JP2000169247A - Induction furnace - Google Patents

Induction furnace

Info

Publication number
JP2000169247A
JP2000169247A JP10341391A JP34139198A JP2000169247A JP 2000169247 A JP2000169247 A JP 2000169247A JP 10341391 A JP10341391 A JP 10341391A JP 34139198 A JP34139198 A JP 34139198A JP 2000169247 A JP2000169247 A JP 2000169247A
Authority
JP
Japan
Prior art keywords
weight
refractory
lining
furnace
induction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341391A
Other languages
Japanese (ja)
Inventor
Kikuo Ariga
喜久雄 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP10341391A priority Critical patent/JP2000169247A/en
Publication of JP2000169247A publication Critical patent/JP2000169247A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refractory having a structure of lining material into which different components are not readily permeated standing even a high- temperature use and prolonging a useful life and a furnace lining material capable of safely and stably carrying out an operation. SOLUTION: In a refractory for lining an induction furnace useful for melting and refining a metal containing a rare-earth metal material and a rare-earth metal component and an alloy of the metal and an iron-based metal, the refractory comprises 3-15 wt.% of silicon carbide 55-97 wt.% of aluminous material and 0-30 wt.% of mullite in which the content of the two or the three is 90 wtr.% and the content of the three components of SiC, Al2O3 and SiO2 is >=85 wt.% and 0-20 wt.% of a sintering auxiliary to give the objective induction furnace comprising a lining material composed of a dry refractory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は希土類材および希土
類成分をも含有する金属やこれらの金属と鉄系金属との
合金材等の溶解およびまたは精錬を行なう際に用いられ
る誘導炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction furnace used for melting and refining rare earth materials and metals containing rare earth components, and alloy materials of these metals and iron-based metals. .

【0002】[0002]

【従来の技術】従来、これらの金属の溶解およびまたは
精錬は一般に非常に高温となることよりアルミナ質(A
23 97重量%以上)の高純度高乾式不定形耐火物
が用いられている。内張り材の施工はまず乾式不定形耐
火物を用いて炉床部をホ−ク状の冶具やランマ−、振動
質等の加動質の加振機材等適宜な冶具を使用して掲き固
め後、所定の位置に鋼製の中枠(以下フォ−マ−と称す
る)を配設してこのフォ−マ−と炉の本体との内壁部、
定められた内張り材の厚みの所に投入してフォ−マ−の
内側より振動を与えながら加振充填を行なう方法で施工
され、フォ−マ−ごと徐々に加熱焼結させながら使用に
供されている使用上高耐熱性が求められることより現在
用いられている乾式不定形耐火物はアルミナ含有量97
重量%以上の乾式不定形耐火物が一般に使用されている
が炉内で溶融状態になっている金属やスラグの成分を選
択吸収することにより浸透した金属により導電化現象を
生じたり時には酸化現象を生じて組織の脆弱化が大きく
表層剥離現象をおこし使用に耐えられなくなる等の不具
合を生じているのが現状である。これらの現象を生じる
ことにより損傷度の大きく耐用寿命が短く且つ安定した
寿命が得られず時には突発的損傷を生じ使用に耐えられ
なくなるばかりでなく損傷度合いが大きいと炉本体迄も
傷める等大きな問題となる。このため、炉の停止、保全
作業をしなくてはならずこの不定期なできごとで製造工
場の鋳造作業の停止ともなり生産活動に大きな支障をき
たす。このため内張り材の保全作業が余儀なくされる内
張り材の解体、施工は高温下で塵埃の多い重度の3K作
業でこの頻度が高くなる。以上のような現状より、前記
の不具合が解消でき安定した操炉と炉の内張り材の耐用
寿命が向上して重度でこの3K作業である炉の保全作業
の機会をより少なくすることが強く望まれているのが現
状である。
BACKGROUND OF THE INVENTION Conventionally, these metals have been dissolved and / or
Refining is generally carried out at very high temperatures due to alumina (A
lTwoOThree  97% by weight or more)
Is used. First, dry lining
Fork-shaped jigs, rammers, and vibrations on the hearth using fire
Using appropriate jigs such as vibration exciter
After that, a steel middle frame (hereinafter referred to as “former”)
And the inner wall of the former and the furnace body,
Put it in the place of the specified lining material thickness and
Construction by vibrating and filling while applying vibration from inside
It is used while gradually heating and sintering the entire foam.
At present, high heat resistance is required for use.
The dry amorphous refractory used has an alumina content of 97
Dry type refractory of more than weight% is generally used
Selects metal and slag components that are molten in the furnace.
Conductive phenomena due to permeated metal by selective absorption
Occasionally, the oxidation phenomenon occurs and the tissue becomes more vulnerable
Defects such as the surface layer peeling phenomenon that makes it unusable for use
It is at present that there is a congruence. Cause these phenomena
With a high degree of damage, the service life is short and stable
If the life is not attained, sometimes catastrophic damage occurs and
Not only does it go away, but if the degree of damage is
It becomes a big problem such as damage. For this reason, furnace shutdown and maintenance
You have to work on this irregular event
Production work has been stopped, causing a major hindrance to production activities.
Add This necessitates maintenance work on the lining material.
The dismantling and construction of the upholstery is a severe 3K work with a lot of dust under high temperature
In industry, this frequency increases. From the above situation,
Furnace operation and stable use of furnace lining materials
Furnace maintenance work, which has a long life and is a severe 3K work
It is currently strongly desired to reduce opportunities for
It is.

