに記載の希土類系磁性材料の水素粉
砕用ケース。
8. The rare earth magnetic material according to claim 4, wherein the heat transfer / radiation member is a rod-like member bridged between side walls of the case body. Case.
【請求項9】 前記棒状部材は両端開口部をケース側壁
に設けた開口に連通させた中空パイプであることを特徴
とする請求項8記載の希土類系磁性材料の水素粉砕用ケ
ース。
9. The case for crushing hydrogen of a rare-earth magnetic material according to claim 8, wherein the rod-shaped member is a hollow pipe having openings at both ends communicating with openings provided in a case side wall.
【請求項10】 前記伝熱・放熱用部材を磁性材料内に
埋設される位置に設けたことを特徴とする請求項4乃至
9の何れかに記載の希土類系磁性材料の水素粉砕用ケー
ス。
10. The case for crushing rare earth magnetic material with hydrogen according to claim 4, wherein the heat transfer / radiation member is provided at a position embedded in the magnetic material.
【請求項11】 希土類系磁性材料を収容して水素吸蔵
による粉砕を行うための水素粉砕用ケースであって、両
端開口部を介して外気と連通させた中空パイプからなる
伝熱・放熱用部材を、ケース本体のケース側壁間に橋渡
し、磁性材料内に埋設される位置に設けたことを特徴と
する希土類系磁性材料の水素粉砕用ケース。
11. A case for crushing hydrogen for accommodating a rare-earth magnetic material and crushing by absorbing hydrogen, comprising a heat transfer / radiation member comprising a hollow pipe communicated with outside air through openings at both ends. Is provided between the case side walls of the case body and buried in the magnetic material.
【請求項12】 前記ケース本体を、熱伝導率1W/c
m・deg以上の材料で構成されてケース本体の底部全
体を囲繞する補強用下枠内に載置させたことを特徴とす
る請求項1乃至11の何れかに記載の希土類系磁性材料
の水素粉砕用ケース。
12. The case body is made to have a thermal conductivity of 1 W / c.
12. The hydrogen of the rare-earth magnetic material according to claim 1, wherein the hydrogen is contained in a reinforcing lower frame made of a material of m · deg or more and surrounding the entire bottom of the case body. Case for crushing.
【請求項13】 前記補強用下枠を熱伝導率2.35W
/cm・deg以上の材料で構成したことを特徴とする
請求項12記載の希土類系磁性材料の水素粉砕用ケー
ス。
13. The reinforcing lower frame has a thermal conductivity of 2.35 W.
13. The case for pulverizing a rare-earth magnetic material with hydrogen according to claim 12, wherein the case is made of a material of not less than /cm.deg.
【請求項14】 前記補強用下枠を銅もしくは銅合金で
構成したことを特徴とする請求項13記載の希土類系磁
性材料の水素粉砕用ケース。
14. The case for pulverizing a rare earth magnetic material with hydrogen according to claim 13, wherein the lower frame for reinforcement is made of copper or a copper alloy.
【請求項15】 前記ケース本体の側壁上端縁に補強部
材を巻き込んだ補強用耳部を形成したことを特徴とする
請求項1乃至14の何れかに記載の希土類系磁性材料の
水素粉砕用ケース。
15. The case for crushing hydrogen of a rare-earth magnetic material according to claim 1, wherein a reinforcing ear is formed by winding a reinforcing member around an upper edge of a side wall of the case body. .
【請求項16】 希土類系磁性材料に水素を吸蔵させて
粉砕を行う希土類系磁性材料の水素粉砕方法であって、
前記請求項1乃至15の何れかに記載の水素粉砕用ケー
ス内に希土類系磁性材料を収容して水素吸蔵による粉砕
処理を行うことを特徴とする希土類系磁性材料の水素粉
砕方法。
16. A method for pulverizing a rare-earth magnetic material with hydrogen by absorbing hydrogen into the rare-earth magnetic material and pulverizing the rare-earth magnetic material,
A method of hydrogen grinding rare earth magnetic materials, comprising: storing a rare earth magnetic material in the hydrogen grinding case according to any one of claims 1 to 15;
【請求項17】 前記希土類系磁性材料は、平均厚さ
0.1mm〜2.0mmのフレーク状のR−FeーB系
合金であることを特徴とする請求項16記載の希土類系
磁性材料の水素粉砕方法。
17. The rare earth magnetic material according to claim 16, wherein the rare earth magnetic material is a flake-shaped R—Fe—B alloy having an average thickness of 0.1 mm to 2.0 mm. Hydrogen grinding method.
JP11265399A 1998-10-07 1999-09-20 Hydrogen grinding method for rare earth magnetic material and case for hydrogen grinding Expired - Lifetime JP3120080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11265399A JP3120080B2 (en) 1998-10-07 1999-09-20 Hydrogen grinding method for rare earth magnetic material and case for hydrogen grinding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-300392 1998-10-07
JP30039298 1998-10-07
JP11265399A JP3120080B2 (en) 1998-10-07 1999-09-20 Hydrogen grinding method for rare earth magnetic material and case for hydrogen grinding

