JP2000161124A - Failure detecting device for variable valve system engine - Google Patents

Failure detecting device for variable valve system engine

Info

Publication number
JP2000161124A
JP2000161124A JP10334298A JP33429898A JP2000161124A JP 2000161124 A JP2000161124 A JP 2000161124A JP 10334298 A JP10334298 A JP 10334298A JP 33429898 A JP33429898 A JP 33429898A JP 2000161124 A JP2000161124 A JP 2000161124A
Authority
JP
Japan
Prior art keywords
air amount
intake air
intake
valve
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10334298A
Other languages
Japanese (ja)
Other versions
JP3680599B2 (en
Inventor
Mikio Matsumoto
幹雄 松本
Hatsuo Nagaishi
初雄 永石
Takahiko Hirasawa
崇彦 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33429898A priority Critical patent/JP3680599B2/en
Publication of JP2000161124A publication Critical patent/JP2000161124A/en
Application granted granted Critical
Publication of JP3680599B2 publication Critical patent/JP3680599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly detect a failure of an intake air amount sensor for a variable valve system engine provided with intake- and exhaust valves. SOLUTION: This engine is provided with intake and exhaust valves 3, 4 to control the intake air amount and the discharge of exhaust gas of a cylinder by the opening and closing timings of these valves, and is provided with an intake air amount sensor 21 for measuring the intake air amount in an intake passage 5. In this case, an intake air amount estimating means for estimating the actual intake air amount based on the cylinder inside volume when at least the intake valve 3 is closed, a means for comparing the estimated value to the measured value of the intake air amount sensor 21, and a failure judging means for judging a failure in the intake air amount sensor 21 based on the comparison result, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、吸、排気弁を備
える可変動弁エンジンの故障検出装置に関し、特に吸入
空気量を計測する吸気量センサの故障を検出する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting a failure of a variable valve engine having intake and exhaust valves, and more particularly to a device for detecting a failure of an intake air amount sensor for measuring an intake air amount.

【0002】[0002]

【従来の技術】エンジンの吸、排気弁をカム駆動に変え
て電磁力で駆動するものがある。このものは、カムシャ
フト等の機構を省略することができ、エンジンの運転状
態に合った弁開閉タイミングに設定できると共に、弁開
閉タイミングによって、シリンダの吸入空気量および排
気ガスの排出を制御することが可能である(特開昭61
−247807号公報等)。
2. Description of the Related Art There is an engine in which intake and exhaust valves of an engine are driven by an electromagnetic force instead of being driven by a cam. In this device, the mechanism such as a camshaft can be omitted, the valve opening / closing timing can be set in accordance with the operating state of the engine, and the intake air amount of the cylinder and the discharge of exhaust gas can be controlled by the valve opening / closing timing. (Japanese Patent Laid-Open No. 61
-247807).

【0003】また、油圧により吸、排気弁を駆動するも
のがある(特開平7−317516号公報等)。これ
は、オイルポンプにより昇圧されたオイルを、吸気弁や
排気弁を駆動するピストンとこのピストンが摺動するシ
リンダとにより画成された油圧室に、オイルの供給と遮
断を行う気筒毎に設定された電磁式スピル弁を介して供
給することで、気筒毎に吸気弁や排気弁を所望の開弁時
期、閉弁時期に制御するものである。
[0003] Further, there is one that drives intake and exhaust valves by hydraulic pressure (Japanese Patent Application Laid-Open No. 7-317516). This means that oil pressurized by an oil pump is set for each cylinder that supplies and shuts off oil to a hydraulic chamber defined by a piston that drives intake and exhaust valves and a cylinder that slides the piston. The intake valve and the exhaust valve are controlled to a desired valve opening timing and a desired valve closing timing for each cylinder by supplying the same through the supplied electromagnetic spill valve.

【0004】このようなエンジンにおけるエンジン吸気
量の計測方法として、絞り弁上流の吸気通路にエアフロ
ーメータ(吸気量センサ)を備え、吸気量センサが計測
した吸入空気量とエンジン回転数から燃料の基本的な噴
射量を求め、これを基に種々の補正を行って燃料噴射弁
の燃料噴射量を制御するものにおいては、この吸気量セ
ンサに異常があると、例えば燃料噴射量を適正に制御で
きなくなる。
As a method for measuring the engine intake air amount in such an engine, an air flow meter (intake air amount sensor) is provided in an intake passage upstream of a throttle valve, and a basic fuel amount is calculated from the intake air amount measured by the intake air amount sensor and the engine speed. In the case where the fuel injection amount is determined and the fuel injection amount of the fuel injection valve is controlled by performing various corrections based on this, if the intake air amount sensor is abnormal, for example, the fuel injection amount can be appropriately controlled. Disappears.

【0005】従来、このような吸気量センサの故障検出
装置として、センサ回路の断線の有無を検出するもの
(特開平10−68647号公報)、排気系に設けた酸
素濃度センサの信号から吸気量センサの故障を間接的に
判定するもの、あるいは吸気量センサの信号波形つまり
吸気弁の開閉に伴う吸気脈動によって生じる信号の最大
出力値と最小出力値との偏差から吸気量センサの故障を
判定するもの(特開平5−001930号公報)等があ
る。
Conventionally, such a failure detection device for an intake air amount sensor detects the presence or absence of a disconnection in a sensor circuit (Japanese Patent Laid-Open No. Hei 10-68647), and detects an intake air amount from a signal of an oxygen concentration sensor provided in an exhaust system. A method for indirectly determining a sensor failure or a failure of an intake air sensor based on a signal waveform of the intake air sensor, that is, a deviation between a maximum output value and a minimum output value of a signal generated by intake pulsation accompanying opening and closing of an intake valve. (JP-A-5-001930).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、センサ
回路の断線の有無を検出するものは、吸気量センサの出
力のズレによる異常は検出できず、酸素濃度センサの信
号から吸気量センサの故障を判定するものは、燃料系の
故障との区別をつけにくい。
However, an apparatus for detecting the presence or absence of a disconnection in a sensor circuit cannot detect an abnormality due to a deviation in the output of the intake air amount sensor, and determines the failure of the intake air amount sensor from the signal of the oxygen concentration sensor. Are difficult to distinguish from fuel system failures.

【0007】また、吸気量センサの最大出力値と最小出
力値との偏差から吸気量センサの故障を判定するもの
は、吸気通路に設けた絞り弁よりも吸、排気弁によって
シリンダの吸入空気量等を制御する場合、吸気弁の開閉
タイミングによって吸気脈動が変わるため、必ずしも適
用しにくいのである。
[0007] Further, in the case of determining the failure of the intake air amount sensor from the difference between the maximum output value and the minimum output value of the intake air amount sensor, the intake air amount of the cylinder is controlled by the intake and exhaust valves rather than the throttle valve provided in the intake passage. In the case of controlling the intake air pressure and the like, the intake pulsation changes depending on the opening / closing timing of the intake valve, so that it is not necessarily applied.