【0003】[0003]

【発明が解決しようとする課題】前述の如く現在一般に
用いられている耐火物はAl23含有量97重量%以上
の乾式不定形耐火物である。使用中にこの耐火物の組織
中に溶融した金属やスラグの成分が選択吸収される。こ
の浸透物により変質層を形成するとか、または浸透した
金属が組織内で一部酸化現象を生ずることにより深い
亀裂の発生稼動面に平行な亀裂が入り層状の剥離現象
を生ずるまた組織内に浸透した金属が酸化現象を生じ
組織が脆弱化を起す。使用が進むにつれてこれらの3つ
の現象が更に促進されることにより損傷は加速的に進み
耐用寿命が短くなる。このように内張り材の組織中に異
成分が容易に浸透しがたく、しかも高温の使用にも耐
え、耐用寿命の延長が図れる耐火物を提供して安全且つ
安定した操業ができ炉の保全作業の機会を減少させるこ
とを課題とする。
As described above, refractories generally used at present are dry amorphous refractories having an Al 2 O 3 content of 97% by weight or more. During use, the components of the molten metal and slag are selectively absorbed into the structure of the refractory. This infiltration forms an altered layer, or the infiltrated metal partially oxidizes in the tissue, causing deep cracks and cracks parallel to the operating surface, causing a layer-like exfoliation phenomenon and penetrating into the tissue. The oxidized metal causes the metal to become fragile. As these three phenomena are further promoted as use proceeds, damage accelerates and service life is shortened. As described above, a foreign material does not easily penetrate into the structure of the lining material, and it also provides a refractory material that can withstand high-temperature use and has a prolonged service life. The challenge is to reduce the opportunities for

【0004】[0004]

【課題を解決するための手段】本発明者はこのような現
状に鑑み操炉の実態を細かに調査しこれを基にして種々
検討し研究をかさねた結果ここに用いられる耐火物は現
在使用されているアルミナ含有量97重量%材では本質
的に焼結性能が低く稼動面に緻密な強固な層を形成する
ことが出来ず早い段階で炉内溶融物の金属やスラグの浸
透がなされている。ここに適する耐火物は溶湯、溶融
の成分を容易に選択吸収しない特性を有し組織の脆弱化
や内部に変質層の形成による亀裂の発生剥離の原因を生
じせしめないこと。使用時の受熱や異物の浸透による
残存収縮現象を生じないこと。素材は常に残存膨張性
を有して亀裂が発生しないこと。耐熱スポ−リング性
に優れていること等々の特性を具備していることが必要
であることを改めて知見し得た。これらの諸条件に対し
て適応する耐火物の研究を重ね実用試験を行なうことに
より、前述した諸々の問題点を解決し得る耐火物を得る
ことができた。
In view of such a situation, the present inventor has conducted a detailed investigation of the actual condition of the furnace, conducted various studies on the basis thereof, and conducted various studies. As a result, the refractory used here is currently used. The alumina content of 97% by weight is inherently low in sintering performance, making it impossible to form a dense and strong layer on the operating surface. I have. Suitable refractories have the property that they do not easily absorb and melt the components of the molten metal, and do not cause the weakening of the structure or the occurrence of cracks due to the formation of a deteriorated layer inside and the separation. No residual shrinkage due to heat reception or foreign material penetration during use. The material must always have residual expansion and no cracks. It has been found again that it is necessary to have characteristics such as excellent heat-resistant spoilability. The refractory which can solve the above-mentioned various problems can be obtained by repeating the research on the refractory applicable to these various conditions and conducting a practical test.