Publications (2)

Publication Number Publication Date
JP2000178612A true JP2000178612A (en) 2000-06-27
JP3120080B2 JP3120080B2 (en) 2000-12-25

Family

ID=26546956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11265399A Expired - Lifetime JP3120080B2 (en) 1998-10-07 1999-09-20 Hydrogen grinding method for rare earth magnetic material and case for hydrogen grinding

Country Status (1)

Country Link
JP (1) JP3120080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324015A (en) * 2002-05-07 2003-11-14 Aichi Electric Co Ltd Processing device for transformer using reclaimed oil
US7018485B2 (en) 2001-06-29 2006-03-28 Neomax Co., Ltd. Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018485B2 (en) 2001-06-29 2006-03-28 Neomax Co., Ltd. Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus
JP2003324015A (en) * 2002-05-07 2003-11-14 Aichi Electric Co Ltd Processing device for transformer using reclaimed oil

Also Published As

Publication number Publication date
JP3120080B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP5205277B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5205278B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5064930B2 (en) Permanent magnet and method for manufacturing permanent magnet
EP0992309B1 (en) Process for hydrogen-pulverizing a rare earth metal-based magnetic material, and hydrogen-pulverizing case
CN103996518B (en) A kind of forming method of Nd-Fe-B rare earth permanent magnetic material
JP3120080B2 (en) Hydrogen grinding method for rare earth magnetic material and case for hydrogen grinding
JP2009200179A (en) Manufacturing method of sintered compact
US7018485B2 (en) Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus
JP5560848B2 (en) Manufacturing apparatus and manufacturing method of raw material alloy for rare earth magnet
JP3418605B2 (en) Rare earth magnet manufacturing method
JPH0257663A (en) Magnetic anisotropy material and its manufacture
JP2011214044A5 (en)
JP2011184730A (en) Method for producing rare earth alloy powder and permanent magnet
JP5053105B2 (en) Permanent magnet and method for manufacturing permanent magnet
JPH0917677A (en) Manufacture of r-fe-b-c permanent magnet material with excellent corrosion resistance
JP3755882B2 (en) Apparatus and method for producing alloy powder for permanent magnet
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JP5187411B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP2005082891A (en) Hydrogenation granulating treatment method and apparatus therefor
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3593531B1 (en) Apparatus and method for producing alloy powder for permanent magnet
JP4101737B2 (en) Apparatus and method for producing alloy powder for permanent magnet
JP2003082406A (en) Hydrogen treatment apparatus for rare earth alloy, and method for producing rare earth sintered magnet using the apparatus
JPH0745412A (en) R-fe-b permanent magnet material
JPH06349618A (en) Manufacture of r-fe-b permanent magnet material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

R150 Certificate of patent or registration of utility model

Ref document number: 3120080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 13

EXPY Cancellation because of completion of term