【0008】この発明は、吸、排気弁の開閉タイミング
によってシリンダの吸入空気量等を制御する可変動弁エ
ンジンの場合、その開閉タイミングによってシリンダの
吸入空気量を推定可能なことに着目し、その推定値と吸
気量センサの計測値との比較によって吸気量センサの故
障を的確に検出できる故障検出装置を提供することを目
的としている。
The present invention focuses on the fact that, in the case of a variable valve engine that controls the intake air amount of a cylinder by the opening and closing timing of intake and exhaust valves, the intake air amount of the cylinder can be estimated by the opening and closing timing. An object of the present invention is to provide a failure detection device that can accurately detect a failure of an intake air amount sensor by comparing an estimated value and a measurement value of an intake air amount sensor.

【0009】[0009]

【課題を解決するための手段】第1の発明は、吸、排気
弁を備え、これらの弁の開閉時期によってシリンダの吸
入空気量および排気ガスの排出を制御する一方、吸気通
路に吸入空気量を計測する吸気量センサを備える可変動
弁エンジンにおいて、少なくとも吸気弁の閉時期のシリ
ンダ内容積を基に実際の吸入空気量を推定する吸入空気
量推定手段と、この推定値と吸気量センサの計測値を比
較する比較手段と、この比較結果を基に吸気量センサの
故障判定を行う故障判定手段とを設ける。
According to a first aspect of the present invention, the intake and exhaust valves are provided, and the intake air amount of the cylinder and the discharge of exhaust gas are controlled by the opening / closing timing of these valves. In a variable valve engine having an intake air amount sensor for measuring an intake air amount sensor, an intake air amount estimating means for estimating an actual intake air amount based on at least a cylinder internal volume at the time of closing the intake valve, A comparison unit that compares the measured values and a failure determination unit that determines a failure of the intake air amount sensor based on the comparison result are provided.

【0010】第2の発明は、第1の発明において、前記
吸入空気量推定手段は、吸入空気量の推定値を、排気弁
の閉時期もしくは吸気弁の開時期もしくは吸、排気弁の
オーバーラップ量に応じて補正する補正手段を持つ。
In a second aspect based on the first aspect, the intake air amount estimating means calculates the estimated value of the intake air amount based on the closing timing of the exhaust valve or the opening timing or intake of the intake valve, and the overlap of the exhaust valve. It has correction means for correcting according to the amount.

【0011】第3の発明は、第1の発明において、吸気
管に絞り弁を設け、前記吸入空気量推定手段は、吸入空
気量の推定値を、その絞り弁の開度に応じて補正する補
正手段を持つ。
In a third aspect based on the first aspect, a throttle valve is provided in the intake pipe, and the intake air amount estimating means corrects the estimated value of the intake air amount according to the opening degree of the throttle valve. Has correction means.

【0012】第4の発明は、第3の発明において、前記
補正手段は、絞り弁の開度が小さく吸気管負圧が大きい
ほど、吸入空気量の推定値を減少補正する。
In a fourth aspect based on the third aspect, the correction means reduces and corrects the estimated value of the intake air amount as the opening degree of the throttle valve is small and the intake pipe negative pressure is large.

【0013】第5の発明は、第1の発明において、前記
故障判定手段は、前記吸入空気量推定手段の吸入空気量
の推定値と吸気量センサの計測値との差が、予め定めた
所定の故障判定基準値よりも大きいときに、吸気量セン
サを故障と判定する。
In a fifth aspect based on the first aspect, the failure determination means determines that a difference between the estimated value of the intake air amount by the intake air amount estimation means and the measurement value of the intake air amount sensor is a predetermined value. Is larger than the failure determination reference value, the intake air amount sensor is determined to have failed.

【0014】第6の発明は、第1の発明において、前記
故障判定手段による故障判定基準を、少なくともエンジ
ン回転数を含むエンジンの運転条件毎に設定してある。
In a sixth aspect based on the first aspect, the failure determination criterion by the failure determination means is set for each engine operating condition including at least the engine speed.

【0015】第7の発明は、第1の発明において、前記
吸入空気量推定手段は、吸、排気弁の開閉制御時期より
吸、排気弁の開閉時期を判別する。
In a seventh aspect based on the first aspect, the intake air amount estimating means determines the intake / exhaust valve opening / closing timing based on the intake / exhaust valve opening / closing control timing.

【0016】第8の発明は、第1の発明において、吸、
排気弁の開閉時期を検出する着座センサを備え、前記吸
入空気量推定手段は、着座センサによるに吸、排気弁の
開閉時期の検出値を基に実際の吸入空気量を推定する。
According to an eighth aspect, in the first aspect, the suction,
A seating sensor for detecting the opening and closing timing of the exhaust valve is provided, and the intake air amount estimating means estimates an actual intake air amount based on a detection value of the intake and opening timing of the exhaust valve by the seating sensor.

【0017】第9の発明は、第1の発明において、吸気
量センサの故障を表示する表示装置を備える。
According to a ninth aspect, in the first aspect, a display device for displaying a failure of the intake air amount sensor is provided.

【0018】[0018]

【発明の効果】第1、第7の発明によれば、吸気量セン
サの出力のズレによる異常、センサ回路の断線等の故障
を容易に精度良く検出できる。
According to the first and seventh aspects of the invention, it is possible to easily and accurately detect an abnormality due to a deviation in the output of the intake air amount sensor, a failure such as a disconnection of the sensor circuit, and the like.

【0019】第2の発明によれば、排気弁の閉時期、吸
気弁の開時期、吸、排気弁のオーバーラップ量による変
化に対して精度良い推定吸入空気量を得ることができ、
吸気量センサの故障検出を的確に行える。
According to the second aspect, it is possible to obtain an accurate estimated intake air amount with respect to a change due to the closing timing of the exhaust valve, the opening timing of the intake valve, the amount of intake, and the amount of overlap of the exhaust valve.
Failure detection of the intake air amount sensor can be accurately performed.

【0020】第3、第4の発明によれば、絞り弁を設け
た場合にも精度良い推定吸入空気量を得ることができ、
対応できる。
According to the third and fourth aspects of the present invention, an accurate estimated intake air amount can be obtained even when a throttle valve is provided.
Can respond.

【0021】第5、第6の発明によれば、吸気量センサ
の故障判定を精度良く行える。
According to the fifth and sixth aspects of the present invention, it is possible to accurately determine the failure of the intake air amount sensor.

【0022】第8の発明によれば、吸、排気弁の故障を
的確に検出できると共に、これらの故障時に吸気量セン
サの故障判定をキャンセルできる。
According to the eighth aspect, it is possible to accurately detect the failure of the intake and exhaust valves, and to cancel the failure determination of the intake air amount sensor when these failures occur.

【0023】第9の発明によれば、故障の早期補修が可
能になる。
According to the ninth aspect, early repair of a failure becomes possible.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1に示すように、1はエンジン、2はシ
リンダ(燃焼室)、3は吸気弁、4は排気弁、5は吸気
管、6は排気管、7は点火栓、8は燃料噴射弁、9は排
気浄化用触媒である。
As shown in FIG. 1, 1 is an engine, 2 is a cylinder (combustion chamber), 3 is an intake valve, 4 is an exhaust valve, 5 is an intake pipe, 6 is an exhaust pipe, 7 is a spark plug, and 8 is fuel. The injection valve 9 is an exhaust gas purifying catalyst.