【0005】即ち現在のアルミナ質材(Al2397重
量%材)は溶湯溶滓成分の浸透を防止できるような緻
密な組織を容易に生成することができないことまた本
質的に浸透し易い特性を有していること高温下におい
ては残存収縮能を有している等の不具合発生の原因とな
る諸特性を有しているが耐熱性については融点2080
℃と高く高耐熱性と一般の溶融金属や酸性から弱塩基性
までの幅広い範囲での化学反応性が低い特性を具備して
いる。本発明者はこの点に着目し、アルミナ材の高耐熱
性と溶湯溶滓との反応性の小さい特性を生かし溶湯溶
滓,成分の選択吸収浸透を防止するため種々の研究を重
ね炭化珪素質材を添加し複合材とすることにより改善す
ることを見い出した。
That is, the current alumina material (97% by weight of Al 2 O 3 ) cannot easily form a dense structure which can prevent the penetration of the molten metal slag component, and is inherently easily permeated. It has various properties that cause problems such as having residual shrinkage ability at high temperature, but its heat resistance has a melting point of 2080.
It has high heat resistance of as high as ° C. and low chemical reactivity in a wide range from general molten metals and acidic to weakly basic. Focusing on this point, the present inventor has conducted various studies to prevent the selective absorption and penetration of the molten metal slag and components by taking advantage of the high heat resistance of the alumina material and the low reactivity of the molten metal with the molten metal slag. It has been found that it can be improved by adding a material to form a composite material.

【0006】また、更に炭化珪素質材の添加により高温
域においての残存膨張性となり耐熱衝撃性も共に向上す
る結果を得た。尚、更に残存膨張性耐熱衝撃性を高める
にはムライト質系材料の添加も有効であることも同時に
知見し得た。これら2者あるいは3者の適正配合量は炭
化珪素質原料が3〜15重量%アルミナ質原料が55〜
97重量%ムライト質原料が0〜30重量%でこの2者
あるいは3者の合量が90重量%以上で且つSiO2
Al23の2成分の合量が85重量%以上で構成される
ことが好ましい結果を得ることができた。この結果より
表3に示される本発明の実施例材を表1、表2に示され
る原料を用い粒度、構成を調整した乾式不定形耐火物を
誘導炉の内張り材を施工することにより現在一般に用い
られているアルミナを97重量%、0〜2重量%の無水
硼酸等の適宜な焼結助材が添加されている乾式不定形耐
火物の不具合点の改善効果を修めることができ且つ耐用
寿命の大きな向上ができて現在かかえている諸問題点を
解決することのできる誘導炉を提供するものである。
Further, the addition of the silicon carbide-based material results in a residual expandability in a high-temperature range, and the thermal shock resistance is also improved. In addition, it was also found that the addition of a mullite-based material was effective in further increasing the residual expansion resistance and thermal shock resistance. The proper blending amount of these two or three is that the silicon carbide raw material is 3 to 15% by weight and the alumina raw material is 55 to 55%.
97% by weight of mullite raw material is 0 to 30% by weight, the combined amount of these two or three is 90% by weight or more, and SiO 2 ,
It was possible to obtain a preferable result that the total amount of the two components of Al 2 O 3 was 85% by weight or more. Based on the results, the materials of Examples of the present invention shown in Table 3 are now generally used by applying the raw materials shown in Tables 1 and 2 to dry-shaped amorphous refractories of which the particle size and composition have been adjusted and lining materials of induction furnaces. 97% by weight of the alumina used, 0 to 2% by weight of a dry amorphous refractory to which a suitable sintering additive such as boric anhydride is added, and the effect of improving the defect can be improved and the service life can be improved. It is an object of the present invention to provide an induction furnace capable of resolving various problems at present by greatly improving the above.

【0007】限定理由 炭化珪素質材の配合量が3〜15重量%であること。 1−1 3重量%以下の場合は溶湯溶滓の浸透阻止、
残存膨張性への効果が小さく、総合的な改良につながら
ない。 1−2 15重量%以上の添加では添加効果に大きな
差が認められずほぼ同程度の改善にとどまり更に増える
と溶損率が高くなるためである。 ムライト質材の配合量0〜30重量%であること。ム
ライト質材の添加は使用中の受熱によりアルミナ質のみ
の場合一体焼結化が進むが、ムライト質材の添加により
素材の複合化効果により耐熱衝撃性の改善が認められて
くるが、30重量%以上では改善効果もほぼ横バイとな
る。一方、添加量が増すにしたがって溶損か大きくなる
傾向を増すためである。 アルミナ質材の配合比が55〜97重量%とする。A
2397重量%では溶湯溶滓成分の組織内浸透現象の
改善ににつながらず55重量%以下となると耐溶損性が
低下してくる傾向が大きくなるためである。 無水硼酸等の適宜な焼結助材0〜2重量%。無水硼酸
等の焼結助材の添加量は使用される温度により調整され
るものであるが、2重量%を越えると耐熱性を低下させ
る可能性を有するからである。 炭化珪素質材、アルミナ質材、ムライト質材の2〜3
者材の合量が80重量%以上。上記2〜3者合量が90
重量%以下なりほかの材料の混入が10重量%を越える
と耐食性をそこなう可能性が生ずるためである。 Al23,SiC,SiO2の3成分の合量が85重
量%、上記3成分以外の成分が15重量%を越えると耐
食性を低下させる可能性が生ずるためである。
Reason for limitation The amount of the silicon carbide material is 3 to 15% by weight. When the content is 1-13% by weight or less, the penetration of the molten metal slag is prevented,
The effect on residual swelling is small and does not lead to comprehensive improvement. 1-2 When the addition is 15% by weight or more, no significant difference is observed in the effect of addition, the improvement is almost the same, and the erosion rate increases as the addition increases. The content of the mullite material is 0 to 30% by weight. The addition of the mullite material allows the sintering to proceed in the case of alumina only due to the heat received during use, but the addition of the mullite material improves the thermal shock resistance due to the composite effect of the material. %, The improvement effect is almost horizontal. On the other hand, as the amount of addition increases, the tendency of erosion to increase increases. The compounding ratio of the alumina material is 55 to 97% by weight. A
This is because 97% by weight of l 2 O 3 does not lead to improvement of the permeation phenomenon of the molten metal slag component in the tissue, and if it is 55% by weight or less, the erosion resistance tends to decrease. 0 to 2% by weight of a suitable sintering aid such as boric anhydride. The amount of the sintering additive such as boric anhydride is adjusted depending on the temperature used, but if it exceeds 2% by weight, the heat resistance may be reduced. 2-3 of silicon carbide, alumina, and mullite materials
The total amount of raw materials is 80% by weight or more. The combined amount of the above two or three is 90
If the content is less than 10% by weight, the possibility of impairing the corrosion resistance may occur. If the total amount of the three components of Al 2 O 3 , SiC and SiO 2 exceeds 85% by weight, and if the components other than the above three components exceed 15% by weight, there is a possibility that the corrosion resistance may be reduced.