【0026】吸気弁3、排気弁4を駆動する電磁アクチ
ュエータ10,11は、図2のように可動部12を開弁
方向と閉弁方向に付勢する2つのスプリング13,14
と、可動部12を開弁方向と閉弁方向に吸引する2つの
電磁石15,16とが設けられる。
Electromagnetic actuators 10 and 11 for driving the intake valve 3 and the exhaust valve 4 include two springs 13 and 14 for urging the movable portion 12 in the valve opening direction and the valve closing direction as shown in FIG.
And two electromagnets 15 and 16 for attracting the movable portion 12 in the valve opening direction and the valve closing direction.

【0027】駆動回路17によって、図2の状態から開
弁側の電磁石15の電磁コイルの電流が遮断されると、
閉弁側のスプリング14のバネ力により、可動部12は
中立位置を通過して閉弁側の電磁石16に接近すると共
に、この際閉弁側の電磁石16の電磁コイルに通電して
おくことで、その電磁吸引力により可動部12は開弁側
のスプリング13のバネ力に打ち勝って閉弁側の電磁石
16に吸引され、閉弁される。次に、この状態から閉弁
側の電磁石16の電磁コイルの電流が遮断されると、今
度は開弁側のスプリング13のバネ力により、可動部1
2は中立位置を通過して開弁側の電磁石15に接近する
と共に、この際開弁側の電磁石15の電磁コイルに通電
しておくことで、その電磁吸引力により可動部12は閉
弁側のスプリング14のバネ力に打ち勝って開弁側の電
磁石15に吸引され、開弁される。なお、両電磁石1
5,16の電磁コイルに電流が流れていない場合には、
可動部12は両スプリング13,14のバネ力により両
電磁石15,16の吸着面からそれぞれ所定の位置だけ
離間した中立位置(吸気弁3、排気弁4が半開きの状
態)に保持される。
When the current of the electromagnetic coil of the electromagnet 15 on the valve opening side is cut off from the state of FIG.
By the spring force of the valve-closing side spring 14, the movable portion 12 passes through the neutral position and approaches the valve-closing-side electromagnet 16, and at this time, the electromagnetic coil of the valve-closing-side electromagnet 16 is energized. The movable portion 12 overcomes the spring force of the valve-opening side spring 13 and is attracted by the valve-closing-side electromagnet 16 to close the valve. Next, when the current of the electromagnetic coil of the electromagnet 16 on the valve-closing side is cut off from this state, the movable portion 1
2 passes through the neutral position, approaches the electromagnet 15 on the valve opening side, and at this time, energizes the electromagnetic coil of the electromagnet 15 on the valve opening side. Is overcome by the spring force of the spring 14 and is attracted by the electromagnet 15 on the valve opening side, and the valve is opened. In addition, both electromagnets 1
When no current flows through the electromagnetic coils 5 and 16,
The movable portion 12 is held at a neutral position (a state in which the intake valve 3 and the exhaust valve 4 are half-opened) separated from the attraction surfaces of the electromagnets 15 and 16 by a predetermined position, respectively, by the spring forces of the springs 13 and 14.

【0028】一方、吸気通路の一部を形成する吸気管5
には、エンジンの運転条件を検出する手段として、エン
ジンの吸入空気量を検出するエアフローメータ(吸気量
センサ)21が設けられ、その信号はコントロールユニ
ット20に入力される。また、エンジンの運転条件を検
出する手段として、エンジン回転数、クランク角を検出
する回転数センサ(クランク角センサ)22、アクセル
開度を検出するアクセル開度センサ23、エンジンの冷
却水温を検出する水温センサ24および吸気温度を検出
する吸気温度センサ25等が設けられ、これらの信号も
コントロールユニット20に入力される。
On the other hand, the intake pipe 5 forming a part of the intake passage
Is provided with an air flow meter (intake air amount sensor) 21 for detecting an intake air amount of the engine as a means for detecting an operation condition of the engine, and a signal thereof is input to the control unit 20. As means for detecting the operating conditions of the engine, a rotation speed sensor (crank angle sensor) 22 for detecting an engine speed and a crank angle, an accelerator opening sensor 23 for detecting an accelerator opening, and detecting a cooling water temperature of the engine. A water temperature sensor 24, an intake air temperature sensor 25 for detecting an intake air temperature, and the like are provided. These signals are also input to the control unit 20.

【0029】これらのセンサ信号に基づいて、コントロ
ールユニット20によって、吸、排気弁3,4の開閉時
期が駆動回路17を介して制御されると共に、燃料噴射
弁8の燃料噴射量等の制御、吸気量センサ21の故障判
定が行われる。
Based on these sensor signals, the control unit 20 controls the opening and closing timing of the intake and exhaust valves 3 and 4 via the drive circuit 17 and controls the fuel injection amount of the fuel injection valve 8 and the like. The failure determination of the intake air amount sensor 21 is performed.

【0030】この場合、吸気弁3の開時期は例えば吸気
上死点を基準にエンジン回転数が高いときほど進角側に
制御され、閉時期はアクセル開度、エンジン回転数等に
基づく要求の吸入空気量を得るクランク角(吸気行程区
間、圧縮行程区間)に制御される。基本的に吸気弁3の
閉時期によって吸入空気量が制御される。
In this case, the opening timing of the intake valve 3 is controlled to be advanced as the engine speed increases with reference to the intake top dead center, for example, and the closing timing is determined based on the accelerator opening, engine speed and the like. The crank angle (intake stroke section, compression stroke section) for obtaining the intake air amount is controlled. Basically, the intake air amount is controlled by the closing timing of the intake valve 3.

【0031】この吸気弁3の閉制御時期(クランク角)
は、例えば図3のようにアクセル開度とエンジン回転数
を基に吸気弁3の閉制御時期を設定した閉制御時期マッ
プを検索して求められる。この閉制御時期マップでは、
アクセル開度の全開域において最大の吸気量がシリンダ
に入るクランク角を設定(実験等により適合)すると共
に、部分負荷域では全開域に対してクランク角を進角ま
たは遅角して要求の吸気量を得るクランク角に設定して
いる。なお、アクセル開度の全開域において最大の吸気
量がシリンダに入るクランク角は、エンジン低回転域で
はほぼピストン下死点となり、高回転域では圧縮行程側
となる。
The closing control timing (crank angle) of the intake valve 3
Is obtained by searching a close control timing map in which the close control timing of the intake valve 3 is set based on the accelerator opening and the engine speed as shown in FIG. 3, for example. In this closing control timing map,
In the fully open range of the accelerator opening, the crank angle at which the maximum intake amount enters the cylinder is set (adapted by experiments, etc.), and in the partial load range, the crank angle is advanced or retarded with respect to the fully open range to obtain the required intake air. The crank angle is set to obtain the amount. Note that the crank angle at which the maximum amount of intake air enters the cylinder in the fully open region of the accelerator opening is substantially at the piston bottom dead center in the low engine speed region, and is closer to the compression stroke in the high engine speed region.

【0032】排気弁4の開時期は膨張行程と排気行程の
間のピストン下死点付近に制御され、閉時期は吸気上死
点付近にエンジン回転数に応じて制御される。
The opening timing of the exhaust valve 4 is controlled near the bottom dead center of the piston between the expansion stroke and the exhaust stroke, and the closing timing is controlled near the top dead center of the intake according to the engine speed.

【0033】この排気弁4の閉制御時期(クランク角)
は、図示しないがアクセル開度とエンジン回転数を基に
排気弁4の閉制御時期を設定した閉制御時期マップを検
索して求められる。
The closing control timing (crank angle) of the exhaust valve 4
Is obtained by searching a close control timing map in which the close control timing of the exhaust valve 4 is set based on the accelerator opening and the engine speed, not shown.

【0034】また、燃料噴射弁8の燃料噴射量は、一般
的な燃料噴射量制御と同様に、吸気量センサ21が検出
(計測)した吸入空気量とエンジン回転数に基づく基本
的な噴射量に種々の補正を行って決定され、制御され
る。
The fuel injection amount of the fuel injection valve 8 is determined by the basic injection amount based on the intake air amount detected (measured) by the intake air amount sensor 21 and the engine speed, similarly to general fuel injection amount control. Are determined by performing various corrections, and are controlled.

【0035】なお、図中26は吸気量センサ21の故障
を表示する表示装置で、運転パネル等に設けられる。
In the drawing, reference numeral 26 denotes a display device for displaying a failure of the intake air amount sensor 21, which is provided on an operation panel or the like.

【0036】次に、吸気量センサ21の故障判定を、図
4、図5のフローチャートに基づいて説明する。
Next, the failure determination of the intake air amount sensor 21 will be described with reference to the flowcharts of FIGS.

【0037】図4に示すように、ステップ1では、吸気
弁3の閉時期のシリンダ内容積Vを算出する。これは、
吸気弁3の閉制御時のクランク角つまりピストンの位置
から算出する。
As shown in FIG. 4, in step 1, the cylinder internal volume V at the closing timing of the intake valve 3 is calculated. this is,
It is calculated from the crank angle at the time of closing control of the intake valve 3, that is, the position of the piston.

【0038】ここで、ピストンの行程:x、コンロッド
軸間距離:h、クランク半径:rとすると、上死点から
の変位角θ(クランク角)のとき、 x=r(1−COSθ)+λr[1−(1−SINθ2/λ2
1/2] λ=h/r で、簡略的には、 x≒r(1−COSθ)+r(1−COS2θ)/4λ となり、シリンダ内容積Vは V=Vcc+Vcyl =Vcc+x・S ただし、Vcc:燃焼室容積、Vcyl:行程容積 S:シリンダ断面積=π(ボア/2)2 から求まる。
Here, assuming that the stroke of the piston is x, the distance between the connecting rod axes is h, and the crank radius is r, when the displacement angle θ from the top dead center (crank angle), x = r (1−COSθ) + λr [1- (1-SIN θ 2 / λ 2 )
1/2 ] λ = h / r, and simply, x ≒ r (1−COSθ) + r (1−COS2θ) / 4λ, and the cylinder internal volume V is V = Vcc + Vcyl = Vcc + x · S where Vcc: It is determined from the combustion chamber volume, Vcyl: stroke volume, S: cylinder cross-sectional area = π (bore / 2) 2 .

【0039】具体的には、このような式を基に、クラン
ク角θについてシリンダ内容積Vを設定したマップを用
いて算出する。
More specifically, the crank angle θ is calculated based on the above equation using a map in which the cylinder volume V is set.

【0040】ステップ2では、そのシリンダ内容積Vを
基に、シリンダ2の吸入空気量(新気質量)を推定す
る。これは、図5のフローにしたがって行う。
In step 2, the intake air amount (new air mass) of the cylinder 2 is estimated based on the cylinder internal volume V. This is performed according to the flow of FIG.

【0041】図5のフローは、吸気弁3の閉弁前に、排
気弁4が閉弁したときに、ステップ12からステップ1
3〜16の処理に入る。
FIG. 5 is a flow chart showing the steps from Step 12 to Step 1 when the exhaust valve 4 is closed before the intake valve 3 is closed.
The process from 3 to 16 is started.

【0042】ステップ13では、排気弁4の閉時期のク
ランク角を読み込み、ステップ14では、そのクランク
角からシリンダ残容積V0を算出する。排気弁4の閉時
期が吸気上死点であれば、シリンダ残容積V0は燃焼室
容積となり、吸気上死点より遅角側であれば、燃焼室容
積に閉時期のクランク角から算出した容積を加算してシ
リンダ残容積V0を算出する。
[0042] At step 13, it reads the crank angle of the closing timing of the exhaust valve 4, in step 14, calculates the cylinder remaining volume V 0 from the crank angle. If the closing timing of the exhaust valve 4 is the intake top dead center, the cylinder remaining volume V 0 is the combustion chamber volume, and if it is more retarded than the intake top dead center, the combustion chamber volume is calculated from the closing timing crank angle. by adding the volume to calculate the cylinder remaining volume V 0.

【0043】このシリンダ残容積V0も、前述のクラン
ク角θについてシリンダ内容積Vを設定したマップを用
いて算出する。
This cylinder remaining volume V 0 is also calculated using a map in which the cylinder volume V is set for the aforementioned crank angle θ.

【0044】ステップ15では、排圧を算出し、ステッ
プ16では、シリンダ残容積V0と排圧と排気温度から
シリンダ2の残ガス質量を算出する。排圧および排気温
度は、それぞれエンジン回転数、アクセル開度、冷却水
温等を基に、実験等により図6、図7のように排圧デー
タ、排気温度データを定めた排圧マップ、排気温度マッ
プを用いて求める。
[0044] At step 15, it calculates the exhaust pressure, in step 16, calculates the residual gas mass in the cylinder 2 from the cylinder the residual volume V 0 and exhaust the exhaust gas temperature. The exhaust pressure and the exhaust temperature are based on the engine speed, the accelerator opening, the cooling water temperature, etc., respectively, and are shown in FIGS. 6 and 7 by an experiment or the like. Determine using the map.

【0045】シリンダの残ガス質量:Gは、気体の状態
方程式G=PV/RTより求める。
The residual gas mass of the cylinder: G is obtained from a gas state equation G = PV / RT.

【0046】ただし、P:排圧、V:シリンダ残容積、
R:ガス定数=燃焼ガスの定数(固定値)、T:排気温
度 この排気弁4の閉弁後、吸気弁3が閉弁したときに、ス
テップ11からステップ17〜20に入る。
Where P: exhaust pressure, V: remaining cylinder volume,
R: gas constant = constant of combustion gas (fixed value), T: exhaust temperature After the exhaust valve 4 is closed, when the intake valve 3 is closed, the process proceeds from step 11 to steps 17 to 20.