【0008】次に実施例について記述する。誘導炉用内
張り材としての必要具備特性は 1.使用中受熱により残存膨脹性を示すこと。 2.溶湯溶滓の組織内への浸透が小さいこと 3.耐熱性、耐食性が高いこと 等の特性が求められることにより、この条件に適合する
内張り用耐火物を得るため、使用原料の化学成分値例を
表1に供試材の粒度構成値を表2に示す。
Next, an embodiment will be described. The required characteristics as a lining material for induction furnaces are: Exhibit residual swelling by receiving heat during use. 2. 2. Low penetration of molten metal slag into tissue. Since properties such as high heat resistance and high corrosion resistance are required, in order to obtain a refractory for lining that meets these conditions, Table 1 shows examples of the chemical composition of the raw materials used, and Table 2 shows the particle configuration values of the test materials. Shown in

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】(供試材の製造方法)供試材は表1の原料
を用い表3の本発明の実施例にもとずきそれぞれ粉砕さ
た原料を所定量を計量しミキサ−で混合する。尚各種原
料の混合は全量一度の混合でも良いが0.1mm以下の
微粒子材は前もって混合処理してから全体混合を行なっ
た方が均一性が高くなることより、今回は後者の方法に
て混合して供試材とする。
(Manufacturing Method of Test Material) The test materials were prepared by using the raw materials shown in Table 1 and weighing a predetermined amount of each ground raw material according to the embodiment of the present invention shown in Table 3 and mixing them by a mixer. . The mixing of the various raw materials may be performed once, but the fineness of 0.1 mm or less may be mixed in advance and then the whole may be mixed. And use it as test material.

【0012】 [0012]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】上記の条件で使用される誘導炉の内張り用
材として用いる比較材には表3 A−1材を本発明品の
実施例とし表3、B−3材を用いて誘導炉の炉床部振動
盤により加振充填後、炉本体の内側に所定の内張り耐火
物の厚み(80mm)を形成するように設計された銅製
のフォ−マ−を設置しこの間に投入しながら平板状の振
動棒を挿入させて耐火物に直接振動を与えながら順次加
振充填して最頂部約50mmを同材に珪酸ソ−ダと水を
1:1の比率に混合したものをバインダ−として6%を
加え混練した材料をエア−ランマ−で打設して施工した
後、約800℃での低温で10時間保持して焼結させた
後、除々に昇温して溶解に入り、溶融温度1750℃で
120分保持して高温焼結を行い実使用に入る尚本発明
材および比較材と共に同じ工程で製造を行なう。この結
果、比較材は10chころよりノロの付着が多くなり1
4ch目で一部表層剥離と2本の縦亀裂が発生し補修を
行いながらの23chで使用不可能となるが本発明用材
はノロの付着が少なく亀裂の発生が認めらないまま28
chを過ぎるころより付着が徐々に進み35chで第一
回目の補修を行い、ノロ取り補修をしながらの使用で4
2chまでの耐用を示した。
Table 3 A-1 is an example of the product of the present invention as a comparative material used as a material for lining an induction furnace used under the above conditions. After shaking and filling with a vibrating plate, a copper foamer designed to form a predetermined lining refractory thickness (80 mm) is installed inside the furnace main body, and a flat plate-like vibrator is inserted during this time. A bar is inserted and the refractory is vibrated and filled sequentially while being directly vibrated, and a mixture of sodium silicate and water in a ratio of 1: 1 with the same material at the top of about 50 mm is used as a binder to obtain 6%. After adding and kneading the material with an air rammer and sintering it, it is kept at a low temperature of about 800 ° C. for 10 hours and sintered, and then gradually heated to start melting, and the melting temperature is 1750 ° C. And sintering at high temperature for 120 minutes. The production is performed in the same process. As a result, in the comparative material, sticking of slag became larger than that of about 10 ch, and 1
Partial surface peeling and two vertical cracks occurred on the 4th channel, making it unusable on the 23rd channel while performing repair. However, the material of the present invention had little sticking of noro and no cracking was observed.
From the time past the channel, the adhesion gradually progressed, and the first repair was performed at 35 ch.
The service life up to 2ch was shown.