【0047】ステップ17では、シリンダ内新気分容積
を算出する。このシリンダ内新気分容積は、図4のステ
ップ1にて算出したシリンダ内容積Vからステップ16
にて算出した残ガス分を差し引いて求める。
In step 17, the fresh air volume in the cylinder is calculated. This cylinder fresh air volume is calculated from the cylinder volume V calculated in step 1 of FIG.
Calculate by subtracting the residual gas content calculated in.

【0048】この場合、排気弁閉時の燃焼ガスの状態を
圧力P0、容積V0、温度T0、吸気弁開時の状態を圧力
1、容積V1、温度T1とすると(ただし、P1は吸気管
負圧に影響される)、基本的にはP11/T1=P00
/T0=GRなので、 V1=(P0/P1)(T1/T0)V0 を求め、このV1を残ガス分としてシリンダ内容積Vか
ら差し引いてシリンダ内新気分容積を求める。
In this case, if the state of the combustion gas when the exhaust valve is closed is pressure P 0 , volume V 0 , temperature T 0 , and the state when the intake valve is open is pressure P 1 , volume V 1 , temperature T 1 (however, , P 1 is affected by the intake pipe negative pressure) is basically P 1 V 1 / T 1 = P 0 V 0
Since / T 0 = GR, V 1 = (P 0 / P 1 ) (T 1 / T 0 ) V 0 is obtained, and this V 1 is subtracted from the cylinder volume V as the remaining gas amount to obtain the cylinder fresh air volume. Ask.

【0049】ステップ18では吸気温度を、ステップ1
9では吸気圧(吸気管負圧)を計測する。吸気圧は、吸
気管5に吸気管負圧を得るために絞り弁を設けた場合、
絞り弁の開度によって変化するため、吸気圧の検出を行
う。検出の方法は、エンジン回転数と絞り弁開度から予
め実験等により求めておいた図8のようなマップを参照
しても良いし、吸気圧センサを設けて計測しても良い。
ただし、吸気圧を検出した場合、吸気圧によってステッ
プ17のシリンダ内新気分容積を補正して良い。
In step 18, the intake air temperature is set in step 1.
In step 9, the intake pressure (intake pipe negative pressure) is measured. When the intake valve is provided with a throttle valve to obtain the intake pipe negative pressure,
Since the pressure varies depending on the opening degree of the throttle valve, the intake pressure is detected. As a detection method, a map as shown in FIG. 8 obtained in advance by an experiment or the like from the engine speed and the throttle valve opening may be referred to, or measurement may be performed by providing an intake pressure sensor.
However, when the intake pressure is detected, the fresh air volume in the cylinder in step 17 may be corrected by the intake pressure.

【0050】ステップ20では、そのシリンダ内新気分
容積と吸気温度と大気圧または吸気圧とから、推定シリ
ンダ内新気質量を算出する。絞り弁を設けた場合、吸気
管負圧が大きいほど、推定シリンダ内新気質量を減少補
正する。
In step 20, an estimated cylinder fresh air mass is calculated from the cylinder fresh air volume, intake air temperature and atmospheric pressure or intake pressure. When the throttle valve is provided, the estimated fresh air mass in the cylinder is corrected to decrease as the intake pipe negative pressure increases.

【0051】この場合、シリンダ内新気質量は、図9〜
図11のようにエンジン回転数、排気弁4の閉時期、吸
気弁3の開時期、吸、排気弁3,4のオーバーラップ量
に応じて変化するため、これらエンジン回転数、排気弁
4の閉時期、吸気弁3の開時期、吸、排気弁3,4のオ
ーバーラップ量に応じて、推定シリンダ内新気質量を補
正する。排気弁4の閉時期に対しては、図9に示すよう
な特性に設定したマップから補正値を、吸気弁3の開時
期に対しては、図10に示すような特性に設定したマッ
プから補正値を、吸、排気弁3,4のオーバーラップが
あるときは、そのオーバーラップ量に対して図11に示
すような特性に設定したマップから補正値を求め、推定
シリンダ内新気質量に乗算する。なお、図10は吸気弁
3の開時期が吸気上死点から遅角側にある場合である。
In this case, the fresh air mass in the cylinder is shown in FIGS.
As shown in FIG. 11, the engine speed, the closing timing of the exhaust valve 4, the opening timing of the intake valve 3, the intake, and the amount of overlap between the exhaust valves 3, 4 change. The estimated fresh air mass in the cylinder is corrected according to the closing timing, the opening timing of the intake valve 3, and the amount of overlap between the intake and exhaust valves 3, 4. For the closing timing of the exhaust valve 4, a correction value is obtained from a map set to a characteristic as shown in FIG. 9, and for the opening timing of the intake valve 3, a correction value is obtained from a map set to a characteristic as shown in FIG. When the intake and exhaust valves 3 and 4 overlap, the correction value is calculated from the map set to the characteristic as shown in FIG. Multiply. FIG. 10 shows a case where the opening timing of the intake valve 3 is on the retard side from the intake top dead center.

【0052】次に、図4のステップ3にて、吸気量セン
サ(AFM)21の計測値つまり吸気質量(温度補正、
圧力補正後)を読み込み、ステップ4にてその吸気質量
を推定シリンダ内新気質量と比較して、吸気量センサ2
1の故障判定を行う。
Next, in step 3 of FIG. 4, the measured value of the intake air amount sensor (AFM) 21, that is, the intake air mass (temperature correction,
After the pressure is corrected, the intake air mass is compared with the estimated in-cylinder fresh air mass in step 4 and the intake air amount sensor 2
1 is determined.

【0053】この吸気量センサ21の故障判定は、吸気
質量と推定シリンダ内新気質量との差が予め定められた
所定量(判定基準値)より大きいときに故障と判定す
る。
In the failure determination of the intake air amount sensor 21, when the difference between the intake air mass and the estimated in-cylinder fresh air mass is larger than a predetermined amount (determination reference value), it is determined that a failure has occurred.

【0054】図12にエンジン回転数に基づく故障判定
基準の例を示す。エンジン回転数が低く、シリンダ2に
吸気を吸入しやすいときほど、正確な推定シリンダ内新
気質量が得られるので、エンジン回転数が低いときは吸
気質量と推定シリンダ内新気質量との差が比較的小さい
差以上で故障と判定し、エンジン回転数が高くなるほど
その差が大きいときに故障と判定するように、判定基準
を設定している。
FIG. 12 shows an example of a failure criterion based on the engine speed. When the engine speed is low and the intake air is easily sucked into the cylinder 2, an accurate estimated fresh air mass in the cylinder is obtained. Therefore, when the engine speed is low, the difference between the intake air mass and the estimated fresh air mass in the cylinder is small. A criterion is set so that a failure is determined when the difference is relatively small or larger, and a failure is determined when the difference is greater as the engine speed increases.

【0055】また、図13のようにエンジン回転数とア
クセル開度に基づき故障判定基準を設定することもでき
る。この場合、吸気弁3等の開閉の作動遅れ等により推
定シリンダ内新気質量にバラツキが出るので、アクセル
開度が小さく、吸気弁3の開期間が小さいときほど誤差
率が大きくなる。そのため、アクセル開度が大きく、エ
ンジン回転数が低いときは吸気質量と推定シリンダ内新
気質量との差が比較的小さい差以上で故障と判定し、ア
クセル開度が小さく、エンジン回転数が高くなるほどそ
の差が大きいときに故障と判定するように、判定基準を
設定する。
Further, a failure criterion can be set based on the engine speed and the accelerator opening as shown in FIG. In this case, since the estimated fresh air mass in the cylinder varies due to a delay in opening and closing the intake valve 3 and the like, the error rate increases as the accelerator opening is small and the opening period of the intake valve 3 is short. Therefore, when the accelerator opening is large and the engine speed is low, it is determined that a failure has occurred when the difference between the intake air mass and the estimated fresh air mass in the cylinder is at least a relatively small difference, and the accelerator opening is small and the engine speed is high. A criterion is set so that a failure is determined when the difference is as large as possible.

【0056】そして、故障と判定したときは、運転パネ
ル等に設けた表示装置26によって吸気量センサ21の
故障を表示する。
When it is determined that a malfunction has occurred, a malfunction of the intake air amount sensor 21 is displayed on a display device 26 provided on an operation panel or the like.

【0057】このように、シリンダ2の実際の吸入空気
量を推定し、その推定値を基に吸気量センサ21の故障
を判定するので、吸気量センサ21の出力のズレによる
異常、センサ回路の断線等の故障を容易に精度良く検出
できる。
As described above, the actual intake air amount of the cylinder 2 is estimated, and the failure of the intake air amount sensor 21 is determined based on the estimated value. Failures such as disconnections can be easily and accurately detected.

【0058】この場合、吸気弁3の閉時期のシリンダ内
容積を基にシリンダ2の吸入空気量を推定すると共に、
これを排気弁4の閉時期、吸気弁3の開時期、吸、排気
弁3,4のオーバーラップ量に応じて補正することによ
って、精度の良い推定吸入空気量を得ることができる。
In this case, the intake air amount of the cylinder 2 is estimated based on the cylinder volume at the time of closing the intake valve 3, and
By correcting this in accordance with the closing timing of the exhaust valve 4, the opening timing of the intake valve 3, and the amount of overlap between the intake and exhaust valves 3 and 4, a highly accurate estimated intake air amount can be obtained.

【0059】また、故障の判定基準をエンジン回転数を
含むエンジンの運転条件毎に設定すると共に、推定吸入
空気量の精度が高いつまりエンジン回転数が低い条件の
ときに吸気量センサ21の計測値と推定吸入空気量との
差が比較的小さい差以上で故障と判定するので、故障判
定を精度良く行える。
A failure criterion is set for each engine operating condition including the engine speed, and the measured value of the intake air amount sensor 21 when the accuracy of the estimated intake air amount is high, that is, when the engine speed is low. It is determined that a failure occurs when the difference between the estimated intake air amount and the difference is equal to or greater than a relatively small difference.

【0060】したがって、吸気量センサ21の故障検出
を的確に行える。また、故障時に表示装置26によって
運転者に知らせるので、早期に補修が可能である。
Accordingly, the failure of the intake air amount sensor 21 can be accurately detected. In addition, since the driver is notified by the display device 26 at the time of failure, repair can be performed at an early stage.

【0061】一方、本エンジンは、吸気弁3の閉時期等
によってシリンダ2の吸入空気量が制御されるが、吸気
管5に吸気管負圧を得るために絞り弁を設けた場合、そ
の開度に応じて吸入空気量を補正つまり吸気管負圧を加
えて吸入空気量を推定するので、絞り弁を設けた場合に
も対応できる。
On the other hand, in the present engine, the amount of intake air of the cylinder 2 is controlled by the closing timing of the intake valve 3 and the like. Since the intake air amount is corrected according to the degree, that is, the intake air amount is estimated by adding the intake pipe negative pressure, it is possible to cope with the case where a throttle valve is provided.

【0062】また、本例では、コントロールユニット2
0による吸、排気弁3,4の開制御時期、閉制御時期に
よってこれらの開閉時期を判定しているが、図1に示す
ように吸、排気弁3,4の閉弁状態を検出する着座セン
サ30,31を設け、着座センサ30,31によって
吸、排気弁3,4の開閉時期を検出するようにもでき
る。この着座センサ30,31としては、例えばギャッ
プセンサや非接触の位置センサ等が用いられ、吸、排気
弁3,4の電磁アクチュエータ10,11等に設置され
る。このようにすれば、弁の故障を検出できると共に、
弁故障時に吸気量センサ21の故障判定をキャンセルで
きる。また、吸気弁3等の開閉の作動遅れ等による推定
吸入空気量のバラツキを低減できる。
In this example, the control unit 2
The opening and closing timings of the intake and exhaust valves 3 and 4 are determined based on the opening control timing and the closing control timing of the intake and exhaust valves 3 and 4. However, as shown in FIG. Sensors 30 and 31 may be provided, and the seating sensors 30 and 31 may detect the opening and closing timing of the intake and exhaust valves 3 and 4. As the seat sensors 30 and 31, for example, gap sensors and non-contact position sensors are used, and are installed in the electromagnetic actuators 10 and 11 of the intake and exhaust valves 3 and 4, for example. In this way, a valve failure can be detected and
When the valve fails, the failure determination of the intake air amount sensor 21 can be canceled. Further, it is possible to reduce a variation in the estimated intake air amount due to a delay in opening and closing the intake valve 3 and the like.

【0063】なお、本例は、電磁駆動式の可変動弁に本
発明を適用したものであるが、油圧により吸、排気弁を
駆動する可変動弁エンジンに適用することもできる。
In this embodiment, the present invention is applied to an electromagnetically driven variable valve. However, the present invention can also be applied to a variable valve engine that drives intake and exhaust valves by hydraulic pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態を示す構成断面図である。FIG. 1 is a configuration sectional view showing a first embodiment.

【図2】電磁駆動式の吸、排気弁の構成図である。FIG. 2 is a configuration diagram of an electromagnetically driven intake and exhaust valve.

【図3】吸気弁の閉制御時期マップの例の特性図であ
る。
FIG. 3 is a characteristic diagram of an example of an intake valve closing control timing map;

【図4】制御内容を示すフローチャートである。FIG. 4 is a flowchart showing control contents.

【図5】制御内容を示すフローチャートである。FIG. 5 is a flowchart showing control contents.

【図6】排圧マップの例の特性図である。FIG. 6 is a characteristic diagram of an example of an exhaust pressure map.

【図7】排気温度マップの例の特性図である。FIG. 7 is a characteristic diagram of an example of an exhaust gas temperature map.

【図8】吸気圧マップの例の特性図である。FIG. 8 is a characteristic diagram of an example of an intake pressure map.

【図9】排気弁閉時期に対する吸入空気量の特性図であ
る。
FIG. 9 is a characteristic diagram of an intake air amount with respect to an exhaust valve closing timing.