【0016】[0016]

【表5】 実用試験結果 使用条件 炉容 0.6高周波誘導炉 溶融物 ND−Ce−Fe系材 溶融温度 1650±15℃ 内張り施工方法 乾式不定形耐火物とフォ−マ−を用いての加振方法 焼結 200℃/60分で昇温 1750℃、2時間保持後一般 使用に入る。[Table 5] Practical test results Operating conditions Furnace volume 0.6 High frequency induction furnace Melted material ND-Ce-Fe-based material Melting temperature 1650 ± 15 ° C Lining construction method Vibration method using dry amorphous refractory and foamer Sintering Temperature rise at 200 ° C / 60min. 1750 ° C. Hold for 2 hours.

【0017】[0017]

【発明の効果】アルミナ質材(Al2397重量%)を
アルミナ質材重量%と炭化珪素質材3〜15重量%ムラ
イト質材0〜30重量%とした2者または3者の複合材
とすることにより素材の残存収縮性や耐熱衝撃性も改善
が認められると同時に炭化珪素質材の添加溶湯溶融の組
織内への浸透も抑制効果が出てこれらの相乗効果により
有害な亀裂の発生も無く酸化物(ノロ)の表面への付着
も少なく耐用寿命も23chが42chと飛躍的に向上
し182.6%と大きな向上結果を修めることができた
ことにより炉の操業度も高まり炉の保全による炉の休業
も半減し、生産活動が円滑に進行し同時に内張り材保全
の3K作業の機会も約1/2なるなど、大きな改善を修
めることができ、その効果は絶大なるものがある。
Effects of the Invention alumina material (Al 2 O 3 97 wt%) composite of two parties or three parties that the alumina material by weight percent silicon carbide material 3-15 wt% mullite material 0-30 wt% By using the material, the residual shrinkage and thermal shock resistance of the material are improved, and at the same time, the addition of the silicon carbide-based material also suppresses the penetration of the molten metal into the structure. Oxide (noro) adhered to the surface without generation and the service life was greatly improved from 23 ch to 42 ch, and the result of a large improvement of 182.6% was achieved. The furnace shutdown due to the maintenance of the furnace has been halved, production activities have progressed smoothly, and at the same time, the chance of 3K work for lining material maintenance has been reduced to about half. .

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年12月8日(1998.12.
8)
[Submission date] December 8, 1998 (1998.12.
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】従来、これらの金属の溶解およびまたは
精錬は一般に非常に高温となることよりアルミナ質(A
97重量%以上)の高純度高乾式不定形耐火
物が用いられている。内張り材の施工はまず乾式不定形
耐火物を用いて炉床部をホーク状の冶具やランマー、
動盤等の加振機等適宜な冶具を使用して掲き固め後、所
定の位置に鋼製の中枠(以下フォーマーと称する)を配
設してこのフォーマーと炉の本体との内壁部、定められ
た内張り材の厚みの所に投入してフォーマーの内側より
振動を与えながら加振充填を行なう方法で施工され、フ
ォーマーごと徐々に加熱焼結させながら使用に供されて
いる使用上高耐熱性が求められることより現在用いられ
ている乾式不定形耐火物はアルミナ含有量97重量%以
上の乾式不定形耐火物が一般に使用されているが炉内で
溶融状態になっている金属やスラグの成分を選択吸収す
ることにより浸透した金属により導電化現象を生じたり
時には酸化現象を生じて組織の脆弱化が大きく表層剥離
現象をおこし使用に耐えられなくなる等の不具合を生じ
ているのが現状である。これらの現象を生じることによ
り損傷度の大きく耐用寿命が短く且つ安定した寿命が得
られず時には突発的損傷を生じ使用に耐えられなくなる
ばかりでなく損傷度合いが大きいと炉本体迄も傷める等
大きな問題となる。このため、炉の停止、保全作業をし
なくてはならずこの不定期なできごとで製造工場の鋳造
作業の停止ともなり生産活動に大きな支障をきたす。こ
のため内張り材の保全作業が余儀なくされる内張り材の
解体、施工は高温下で塵埃の多い重度の3K作業でこの
頻度が高くなる。以上のような現状より、前記の不具合
が解消でき安定した操炉と炉の内張り材の耐用寿命が向
上して重度の3K作業である炉の保全作業の機会をより
少なくすることが強く望まれているのが現状である。
BACKGROUND OF THE INVENTION Conventionally, the melting and / or refining of these metals is generally at very high temperatures due to alumina (A).
high purity, high dry type amorphous refractory (l 2 O 3 97% by weight or more). Construction of the lining material is first by a dry monolithic refractory hearth portion fork-shaped jig and rammer, vibration
After compacting using a suitable jig such as a vibrator such as a moving plate , a steel middle frame (hereinafter referred to as a “former”) is disposed at a predetermined position, and an inner wall portion of the former and a furnace body is provided. It is installed by applying vibration to the inside of the former while applying vibration to the place where the thickness of the lining material is set, and the former is used while being gradually heated and sintered together with the former. Due to the demand for heat resistance, dry amorphous refractories currently used are generally dry amorphous refractories having an alumina content of 97% by weight or more, but metals and slag that are in a molten state in a furnace The current situation is that the metal that has penetrated by the selective absorption of the component causes a conductivity phenomenon and sometimes causes an oxidation phenomenon, and the tissue becomes brittle, causing a large amount of surface delamination and making it unusable for use. so That. Due to these phenomena, the degree of damage is large, the service life is short, and a stable life cannot be obtained.Sometimes, sudden damage is caused and it is not possible to withstand use. Becomes For this reason, the furnace must be stopped and maintenance work must be performed, and this irregular event causes the casting work in the manufacturing plant to be stopped, which greatly hinders production activities. For this reason, the frequency of the disassembly and construction of the lining material, which necessitates the maintenance work of the lining material, is increased by heavy 3K work with a lot of dust at high temperature. In view of the above situation, it is strongly desired that the above-mentioned problems can be solved and the stable operation of the furnace and the service life of the furnace lining material can be improved and the opportunity for maintenance work of the furnace, which is a heavy 3K operation, can be reduced. That is the current situation.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】また、更に炭化珪素質材の添加により高温
域においての残存膨張性となり耐熱衝撃性も共に向上す
る結果を得た。尚、更に残存膨張性耐熱衝撃性を高める
にはムライト質系材料の添加も有効であることも同時に
知見し得た。これら2者あるいは3者の適正配合量は炭
化珪素質原料が3〜15重量%アルミナ質原料が55〜
97重量%ムライト質原料が0〜30重量%でこの2者
あるいは3者の合量が90重量%以上で且つSiO
Alの2成分の合量が85重量%以上で構成され
ることが好ましい結果を得ることができた。この結果よ
り表3に示される本発明の実施例材を表1、表2に示さ
れる原料を用い粒度、構成を調整した乾式不定形耐火物
を誘導炉の内張り材とし施工することにより現在一般に
用いられているアルミナを97重量%、0〜2重量%の
無水硼酸等の適宜な焼結助材が添加されている乾式不定
形耐火物の不具合点の改善効果を修めることができ且つ
耐用寿命の大きな向上ができて現在かかえている諸問題
点を解決することのできる誘導炉を提供するものであ
る。
Further, the addition of the silicon carbide-based material results in a residual expandability in a high-temperature range, and the thermal shock resistance is also improved. In addition, it was also found that the addition of a mullite-based material was effective in further increasing the residual expansion resistance and thermal shock resistance. The proper blending amount of these two or three is that the silicon carbide raw material is 3 to 15% by weight and the alumina raw material is 55 to 55%.
97% by weight mullite raw material is 0 to 30% by weight, the combined amount of these two or three is 90% by weight or more, and SiO 2 ,
It was possible to obtain a preferable result that the total amount of the two components of Al 2 O 3 was 85% by weight or more. Example material of the present invention shown in Table 3 From the results in Table 1, raw materials used granularity shown in Table 2, by a dry monolithic refractory adjusting the structure and induction furnace lining material construction now commonly 97% by weight of the alumina used, 0 to 2% by weight of a dry amorphous refractory to which a suitable sintering additive such as boric anhydride is added, and the effect of improving the defect can be improved and the service life can be improved. It is an object of the present invention to provide an induction furnace capable of resolving various problems at present by greatly improving the above.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】 [0012]

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】[0014]

【表4】 [Table 4]

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】(実用試験結果)上記の条件で使用される
誘導炉の内張り用材として用いる比較材にぱ表3 A−
1材を本発明品の実施例とし表3、B−3材を用いて誘
導炉の炉床部振動盤により加振充填後、炉本体の内側に
所定の内張り耐火物の厚み(80mm)を形成するよう
に設計された銅製のフォーマーを設置しこの間に投入し
ながら平板状の振動棒を挿入させて耐火物に直接振動を
与えながら順次加振充填して最頂部約50mmを同材に
珪酸ソーダと水を1:1の比率に混合したものをバイン
ダーとして6%を加え混練した材料をエアーランマーで
打設して施工した後、約800℃での低温で10時間保
持して焼結させた後、除々に昇温して溶解に入り、溶融
温度1750℃で120分保持して高温焼結を行い実使
用に入る尚本発明材および比較材と共に同じ工程で製造
を行なう。この結果、比較材は10chころよりノロの
付着が多くなり14ch目で一部表層剥離と2本の縦亀
裂が発生し補修を行いながらの23chで使用不可能と
なるが本発明用材はノロの付着が少なく亀裂の発生が認
めらないまま28chを過ぎるころより付着が徐々に進
み35chで第一回目の補修を行い、ノロ取り補修をし
ながらの使用で42chまでの耐用を示した。
(Results of practical test) Comparative materials used as lining materials for induction furnaces used under the above conditions are shown in Table 3 A-
One material is an example of the product of the present invention, and Table 3 and B-3 material are used for vibration-filling with a hearth vibrating plate of an induction furnace, and then the thickness (80 mm) of a predetermined lining refractory is formed inside the furnace body. A copper former designed to be formed is installed, and a flat vibrating rod is inserted while the former is being inserted, and while the refractory is directly vibrated, it is sequentially vibrated and filled while vibrating and filling the refractory material to a thickness of about 50 mm at the top. A mixture of soda and water in a ratio of 1: 1 was used as a binder, and 6% was added. The kneaded material was cast by using an air rammer, and the mixture was sintered at a low temperature of about 800 ° C. for 10 hours. Thereafter, the temperature is gradually increased to start melting, and the melting temperature is maintained at 1750 ° C. for 120 minutes, high-temperature sintering is performed, and the material of the present invention and the comparative material, which are actually used, are manufactured in the same process. As a result, in the comparative material, the adhesion of the slag increased more than around 10 ch, the surface layer was partially peeled off and two vertical cracks occurred at the 14 th channel, and the comparative material became unusable in the 23 ch while performing repair. The adhesion gradually progressed from 28 ch with little adhesion and no occurrence of cracks was observed, the first repair was performed on 35 ch, and the service life up to 42 ch was shown by using the slag while repairing.

【手続補正7】[Procedure amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】[0016]

【表5】 実用試験結果 使用条件 炉容 0.6高周波誘導炉 溶融物 ND−Ce−Fe系材 溶融温度 1650±15℃ 内張り施工方法 乾式不定形耐火物とフォーマーを用いての加振方法 焼結 200℃/60分で昇温 1750℃、2時間保持後一般 使用に入る。 ─────────────────────────────────────────────────────
[Table 5] Practical test results Operating conditions Furnace volume 0.6 High frequency induction furnace Melted material ND-Ce-Fe-based material Melting temperature 1650 ± 15 ° C Lining method Vibration method using dry amorphous refractory and former Sintering 200 ° C / The temperature rises in 1 minute at 1750 ° C for 60 minutes, and then enters general use after holding for 2 hours. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年1月11日(1999.1.1
1)
[Submission date] January 11, 1999 (1999.1.1)
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】また、更に炭化珪素質材の添加により高温
域においての残存膨張性となり耐熱衝撃性も共に向上す
る結果を得た。尚、更に残存膨張性耐熱衝撃性を高める
にはムライト質系材料の添加も有効であることも同時に
知見し得た。これら2者あるいは3者の適正配合量は炭
化珪素質原料が3〜15重量%アルミナ質原料が55
〜97重量%ムライト質原料が0〜30重量%でこの
2者あるいは3者の合量が90重量%以上で且つSiO
2、Al2O3の2成分の合量が85重量%以上で構成さ
れることが好ましい結果を得ることができた。この結果
より表3に示される本発明の実施例材を表1、表2に示
される原料を用い粒度、構成を調整した乾式不定形耐火
物を誘導炉の内張り材とし施工することにより現在一般
に用いられているアルミナを97重量%、0〜2重量%
の無水硼酸等の適宜な焼結助材が添加されている乾式不
定形耐火物の不具合点の改善効果を修めることができ且
つ耐用寿命の大きな向上ができて現在かかえている諸問
題点を解決することのできる誘導炉を提供するものであ
る。
Further, the addition of the silicon carbide-based material results in a residual expandability in a high-temperature range, and the thermal shock resistance is also improved. In addition, it was also found that the addition of a mullite-based material was effective in further increasing the residual expansion resistance and thermal shock resistance. The proper blending amounts of these two or three are 3 to 15% by weight for the silicon carbide raw material and 55 for the alumina raw material.
To 97% by weight , the mullite raw material is 0 to 30% by weight, the combined amount of the two or three is 90% by weight or more, and SiO
2. It was possible to obtain a preferable result that the total amount of the two components of Al2O3 was 85% by weight or more. From these results, the materials of Examples of the present invention shown in Table 3 are now generally used by using the raw materials shown in Tables 1 and 2 and using dry amorphous refractories of which the particle size and composition are adjusted as the lining material of the induction furnace. 97% by weight of alumina used, 0 to 2% by weight
Can improve the effect of improving the defects of dry amorphous refractories to which appropriate sintering aids such as boric anhydride have been added, and can greatly improve the service life and solve various problems that are currently encountered The present invention provides an induction furnace capable of performing the above.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】[0014]

【表4】 [Table 4]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】[0016]

【表5】 実用試験結果 使用条件 炉容 0.6トン高周波誘導炉 溶融物 ND−Ce−Fe系材 溶融温度 1650±15℃ 内張り施工方法 乾式不定形耐火物とフォ−マ−を用いての加振方法 焼結 200℃/60分で昇温 1750℃、2時間保持後一般 使用に入る。[Table 5] Practical test results Operating conditions Furnace capacity 0.6 ton high-frequency induction furnace Melted material ND-Ce-Fe-based material Melting temperature 1650 ± 15 ° C Lining construction method Using dry amorphous refractory and foamer Vibration method Sintering Temperature rise at 200 ° C / 60 minutes 1750 ° C, hold for 2 hours, then enter general use.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類材および希土類成分を含有する金
属やこれらの金属と鉄系金属の合金材等の溶解およびま
たは精錬する際に用いられる誘導炉の内張り用耐火物に
おいて炭化珪素質材を3〜15重量%、アルミナ質材を
55〜97重量%ムライト質材を0〜30重量%でこの
2者または3者の含有量が90重量%でSiC,Al2
3,SiO2の3成分の含有量が85重量%以上で0〜
20重量%の焼結助材で構成したことを特徴とする乾式
不定形耐火物で内張り材を築造したことを特徴とする誘
導炉。
1. A refractory for lining an induction furnace used for melting and refining rare earth materials and metals containing rare earth components and alloys of these metals and iron-based metals. 15 wt%, SiC content of 2's or 3's an alumina material with 55-97 wt% mullite material with 0-30% by weight at 90 wt%, Al 2
When the content of the three components of O 3 and SiO 2 is 85% by weight or more,
An induction furnace, wherein a lining material is constructed of a dry-type irregular refractory characterized by comprising 20% by weight of a sintering aid.
JP10341391A 1998-12-01 1998-12-01 Induction furnace Pending JP2000169247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341391A JP2000169247A (en) 1998-12-01 1998-12-01 Induction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341391A JP2000169247A (en) 1998-12-01 1998-12-01 Induction furnace

Publications (1)

Publication Number Publication Date
JP2000169247A true JP2000169247A (en) 2000-06-20

Family

ID=18345709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341391A Pending JP2000169247A (en) 1998-12-01 1998-12-01 Induction furnace

Country Status (1)

Country Link
JP (1) JP2000169247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043507A (en) * 2015-08-25 2017-03-02 日本碍子株式会社 Method for producing powdery mixture and unshaped refractory for furnace wall
CN115057693A (en) * 2022-08-18 2022-09-16 北京利尔高温材料股份有限公司 Tundish high-aluminum working lining dry material, working lining and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043507A (en) * 2015-08-25 2017-03-02 日本碍子株式会社 Method for producing powdery mixture and unshaped refractory for furnace wall
CN115057693A (en) * 2022-08-18 2022-09-16 北京利尔高温材料股份有限公司 Tundish high-aluminum working lining dry material, working lining and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP2013032247A (en) Monolithic refractory
JP4572521B2 (en) Castable refractories, manufacturing method thereof and lance pipe
JPH09202667A (en) Castable refractory for slide gate
KR101798843B1 (en) Refractory composition and well block for steel casting by using it
JP2000169247A (en) Induction furnace
US20230265018A1 (en) Molten metal processing apparatus
JP3928818B2 (en) Induction furnace
JP4394080B2 (en) Zirconia refractories
JP2019210180A (en) Fireproof material for low melting point nonferrous metal
JP3276061B2 (en) Induction furnace
JP3952222B2 (en) Induction furnace
JPH05117043A (en) Dry ramming refractory for induction furnace
JP4361048B2 (en) Lightweight castable refractories for molten aluminum and aluminum alloys
JP3823132B2 (en) Amorphous refractory composition for lance pipes
JP3783526B2 (en) Method for producing castable refractories containing waste material aggregate
JP4275384B2 (en) Low carbon high zirconia electroformed refractory and method for producing the same
JP3841185B2 (en) Induction furnace
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP2704250B2 (en) Irregular refractories for induction furnaces
EP0146457A2 (en) Refractory compositions based om fusion-cast basic oxide grains, and refractory articles made from these compositions
CN105218124A (en) A kind of 2000m 3blast furnace props up iron runner castable
JP2000186892A (en) Induction furnace
JPH10314904A (en) Continuous casting nozzle
JP2000191364A (en) Shaped magnesia-chrome refractory