【図10】吸気弁開時期に対する吸入空気量の特性図で
ある。
FIG. 10 is a characteristic diagram of an intake air amount with respect to an intake valve opening timing.

【図11】バルブオーバーラップ量に対する吸入空気量
の特性図である。
FIG. 11 is a characteristic diagram of an intake air amount with respect to a valve overlap amount.

【図12】エンジン回転数に対する判定基準の例を示す
特性図である。
FIG. 12 is a characteristic diagram showing an example of a criterion for an engine speed.

【図13】エンジン回転数とアクセル開度に対する判定
基準の例を示す特性図である。
FIG. 13 is a characteristic diagram showing an example of a criterion for an engine speed and an accelerator opening.

【符号の説明】[Explanation of symbols]

2 シリンダ 3 吸気弁 4 排気弁 5 吸気管 6 排気管 8 燃料噴射弁 10,11 電磁アクチュエータ 17 駆動回路 20 コントロールユニット 21 吸気量センサ 22 回転数センサ(クランク角センサ) 23 アクセル開度センサ 24 水温センサ 25 吸気温度センサ 26 表示装置 30,31 着座センサ 2 Cylinder 3 Intake valve 4 Exhaust valve 5 Intake pipe 6 Exhaust pipe 8 Fuel injection valve 10, 11 Electromagnetic actuator 17 Drive circuit 20 Control unit 21 Intake amount sensor 22 Speed sensor (crank angle sensor) 23 Accelerator opening sensor 24 Water temperature sensor 25 intake air temperature sensor 26 display device 30, 31 seating sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平澤 崇彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G084 BA23 BA33 DA27 DA30 EA11 EB09 EB12 EB22 FA00 FA02 FA07 FA10 FA11 FA33 3G092 AA11 DA07 EA10 EC01 EC10 FB02 FB06 HA01Z HA04Z HA05Z HA06Z HA13Z HE01Z ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Takahiko Hirasawa 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. F-term (reference) 3G084 BA23 BA33 DA27 DA30 EA11 EB09 EB12 EB22 FA00 FA02 FA07 FA10 FA11 FA33 3G092 AA11 DA07 EA10 EC01 EC10 FB02 FB06 HA01Z HA04Z HA05Z HA06Z HA13Z HE01Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 吸、排気弁を備え、これらの弁の開閉時
期によってシリンダの吸入空気量および排気ガスの排出
を制御する一方、吸気通路に吸入空気量を計測する吸気
量センサを備える可変動弁エンジンにおいて、 少なくとも吸気弁の閉時期のシリンダ内容積を基に実際
の吸入空気量を推定する吸入空気量推定手段と、 この推定値と吸気量センサの計測値を比較する比較手段
と、 この比較結果を基に吸気量センサの故障判定を行う故障
判定手段とを設けたことを特徴とする可変動弁エンジン
の故障検出装置。
1. A variable valve having intake and exhaust valves, which controls an intake air amount of a cylinder and an exhaust gas exhaust according to the opening and closing timing of these valves, and an intake air amount sensor which measures an intake air amount in an intake passage. In the valve engine, intake air amount estimating means for estimating an actual intake air amount based on at least the cylinder internal volume at the time of closing the intake valve; comparing means for comparing the estimated value with a measured value of the intake air amount sensor; A failure detection device for a variable valve engine, comprising: failure determination means for determining a failure of an intake air amount sensor based on a comparison result.
【請求項2】 前記吸入空気量推定手段は、吸入空気量
の推定値を、排気弁の閉時期もしくは吸気弁の開時期も
しくは吸、排気弁のオーバーラップ量に応じて補正する
補正手段を持つ請求項1に記載の可変動弁エンジンの故
障検出装置。
2. The intake air amount estimating means has a correcting means for correcting an estimated value of the intake air amount in accordance with the closing timing of the exhaust valve, the opening timing of the intake valve, or the amount of overlap of the intake and exhaust valves. The variable valve engine failure detection device according to claim 1.
【請求項3】 吸気管に絞り弁を設け、前記吸入空気量
推定手段は、吸入空気量の推定値を、その絞り弁の開度
に応じて補正する補正手段を持つ請求項1に記載の可変
動弁エンジンの故障検出装置。
3. The intake valve according to claim 1, wherein a throttle valve is provided in the intake pipe, and the intake air amount estimating unit has a correcting unit that corrects an estimated value of the intake air amount according to an opening degree of the throttle valve. Variable valve engine failure detection device.
【請求項4】 前記補正手段は、絞り弁の開度が小さく
吸気管負圧が大きいほど、吸入空気量の推定値を減少補
正する請求項3に記載の可変動弁エンジンの故障検出装
置。
4. The failure detection device for a variable valve engine according to claim 3, wherein said correction means reduces and corrects the estimated value of the intake air amount as the opening degree of the throttle valve is small and the intake pipe negative pressure is large.
【請求項5】 前記故障判定手段は、前記吸入空気量推
定手段の吸入空気量の推定値と吸気量センサの計測値と
の差が、予め定めた所定の故障判定基準値よりも大きい
ときに、吸気量センサを故障と判定する請求項1に記載
の可変動弁エンジンの故障検出装置。
5. The failure determination unit according to claim 1, wherein a difference between an estimated value of the intake air amount by said intake air amount estimation unit and a measurement value of the intake air amount sensor is larger than a predetermined failure determination reference value. 2. The failure detection device for a variable valve engine according to claim 1, wherein the failure of the intake air amount sensor is determined.
【請求項6】 前記故障判定手段による故障判定基準
を、少なくともエンジン回転数を含むエンジンの運転条
件毎に設定してある請求項1に記載の可変動弁エンジン
の故障検出装置。
6. The variable valve engine failure detection apparatus according to claim 1, wherein a failure determination criterion by said failure determination means is set for each engine operating condition including at least the engine speed.
【請求項7】 前記吸入空気量推定手段は、吸、排気弁
の開閉制御時期より吸、排気弁の開閉時期を判別する請
求項1に記載の可変動弁エンジンの故障検出装置。
7. The variable valve engine failure detection device according to claim 1, wherein the intake air amount estimating means determines the intake / exhaust valve opening / closing timing based on the intake / exhaust valve opening / closing control timing.
【請求項8】 吸、排気弁の開閉時期を検出する着座セ
ンサを備え、前記吸入空気量推定手段は、着座センサに
よるに吸、排気弁の開閉時期の検出値を基に実際の吸入
空気量を推定する請求項1に記載の可変動弁エンジンの
故障検出装置。
8. An intake air amount estimating means for detecting an opening / closing timing of an intake / exhaust valve, wherein the intake air amount estimating means detects an actual intake air amount based on a detection value of the intake / exhaust valve opening / closing timing by the seating sensor. The variable valve engine failure detection device according to claim 1, wherein:
【請求項9】 吸気量センサの故障を表示する表示装置
を備える請求項1に記載の可変動弁エンジンの故障検出
装置。
9. The variable valve engine failure detection device according to claim 1, further comprising a display device for displaying a failure of the intake air amount sensor.
JP33429898A 1998-11-25 1998-11-25 Failure detection device for variable valve engine Expired - Fee Related JP3680599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33429898A JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33429898A JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Publications (2)

Publication Number Publication Date
JP2000161124A true JP2000161124A (en) 2000-06-13
JP3680599B2 JP3680599B2 (en) 2005-08-10

Family

ID=18275790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33429898A Expired - Fee Related JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Country Status (1)

Country Link
JP (1) JP3680599B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029227A1 (en) * 2000-10-02 2002-04-11 Mikuni Corporation Engine suction valve open/close control device by electromagnetic actuator
JP2002227687A (en) * 2001-02-05 2002-08-14 Nissan Motor Co Ltd Internal egr ratio estimate device for engine
US6792914B2 (en) 2002-09-26 2004-09-21 Toyota Jidosha Kabushiki Kaisha Control system and method for internal combustion engine having variable valve actuation system
JP2006161812A (en) * 2004-12-02 2006-06-22 Robert Bosch Gmbh Operation method for internal combustion engine
US7066145B2 (en) * 2003-08-21 2006-06-27 Toyota Jidosha Kabushiki Kaisha Intake air amount control apparatus and intake air amount control method for internal combustion engines
WO2006104273A1 (en) * 2005-03-31 2006-10-05 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
JP2007040124A (en) * 2005-08-01 2007-02-15 Honda Motor Co Ltd Valve gear for internal combustion engine
JP2008051015A (en) * 2006-08-25 2008-03-06 Denso Corp Abnormality diagnostic device for intake system of internal combustion engine
US7832371B2 (en) 2007-07-10 2010-11-16 Yamaha Hatsudoki Kabushiki Kaisha Intake system and motorcycle including the same
US20110178693A1 (en) * 2010-01-21 2011-07-21 Gm Global Technology Operations, Inc. Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
JP2019190464A (en) * 2018-04-23 2019-10-31 シク ジュン、キュン Combustion analyzer for large-sized low speed engine and engine combustion state determination method using the same
CN112523886A (en) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 Control method for ensuring air intake flow accuracy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102030A1 (en) * 2021-01-29 2022-08-04 Bayerische Motoren Werke Aktiengesellschaft Real-time determination of a fresh air mass in the cylinder

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029227A1 (en) * 2000-10-02 2002-04-11 Mikuni Corporation Engine suction valve open/close control device by electromagnetic actuator
EP1329619A1 (en) * 2000-10-02 2003-07-23 Mikuni Corporation Engine suction valve open/close control device by electromagnetic actuator
EP1329619A4 (en) * 2000-10-02 2004-11-17 Mikuni Kogyo Kk Engine suction valve open/close control device by electromagnetic actuator
US7011053B2 (en) 2000-10-02 2006-03-14 Mikuni Corporation Controller for controlling opening and closing of an intake valve of an engine
JP2002227687A (en) * 2001-02-05 2002-08-14 Nissan Motor Co Ltd Internal egr ratio estimate device for engine
JP4524528B2 (en) * 2001-02-05 2010-08-18 日産自動車株式会社 Engine internal EGR rate estimation device
US6792914B2 (en) 2002-09-26 2004-09-21 Toyota Jidosha Kabushiki Kaisha Control system and method for internal combustion engine having variable valve actuation system
US7066145B2 (en) * 2003-08-21 2006-06-27 Toyota Jidosha Kabushiki Kaisha Intake air amount control apparatus and intake air amount control method for internal combustion engines
JP2006161812A (en) * 2004-12-02 2006-06-22 Robert Bosch Gmbh Operation method for internal combustion engine
WO2006104273A1 (en) * 2005-03-31 2006-10-05 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
CN100441852C (en) * 2005-03-31 2008-12-10 丰田自动车株式会社 Controller of internal combustion engine
US7765051B2 (en) 2005-03-31 2010-07-27 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
JP2007040124A (en) * 2005-08-01 2007-02-15 Honda Motor Co Ltd Valve gear for internal combustion engine
JP4576303B2 (en) * 2005-08-01 2010-11-04 本田技研工業株式会社 Valve operating device for internal combustion engine
JP2008051015A (en) * 2006-08-25 2008-03-06 Denso Corp Abnormality diagnostic device for intake system of internal combustion engine
JP4655229B2 (en) * 2006-08-25 2011-03-23 株式会社デンソー Abnormality diagnosis apparatus for intake system of internal combustion engine
US7832371B2 (en) 2007-07-10 2010-11-16 Yamaha Hatsudoki Kabushiki Kaisha Intake system and motorcycle including the same
US20110178693A1 (en) * 2010-01-21 2011-07-21 Gm Global Technology Operations, Inc. Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
CN102135043A (en) * 2010-01-21 2011-07-27 通用汽车环球科技运作有限责任公司 Method and equipment for operating an internal combustion engine configured to operate in a controlled auto-ignition combustion mode
US8224559B2 (en) * 2010-01-21 2012-07-17 GM Global Technology Operations LLC Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
JP2019190464A (en) * 2018-04-23 2019-10-31 シク ジュン、キュン Combustion analyzer for large-sized low speed engine and engine combustion state determination method using the same
CN112523886A (en) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 Control method for ensuring air intake flow accuracy

Also Published As

Publication number Publication date
JP3680599B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP4988681B2 (en) High pressure fuel pump control device for internal combustion engine
JP3680599B2 (en) Failure detection device for variable valve engine
JP4448883B2 (en) Electronic device for controlling inlet valve of internal combustion engine and method for controlling inlet valve of internal combustion engine
EP1108872B1 (en) Control apparatus and method for internal combustion engine with variably operated engine valve
US6189512B1 (en) Variable valve timing engine
KR20070118686A (en) Controller of internal combustion engine
JP2001159331A (en) Fail-safe control device for solenoid driven valve
US20100168987A1 (en) Internal-combustion engine with variable actuation of the intake valves and self-adaptive control of the air-fuel ratio with supervision of the control functions
JP2004036613A (en) Electronic control type hydraulic system for valve operation and internal combustion engine with compensation means for change of operating condition change of hydraulic fluid
US6240359B1 (en) Control system for internal combustion engine
JP2005307747A (en) Fuel supply device for internal combustion engine
JP2001159348A (en) Intake control device for engine
US6477993B1 (en) Control device for solenoid driving valve
US6502546B2 (en) Intake air control system of engine
KR20080060194A (en) Method for detecting an ambient pressure in an internal combustion engine
US6513494B2 (en) System and method of controlling ignition timing in an engine with a variably operated intake valve
JP3572383B2 (en) Failure detection device for variable valve engine
JP4657170B2 (en) Engine fuel supply system
JP5798796B2 (en) Engine control device
JP2010090739A (en) Abnormality determination device for pressure detection system in internal combustion engine
JP3603612B2 (en) Engine intake air amount detection device
JP2004036406A (en) Sensor abnormality detecting device of variable valve system
WO2012077230A1 (en) Abnormality determination device for internal combustion engine
JP2934682B2 (en) Hydraulic drive of engine valve for internal combustion engine
JP2000080936A (en) Cylinder suction air quantity detector for variable valve system engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees