JP3680599B2 - Failure detection device for variable valve engine - Google Patents

Failure detection device for variable valve engine Download PDF

Info

Publication number
JP3680599B2
JP3680599B2 JP33429898A JP33429898A JP3680599B2 JP 3680599 B2 JP3680599 B2 JP 3680599B2 JP 33429898 A JP33429898 A JP 33429898A JP 33429898 A JP33429898 A JP 33429898A JP 3680599 B2 JP3680599 B2 JP 3680599B2
Authority
JP
Japan
Prior art keywords
intake air
intake
air amount
sensor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33429898A
Other languages
Japanese (ja)
Other versions
JP2000161124A (en
Inventor
幹雄 松本
初雄 永石
崇彦 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33429898A priority Critical patent/JP3680599B2/en
Publication of JP2000161124A publication Critical patent/JP2000161124A/en
Application granted granted Critical
Publication of JP3680599B2 publication Critical patent/JP3680599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸、排気弁を備える可変動弁エンジンの故障検出装置に関し、特に吸入空気量を計測する吸気量センサの故障を検出する装置に関する。
【0002】
【従来の技術】
エンジンの吸、排気弁をカム駆動に変えて電磁力で駆動するものがある。このものは、カムシャフト等の機構を省略することができ、エンジンの運転状態に合った弁開閉タイミングに設定できると共に、弁開閉タイミングによって、シリンダの吸入空気量および排気ガスの排出を制御することが可能である(特開昭61−247807号公報等)。
【0003】
また、油圧により吸、排気弁を駆動するものがある(特開平7−317516号公報等)。これは、オイルポンプにより昇圧されたオイルを、吸気弁や排気弁を駆動するピストンとこのピストンが摺動するシリンダとにより画成された油圧室に、オイルの供給と遮断を行う気筒毎に設定された電磁式スピル弁を介して供給することで、気筒毎に吸気弁や排気弁を所望の開弁時期、閉弁時期に制御するものである。
【0004】
このようなエンジンにおけるエンジン吸気量の計測方法として、絞り弁上流の吸気通路にエアフローメータ(吸気量センサ)を備え、吸気量センサが計測した吸入空気量とエンジン回転数から燃料の基本的な噴射量を求め、これを基に種々の補正を行って燃料噴射弁の燃料噴射量を制御するものにおいては、この吸気量センサに異常があると、例えば燃料噴射量を適正に制御できなくなる。
【0005】
従来、このような吸気量センサの故障検出装置として、センサ回路の断線の有無を検出するもの(特開平10−68647号公報)、排気系に設けた酸素濃度センサの信号から吸気量センサの故障を間接的に判定するもの、あるいは吸気量センサの信号波形つまり吸気弁の開閉に伴う吸気脈動によって生じる信号の最大出力値と最小出力値との偏差から吸気量センサの故障を判定するもの(特開平5−001930号公報)等がある。
【0006】
【発明が解決しようとする課題】
しかしながら、センサ回路の断線の有無を検出するものは、吸気量センサの出力のズレによる異常は検出できず、酸素濃度センサの信号から吸気量センサの故障を判定するものは、燃料系の故障との区別をつけにくい。
【0007】
また、吸気量センサの最大出力値と最小出力値との偏差から吸気量センサの故障を判定するものは、吸気通路に設けた絞り弁よりも吸、排気弁によってシリンダの吸入空気量等を制御する場合、吸気弁の開閉タイミングによって吸気脈動が変わるため、必ずしも適用しにくいのである。
【0008】
この発明は、吸、排気弁の開閉タイミングによってシリンダの吸入空気量等を制御する可変動弁エンジンの場合、その開閉タイミングによってシリンダの吸入空気量を推定可能なことに着目し、その推定値と吸気量センサの計測値との比較によって吸気量センサの故障を的確に検出できる故障検出装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
第1の発明は、吸、排気弁を備え、これらの弁の開閉時期によってシリンダの吸入空気量および排気ガスの排出を制御する一方、吸気通路に吸入空気量を計測する吸気量センサを備える可変動弁エンジンにおいて、少なくとも吸気弁の閉時期のシリンダ内容積を基に実際の吸入空気量を推定する吸入空気量推定手段と、この推定値と吸気量センサの計測値を比較する比較手段と、この比較結果を基に吸気量センサの故障判定を行う故障判定手段とを設けると共に、吸気管に絞り弁を設け、前記吸入空気量推定手段は、吸入空気量の推定値を、その絞り弁の開度に応じて補正する補正手段を持ち、該補正手段は、絞り弁の開度が小さく吸気管負圧が大きいほど、吸入空気量の推定値を減少補正する
【0013】
の発明は、第1の発明において、前記故障判定手段は、前記吸入空気量推定手段の吸入空気量の推定値と吸気量センサの計測値との差が、予め定めた所定の故障判定基準値よりも大きいときに、吸気量センサを故障と判定する。
【0014】
の発明は、第1の発明において、前記故障判定手段による故障判定基準を、少なくともエンジン回転数を含むエンジンの運転条件毎に設定してある。
【0015】
の発明は、第1の発明において、前記吸入空気量推定手段は、吸、排気弁の開閉制御時期より吸、排気弁の開閉時期を判別する。
【0016】
の発明は、第1の発明において、吸、排気弁の開閉時期を検出する着座センサを備え、前記吸入空気量推定手段は、着座センサによるに吸、排気弁の開閉時期の検出値を基に実際の吸入空気量を推定する。
【0017】
の発明は、第1の発明において、吸気量センサの故障を表示する表示装置を備える。
【0018】
【発明の効果】
第1、第の発明によれば、吸気量センサの出力のズレによる異常、センサ回路の断線等の故障を容易に精度良く検出できる。
【0020】
また、絞り弁を設けた場合にも精度良い推定吸入空気量を得ることができ、対応できる。
【0021】
第2、第3の発明によれば、吸気量センサの故障判定を精度良く行える。
【0022】
の発明によれば、吸、排気弁の故障を的確に検出できると共に、これらの故障時に吸気量センサの故障判定をキャンセルできる。
【0023】
の発明によれば、故障の早期補修が可能になる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0025】
図1に示すように、1はエンジン、2はシリンダ(燃焼室)、3は吸気弁、4は排気弁、5は吸気管、6は排気管、7は点火栓、8は燃料噴射弁、9は排気浄化用触媒である。
【0026】
吸気弁3、排気弁4を駆動する電磁アクチュエータ10,11は、図2のように可動部12を開弁方向と閉弁方向に付勢する2つのスプリング13,14と、可動部12を開弁方向と閉弁方向に吸引する2つの電磁石15,16とが設けられる。
【0027】
駆動回路17によって、図2の状態から開弁側の電磁石15の電磁コイルの電流が遮断されると、閉弁側のスプリング14のバネ力により、可動部12は中立位置を通過して閉弁側の電磁石16に接近すると共に、この際閉弁側の電磁石16の電磁コイルに通電しておくことで、その電磁吸引力により可動部12は開弁側のスプリング13のバネ力に打ち勝って閉弁側の電磁石16に吸引され、閉弁される。次に、この状態から閉弁側の電磁石16の電磁コイルの電流が遮断されると、今度は開弁側のスプリング13のバネ力により、可動部12は中立位置を通過して開弁側の電磁石15に接近すると共に、この際開弁側の電磁石15の電磁コイルに通電しておくことで、その電磁吸引力により可動部12は閉弁側のスプリング14のバネ力に打ち勝って開弁側の電磁石15に吸引され、開弁される。なお、両電磁石15,16の電磁コイルに電流が流れていない場合には、可動部12は両スプリング13,14のバネ力により両電磁石15,16の吸着面からそれぞれ所定の位置だけ離間した中立位置(吸気弁3、排気弁4が半開きの状態)に保持される。
【0028】
一方、吸気通路の一部を形成する吸気管5には、エンジンの運転条件を検出する手段として、エンジンの吸入空気量を検出するエアフローメータ(吸気量センサ)21が設けられ、その信号はコントロールユニット20に入力される。また、エンジンの運転条件を検出する手段として、エンジン回転数、クランク角を検出する回転数センサ(クランク角センサ)22、アクセル開度を検出するアクセル開度センサ23、エンジンの冷却水温を検出する水温センサ24および吸気温度を検出する吸気温度センサ25等が設けられ、これらの信号もコントロールユニット20に入力される。
【0029】
これらのセンサ信号に基づいて、コントロールユニット20によって、吸、排気弁3,4の開閉時期が駆動回路17を介して制御されると共に、燃料噴射弁8の燃料噴射量等の制御、吸気量センサ21の故障判定が行われる。
【0030】
この場合、吸気弁3の開時期は例えば吸気上死点を基準にエンジン回転数が高いときほど進角側に制御され、閉時期はアクセル開度、エンジン回転数等に基づく要求の吸入空気量を得るクランク角(吸気行程区間、圧縮行程区間)に制御される。基本的に吸気弁3の閉時期によって吸入空気量が制御される。
【0031】
この吸気弁3の閉制御時期(クランク角)は、例えば図3のようにアクセル開度とエンジン回転数を基に吸気弁3の閉制御時期を設定した閉制御時期マップを検索して求められる。この閉制御時期マップでは、アクセル開度の全開域において最大の吸気量がシリンダに入るクランク角を設定(実験等により適合)すると共に、部分負荷域では全開域に対してクランク角を進角または遅角して要求の吸気量を得るクランク角に設定している。なお、アクセル開度の全開域において最大の吸気量がシリンダに入るクランク角は、エンジン低回転域ではほぼピストン下死点となり、高回転域では圧縮行程側となる。
【0032】
排気弁4の開時期は膨張行程と排気行程の間のピストン下死点付近に制御され、閉時期は吸気上死点付近にエンジン回転数に応じて制御される。
【0033】
この排気弁4の閉制御時期(クランク角)は、図示しないがアクセル開度とエンジン回転数を基に排気弁4の閉制御時期を設定した閉制御時期マップを検索して求められる。
【0034】
また、燃料噴射弁8の燃料噴射量は、一般的な燃料噴射量制御と同様に、吸気量センサ21が検出(計測)した吸入空気量とエンジン回転数に基づく基本的な噴射量に種々の補正を行って決定され、制御される。
【0035】
なお、図中26は吸気量センサ21の故障を表示する表示装置で、運転パネル等に設けられる。
【0036】
次に、吸気量センサ21の故障判定を、図4、図5のフローチャートに基づいて説明する。
【0037】
図4に示すように、ステップ1では、吸気弁3の閉時期のシリンダ内容積Vを算出する。これは、吸気弁3の閉制御時のクランク角つまりピストンの位置から算出する。
【0038】
ここで、ピストンの行程:x、コンロッド軸間距離:h、クランク半径:rとすると、
上死点からの変位角θ(クランク角)のとき、
x=r(1−COSθ)+λr[1−(1−SINθ2/λ21/2
λ=h/r
で、簡略的には、
x≒r(1−COSθ)+r(1−COS2θ)/4λ
となり、
シリンダ内容積Vは

Figure 0003680599
ただし、Vcc:燃焼室容積、Vcyl:行程容積
S:シリンダ断面積=π(ボア/2)2
から求まる。
【0039】
具体的には、このような式を基に、クランク角θについてシリンダ内容積Vを設定したマップを用いて算出する。
【0040】
ステップ2では、そのシリンダ内容積Vを基に、シリンダ2の吸入空気量(新気質量)を推定する。これは、図5のフローにしたがって行う。
【0041】
図5のフローは、吸気弁3の閉弁前に、排気弁4が閉弁したときに、ステップ12からステップ13〜16の処理に入る。
【0042】
ステップ13では、排気弁4の閉時期のクランク角を読み込み、ステップ14では、そのクランク角からシリンダ残容積V0を算出する。排気弁4の閉時期が吸気上死点であれば、シリンダ残容積V0は燃焼室容積となり、吸気上死点より遅角側であれば、燃焼室容積に閉時期のクランク角から算出した容積を加算してシリンダ残容積V0を算出する。
【0043】
このシリンダ残容積V0も、前述のクランク角θについてシリンダ内容積Vを設定したマップを用いて算出する。
【0044】
ステップ15では、排圧を算出し、ステップ16では、シリンダ残容積V0と排圧と排気温度からシリンダ2の残ガス質量を算出する。排圧および排気温度は、それぞれエンジン回転数、アクセル開度、冷却水温等を基に、実験等により図6、図7のように排圧データ、排気温度データを定めた排圧マップ、排気温度マップを用いて求める。
【0045】
シリンダの残ガス質量:Gは、気体の状態方程式G=PV/RTより求める。
【0046】
ただし、P:排圧、V:シリンダ残容積、
R:ガス定数=燃焼ガスの定数(固定値)、T:排気温度
この排気弁4の閉弁後、吸気弁3が閉弁したときに、ステップ11からステップ17〜20に入る。
【0047】
ステップ17では、シリンダ内新気分容積を算出する。このシリンダ内新気分容積は、図4のステップ1にて算出したシリンダ内容積Vからステップ16にて算出した残ガス分を差し引いて求める。
【0048】
この場合、排気弁閉時の燃焼ガスの状態を圧力P0、容積V0、温度T0、吸気弁開時の状態を圧力P1、容積V1、温度T1とすると(ただし、P1は吸気管負圧に影響される)、
基本的にはP11/T1=P00/T0=GRなので、
1=(P0/P1)(T1/T0)V0
を求め、このV1を残ガス分としてシリンダ内容積Vから差し引いてシリンダ内新気分容積を求める。
【0049】
ステップ18では吸気温度を、ステップ19では吸気圧(吸気管負圧)を計測する。吸気圧は、吸気管5に吸気管負圧を得るために絞り弁を設けた場合、絞り弁の開度によって変化するため、吸気圧の検出を行う。検出の方法は、エンジン回転数と絞り弁開度から予め実験等により求めておいた図8のようなマップを参照しても良いし、吸気圧センサを設けて計測しても良い。ただし、吸気圧を検出した場合、吸気圧によってステップ17のシリンダ内新気分容積を補正して良い。
【0050】
ステップ20では、そのシリンダ内新気分容積と吸気温度と大気圧または吸気圧とから、推定シリンダ内新気質量を算出する。絞り弁を設けた場合、吸気管負圧が大きいほど、推定シリンダ内新気質量を減少補正する。
【0051】
この場合、シリンダ内新気質量は、図9〜図11のようにエンジン回転数、排気弁4の閉時期、吸気弁3の開時期、吸、排気弁3,4のオーバーラップ量に応じて変化するため、これらエンジン回転数、排気弁4の閉時期、吸気弁3の開時期、吸、排気弁3,4のオーバーラップ量に応じて、推定シリンダ内新気質量を補正する。排気弁4の閉時期に対しては、図9に示すような特性に設定したマップから補正値を、吸気弁3の開時期に対しては、図10に示すような特性に設定したマップから補正値を、吸、排気弁3,4のオーバーラップがあるときは、そのオーバーラップ量に対して図11に示すような特性に設定したマップから補正値を求め、推定シリンダ内新気質量に乗算する。なお、図10は吸気弁3の開時期が吸気上死点から遅角側にある場合である。
【0052】
次に、図4のステップ3にて、吸気量センサ(AFM)21の計測値つまり吸気質量(温度補正、圧力補正後)を読み込み、ステップ4にてその吸気質量を推定シリンダ内新気質量と比較して、吸気量センサ21の故障判定を行う。
【0053】
この吸気量センサ21の故障判定は、吸気質量と推定シリンダ内新気質量との差が予め定められた所定量(判定基準値)より大きいときに故障と判定する。
【0054】
図12にエンジン回転数に基づく故障判定基準の例を示す。エンジン回転数が低く、シリンダ2に吸気を吸入しやすいときほど、正確な推定シリンダ内新気質量が得られるので、エンジン回転数が低いときは吸気質量と推定シリンダ内新気質量との差が比較的小さい差以上で故障と判定し、エンジン回転数が高くなるほどその差が大きいときに故障と判定するように、判定基準を設定している。
【0055】
また、図13のようにエンジン回転数とアクセル開度に基づき故障判定基準を設定することもできる。この場合、吸気弁3等の開閉の作動遅れ等により推定シリンダ内新気質量にバラツキが出るので、アクセル開度が小さく、吸気弁3の開期間が小さいときほど誤差率が大きくなる。そのため、アクセル開度が大きく、エンジン回転数が低いときは吸気質量と推定シリンダ内新気質量との差が比較的小さい差以上で故障と判定し、アクセル開度が小さく、エンジン回転数が高くなるほどその差が大きいときに故障と判定するように、判定基準を設定する。
【0056】
そして、故障と判定したときは、運転パネル等に設けた表示装置26によって吸気量センサ21の故障を表示する。
【0057】
このように、シリンダ2の実際の吸入空気量を推定し、その推定値を基に吸気量センサ21の故障を判定するので、吸気量センサ21の出力のズレによる異常、センサ回路の断線等の故障を容易に精度良く検出できる。
【0058】
この場合、吸気弁3の閉時期のシリンダ内容積を基にシリンダ2の吸入空気量を推定すると共に、これを排気弁4の閉時期、吸気弁3の開時期、吸、排気弁3,4のオーバーラップ量に応じて補正することによって、精度の良い推定吸入空気量を得ることができる。
【0059】
また、故障の判定基準をエンジン回転数を含むエンジンの運転条件毎に設定すると共に、推定吸入空気量の精度が高いつまりエンジン回転数が低い条件のときに吸気量センサ21の計測値と推定吸入空気量との差が比較的小さい差以上で故障と判定するので、故障判定を精度良く行える。
【0060】
したがって、吸気量センサ21の故障検出を的確に行える。また、故障時に表示装置26によって運転者に知らせるので、早期に補修が可能である。
【0061】
一方、本エンジンは、吸気弁3の閉時期等によってシリンダ2の吸入空気量が制御されるが、吸気管5に吸気管負圧を得るために絞り弁を設けた場合、その開度に応じて吸入空気量を補正つまり吸気管負圧を加えて吸入空気量を推定するので、絞り弁を設けた場合にも対応できる。
【0062】
また、本例では、コントロールユニット20による吸、排気弁3,4の開制御時期、閉制御時期によってこれらの開閉時期を判定しているが、図1に示すように吸、排気弁3,4の閉弁状態を検出する着座センサ30,31を設け、着座センサ30,31によって吸、排気弁3,4の開閉時期を検出するようにもできる。この着座センサ30,31としては、例えばギャップセンサや非接触の位置センサ等が用いられ、吸、排気弁3,4の電磁アクチュエータ10,11等に設置される。このようにすれば、弁の故障を検出できると共に、弁故障時に吸気量センサ21の故障判定をキャンセルできる。また、吸気弁3等の開閉の作動遅れ等による推定吸入空気量のバラツキを低減できる。
【0063】
なお、本例は、電磁駆動式の可変動弁に本発明を適用したものであるが、油圧により吸、排気弁を駆動する可変動弁エンジンに適用することもできる。
【図面の簡単な説明】
【図1】第1の実施の形態を示す構成断面図である。
【図2】電磁駆動式の吸、排気弁の構成図である。
【図3】吸気弁の閉制御時期マップの例の特性図である。
【図4】制御内容を示すフローチャートである。
【図5】制御内容を示すフローチャートである。
【図6】排圧マップの例の特性図である。
【図7】排気温度マップの例の特性図である。
【図8】吸気圧マップの例の特性図である。
【図9】排気弁閉時期に対する吸入空気量の特性図である。
【図10】吸気弁開時期に対する吸入空気量の特性図である。
【図11】バルブオーバーラップ量に対する吸入空気量の特性図である。
【図12】エンジン回転数に対する判定基準の例を示す特性図である。
【図13】エンジン回転数とアクセル開度に対する判定基準の例を示す特性図である。
【符号の説明】
2 シリンダ
3 吸気弁
4 排気弁
5 吸気管
6 排気管
8 燃料噴射弁
10,11 電磁アクチュエータ
17 駆動回路
20 コントロールユニット
21 吸気量センサ
22 回転数センサ(クランク角センサ)
23 アクセル開度センサ
24 水温センサ
25 吸気温度センサ
26 表示装置
30,31 着座センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a failure detection device for a variable valve engine having intake and exhaust valves, and more particularly to a device for detecting a failure of an intake air amount sensor that measures an intake air amount.
[0002]
[Prior art]
Some engine suction and exhaust valves are driven by electromagnetic force instead of cam drive. This can omit a mechanism such as a camshaft, can be set to a valve opening / closing timing that matches the operating state of the engine, and controls the intake air amount and exhaust gas discharge of the cylinder by the valve opening / closing timing. Is possible (Japanese Patent Laid-Open No. 61-247807, etc.).
[0003]
In addition, there is a type that drives the exhaust and exhaust valves by hydraulic pressure (JP-A-7-317516, etc.). This is because oil boosted by an oil pump is set for each cylinder that supplies and shuts off oil in a hydraulic chamber defined by the piston that drives the intake and exhaust valves and the cylinder that the piston slides. By supplying through the electromagnetic spill valve, the intake valve and the exhaust valve are controlled to desired opening timing and closing timing for each cylinder.
[0004]
As a method for measuring the engine intake air amount in such an engine, an air flow meter (intake air amount sensor) is provided in the intake passage upstream of the throttle valve, and basic fuel injection is performed from the intake air amount measured by the intake air amount sensor and the engine speed. In the case of obtaining the amount and performing various corrections based on this to control the fuel injection amount of the fuel injection valve, if the intake air amount sensor is abnormal, for example, the fuel injection amount cannot be properly controlled.
[0005]
Conventionally, such a failure detection device for an intake air amount sensor detects a disconnection of a sensor circuit (Japanese Patent Laid-Open No. 10-68647), and an intake air amount sensor failure is detected from a signal of an oxygen concentration sensor provided in an exhaust system. Indirect determination of the intake air amount sensor, or the failure of the intake air amount sensor based on the deviation between the maximum output value and the minimum output value of the signal generated by the intake air pulsation accompanying the opening and closing of the intake valve. (Kaihei 5-001930).
[0006]
[Problems to be solved by the invention]
However, those that detect the presence or absence of disconnection of the sensor circuit cannot detect abnormalities due to deviations in the output of the intake air amount sensor, and those that determine the failure of the intake air amount sensor from the signal of the oxygen concentration sensor are considered to be a fuel system failure. It is difficult to distinguish.
[0007]
In addition, what determines the failure of the intake air amount sensor from the deviation between the maximum output value and the minimum output value of the intake air amount sensor controls the intake air amount of the cylinder by the intake and exhaust valves rather than the throttle valve provided in the intake passage. In this case, the intake pulsation changes depending on the opening / closing timing of the intake valve, which is not necessarily applicable.
[0008]
The present invention focuses on the fact that the intake air amount of the cylinder can be estimated by the opening / closing timing in the case of a variable valve engine that controls the intake air amount of the cylinder by the opening / closing timing of the intake and exhaust valves. An object of the present invention is to provide a failure detection device capable of accurately detecting a failure of an intake air amount sensor by comparing with a measured value of the intake air amount sensor.
[0009]
[Means for Solving the Problems]
The first invention is provided with intake and exhaust valves, and it is possible to provide an intake air amount sensor for measuring the intake air amount in the intake passage while controlling intake air amount and exhaust gas discharge of the cylinders according to opening and closing timing of these valves. In the variable valve engine, intake air amount estimation means for estimating the actual intake air amount based on at least the cylinder internal volume at the closing timing of the intake valve, and comparison means for comparing the estimated value with the measured value of the intake air sensor, Rutotomoni provided a failure determination means for performing a failure determination of the intake air quantity sensor based on the comparison result, the throttle valve provided in the intake pipe, the intake air quantity estimating means estimates the intake air amount, the throttle valve The correction means corrects the estimated value of the intake air amount so as to decrease as the opening degree of the throttle valve is smaller and the intake pipe negative pressure is larger .
[0013]
In a second aspect based on the first aspect, the failure determination means determines whether the difference between the intake air amount estimated value of the intake air amount estimation means and the measured value of the intake air sensor is a predetermined failure determination. When larger than the reference value, it is determined that the intake air amount sensor is out of order.
[0014]
According to a third invention, in the first invention, the failure determination criterion by the failure determination means is set for each engine operating condition including at least the engine speed.
[0015]
In a fourth aspect based on the first aspect, the intake air amount estimating means determines the intake and exhaust valve opening / closing timing from the intake / exhaust valve opening / closing control timing.
[0016]
According to a fifth aspect of the present invention, in the first aspect of the present invention, a seating sensor for detecting the opening / closing timing of the intake and exhaust valves is provided. Based on this, the actual intake air amount is estimated.
[0017]
In a sixth aspect based on the first aspect, the display device displays a malfunction of the intake air amount sensor.
[0018]
【The invention's effect】
According to the first and fourth aspects of the present invention, it is possible to easily detect a failure such as an abnormality due to a deviation in the output of the intake air sensor and a disconnection of the sensor circuit with high accuracy.
[0020]
Further , even when a throttle valve is provided, it is possible to obtain an accurate estimated intake air amount and cope with it.
[0021]
According to the second and third inventions, the failure determination of the intake air amount sensor can be performed with high accuracy.
[0022]
According to the fifth aspect , failure of the intake and exhaust valves can be accurately detected, and failure determination of the intake air amount sensor can be canceled at the time of these failures.
[0023]
According to the sixth aspect , early repair of a failure is possible.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
As shown in FIG. 1, 1 is an engine, 2 is a cylinder (combustion chamber), 3 is an intake valve, 4 is an exhaust valve, 5 is an intake pipe, 6 is an exhaust pipe, 7 is a spark plug, 8 is a fuel injection valve, 9 is an exhaust purification catalyst.
[0026]
The electromagnetic actuators 10 and 11 for driving the intake valve 3 and the exhaust valve 4 open the movable part 12 and the two springs 13 and 14 for urging the movable part 12 in the valve opening direction and the valve closing direction as shown in FIG. Two electromagnets 15 and 16 for attracting in the valve direction and the valve closing direction are provided.
[0027]
When the current of the electromagnetic coil of the electromagnet 15 on the valve opening side is interrupted by the drive circuit 17 from the state of FIG. 2, the movable portion 12 passes through the neutral position and closes by the spring force of the spring 14 on the valve closing side. By closing the electromagnet 16 on the side and energizing the electromagnetic coil of the electromagnet 16 on the valve closing side at this time, the movable portion 12 overcomes the spring force of the spring 13 on the valve opening side by the electromagnetic attractive force and closes. The valve-side electromagnet 16 is attracted and closed. Next, when the current of the electromagnetic coil of the electromagnet 16 on the valve closing side is interrupted from this state, the movable portion 12 passes through the neutral position by the spring force of the spring 13 on the valve opening side, and then opens on the valve opening side. By approaching the electromagnet 15 and energizing the electromagnetic coil of the electromagnet 15 on the valve opening side at this time, the movable portion 12 overcomes the spring force of the spring 14 on the valve closing side by the electromagnetic attraction force. Are attracted to the electromagnet 15 and opened. When no current is flowing through the electromagnetic coils of the two electromagnets 15 and 16, the movable portion 12 is neutrally spaced apart from the attracting surfaces of the two electromagnets 15 and 16 by a predetermined position by the spring force of both the springs 13 and 14, respectively. The position is maintained (the intake valve 3 and the exhaust valve 4 are in a half-open state).
[0028]
On the other hand, the intake pipe 5 forming a part of the intake passage is provided with an air flow meter (intake amount sensor) 21 for detecting the intake air amount of the engine as means for detecting the operating condition of the engine. Input to unit 20. Further, as means for detecting engine operating conditions, a rotational speed sensor (crank angle sensor) 22 for detecting engine rotational speed and crank angle, an accelerator opening sensor 23 for detecting accelerator opening, and an engine coolant temperature are detected. A water temperature sensor 24 and an intake air temperature sensor 25 for detecting the intake air temperature are provided, and these signals are also input to the control unit 20.
[0029]
Based on these sensor signals, the control unit 20 controls the opening and closing timings of the intake and exhaust valves 3 and 4 via the drive circuit 17 and controls the fuel injection amount of the fuel injection valve 8 and the intake air amount sensor. 21 failure determination is performed.
[0030]
In this case, the opening timing of the intake valve 3 is controlled to be advanced as the engine speed is higher with respect to the intake top dead center, for example, and the closing timing is the required intake air amount based on the accelerator opening, the engine speed, etc. Is controlled to a crank angle (intake stroke interval, compression stroke interval). Basically, the intake air amount is controlled by the closing timing of the intake valve 3.
[0031]
The closing control timing (crank angle) of the intake valve 3 is obtained by searching a closing control timing map in which the closing control timing of the intake valve 3 is set based on the accelerator opening and the engine speed as shown in FIG. 3, for example. . In this closed control timing map, the crank angle at which the maximum intake amount enters the cylinder in the fully open region of the accelerator opening is set (adapted by experiment etc.), and the crank angle is advanced or advanced relative to the fully open region in the partial load region. The crank angle is set so as to retard and obtain the required intake air amount. Note that the crank angle at which the maximum amount of intake air enters the cylinder in the fully open region of the accelerator opening is substantially the bottom dead center of the piston in the low engine speed range, and is on the compression stroke side in the high engine speed range.
[0032]
The opening timing of the exhaust valve 4 is controlled near the piston bottom dead center between the expansion stroke and the exhaust stroke, and the closing timing is controlled near the intake top dead center according to the engine speed.
[0033]
Although not shown, the exhaust valve 4 closing control timing (crank angle) is obtained by searching a closing control timing map in which the closing control timing of the exhaust valve 4 is set based on the accelerator opening and the engine speed.
[0034]
Further, the fuel injection amount of the fuel injection valve 8 is variously changed to the basic injection amount based on the intake air amount detected (measured) by the intake air amount sensor 21 and the engine speed, as in the general fuel injection amount control. Determined and controlled with corrections.
[0035]
In the figure, reference numeral 26 denotes a display device for displaying a failure of the intake air amount sensor 21, which is provided on the operation panel or the like.
[0036]
Next, failure determination of the intake air amount sensor 21 will be described based on the flowcharts of FIGS.
[0037]
As shown in FIG. 4, in step 1, the cylinder internal volume V at the closing timing of the intake valve 3 is calculated. This is calculated from the crank angle at the time of closing control of the intake valve 3, that is, the position of the piston.
[0038]
Here, when the stroke of the piston is x, the distance between the connecting rod shafts is h, and the crank radius is r,
When the displacement angle θ (crank angle) from the top dead center is
x = r (1-COSθ) + λr [1- (1-SINθ 2 / λ 2 ) 1/2 ]
λ = h / r
In short,
x≈r (1-COSθ) + r (1-COS2θ) / 4λ
And
The cylinder internal volume V is
Figure 0003680599
Where Vcc: combustion chamber volume, Vcyl: stroke volume S: cylinder cross-sectional area = π (bore / 2) 2
Obtained from
[0039]
Specifically, the calculation is performed using a map in which the cylinder internal volume V is set for the crank angle θ based on such an expression.
[0040]
In step 2, the intake air amount (fresh air mass) of the cylinder 2 is estimated based on the cylinder internal volume V. This is performed according to the flow of FIG.
[0041]
The flow in FIG. 5 starts from step 12 to steps 13 to 16 when the exhaust valve 4 is closed before the intake valve 3 is closed.
[0042]
In step 13, reads the crank angle of the closing timing of the exhaust valve 4, in step 14, it calculates the cylinder remaining volume V 0 from the crank angle. If the closing timing of the exhaust valve 4 is the intake top dead center, the remaining cylinder volume V 0 is the combustion chamber volume, and if it is retarded from the intake top dead center, the combustion chamber volume is calculated from the crank angle at the closing timing. The remaining cylinder volume V 0 is calculated by adding the volumes.
[0043]
This cylinder remaining volume V 0 is also calculated using a map in which the cylinder internal volume V is set for the aforementioned crank angle θ.
[0044]
In step 15, the exhaust pressure is calculated, and in step 16, the residual gas mass in the cylinder 2 is calculated from the cylinder remaining volume V 0 , the exhaust pressure and the exhaust temperature. The exhaust pressure and the exhaust temperature are respectively determined based on the engine speed, the accelerator opening, the cooling water temperature, and the like, as shown in FIG. 6 and FIG. Find using a map.
[0045]
Cylinder residual gas mass: G is obtained from the equation of state of gas G = PV / RT.
[0046]
Where P: exhaust pressure, V: cylinder remaining capacity,
R: Gas constant = Combustion gas constant (fixed value), T: Exhaust temperature After the exhaust valve 4 is closed, when the intake valve 3 is closed, Steps 11 to 17 are entered.
[0047]
In step 17, the cylinder fresh air volume is calculated. The fresh air volume in the cylinder is obtained by subtracting the residual gas calculated in step 16 from the cylinder internal volume V calculated in step 1 of FIG.
[0048]
In this case, assuming that the state of the combustion gas when the exhaust valve is closed is pressure P 0 , volume V 0 , temperature T 0 , and the state when the intake valve is opened is pressure P 1 , volume V 1 , and temperature T 1 (where P 1 Is affected by the negative pressure of the intake pipe)
Basically, P 1 V 1 / T 1 = P 0 V 0 / T 0 = GR, so
V 1 = (P 0 / P 1 ) (T 1 / T 0 ) V 0
, And obtains the new mood volume inside the cylinder by subtracting the V 1 from the cylinder volume V as residual gas fraction.
[0049]
In step 18, the intake air temperature is measured, and in step 19, the intake pressure (intake pipe negative pressure) is measured. When the throttle valve is provided in the intake pipe 5 to obtain the intake pipe negative pressure, the intake pressure varies depending on the opening of the throttle valve, and therefore the intake pressure is detected. As a detection method, a map as shown in FIG. 8 obtained in advance by experiments or the like from the engine speed and the throttle valve opening may be referred to, or an intake pressure sensor may be provided for measurement. However, when the intake pressure is detected, the fresh air volume in the cylinder in step 17 may be corrected by the intake pressure.
[0050]
In step 20, the estimated fresh air mass in the cylinder is calculated from the fresh air volume in the cylinder, the intake air temperature, and the atmospheric pressure or the intake air pressure. When the throttle valve is provided, the estimated fresh air mass in the cylinder is decreased and corrected as the intake pipe negative pressure increases.
[0051]
In this case, the fresh air mass in the cylinder depends on the engine speed, the closing timing of the exhaust valve 4, the opening timing of the intake valve 3, the intake, and the overlap amount of the exhaust valves 3 and 4, as shown in FIGS. Therefore, the estimated fresh air mass in the cylinder is corrected according to the engine speed, the closing timing of the exhaust valve 4, the opening timing of the intake valve 3, the intake, and the overlap amount of the exhaust valves 3 and 4. For the closing timing of the exhaust valve 4, a correction value is obtained from a map set to the characteristics as shown in FIG. 9, and for the opening timing of the intake valve 3, from a map set to the characteristics as shown in FIG. When there is an overlap between the intake and exhaust valves 3 and 4, the correction value is obtained from a map set to the characteristics shown in FIG. 11 with respect to the overlap amount, and the estimated fresh air mass in the cylinder is obtained. Multiply. FIG. 10 shows a case where the opening timing of the intake valve 3 is on the retard side from the intake top dead center.
[0052]
Next, in step 3 of FIG. 4, the measured value of the intake air amount sensor (AFM) 21, that is, the intake mass (after temperature correction and pressure correction) is read, and in step 4, the intake mass is calculated as the estimated fresh air mass in the cylinder. In comparison, a failure determination of the intake air amount sensor 21 is performed.
[0053]
This failure determination of the intake air amount sensor 21 is determined as a failure when the difference between the intake air mass and the estimated fresh air mass in the cylinder is greater than a predetermined amount (determination reference value).
[0054]
FIG. 12 shows an example of failure determination criteria based on the engine speed. The more accurate the estimated fresh air mass in the cylinder is obtained when the engine speed is lower and the intake air is more easily taken into the cylinder 2, the difference between the intake mass and the estimated fresh air mass is less when the engine speed is low. A determination criterion is set so that a failure is determined when the difference is relatively small or more, and a failure is determined when the difference is large as the engine speed increases.
[0055]
Further, as shown in FIG. 13, a failure determination criterion can be set based on the engine speed and the accelerator opening. In this case, the estimated fresh air mass in the cylinder varies due to an operation delay of opening / closing of the intake valve 3 or the like, so that the error rate increases as the accelerator opening becomes smaller and the opening period of the intake valve 3 becomes shorter. Therefore, when the accelerator opening is large and the engine speed is low, it is determined that there is a failure when the difference between the intake mass and the estimated fresh air mass in the cylinder is relatively small, and the accelerator opening is small and the engine speed is high. A criterion is set so that a failure is determined when the difference is large.
[0056]
When it is determined that there is a failure, the failure of the intake air sensor 21 is displayed on the display device 26 provided on the operation panel or the like.
[0057]
In this way, the actual intake air amount of the cylinder 2 is estimated, and a failure of the intake air sensor 21 is determined based on the estimated value. Therefore, an abnormality caused by a deviation in the output of the intake air sensor 21, disconnection of the sensor circuit, etc. Faults can be detected easily and accurately.
[0058]
In this case, the intake air amount of the cylinder 2 is estimated based on the volume in the cylinder at the closing timing of the intake valve 3, and this is used as the closing timing of the exhaust valve 4, the opening timing of the intake valve 3, the intake and exhaust valves 3, 4. By correcting according to the amount of overlap, a highly accurate estimated intake air amount can be obtained.
[0059]
In addition, a failure determination criterion is set for each engine operating condition including the engine speed, and the measured value of the intake air sensor 21 and the estimated intake air when the accuracy of the estimated intake air amount is high, that is, the engine speed is low. Since the failure is determined when the difference from the air amount is a relatively small difference or more, the failure determination can be performed with high accuracy.
[0060]
Therefore, failure detection of the intake air amount sensor 21 can be accurately performed. Further, since the driver is notified by the display device 26 at the time of failure, repair can be performed at an early stage.
[0061]
On the other hand, in the present engine, the intake air amount of the cylinder 2 is controlled by the closing timing of the intake valve 3 or the like. Thus, the intake air amount is corrected, that is, the intake air amount is estimated by adding the intake pipe negative pressure, so that it is possible to cope with a case where a throttle valve is provided.
[0062]
Further, in this example, the opening / closing timing of these is determined based on the suction by the control unit 20 and the opening control timing and closing control timing of the exhaust valves 3 and 4, but as shown in FIG. It is also possible to provide seating sensors 30 and 31 for detecting the closed state of the valve, and to detect the opening and closing timing of the exhaust valves 3 and 4 by the seating sensors 30 and 31. For example, a gap sensor or a non-contact position sensor is used as the seating sensors 30 and 31 and is installed in the electromagnetic actuators 10 and 11 of the intake and exhaust valves 3 and 4. In this way, failure of the valve can be detected, and failure determination of the intake air amount sensor 21 can be canceled at the time of valve failure. Further, it is possible to reduce variations in the estimated intake air amount due to delays in opening and closing the intake valve 3 and the like.
[0063]
In this example, the present invention is applied to an electromagnetically driven variable valve. However, the present invention can also be applied to a variable valve engine that drives an intake and exhaust valve by hydraulic pressure.
[Brief description of the drawings]
FIG. 1 is a structural cross-sectional view showing a first embodiment.
FIG. 2 is a configuration diagram of an electromagnetically driven intake and exhaust valve.
FIG. 3 is a characteristic diagram of an example of an intake valve closing control timing map;
FIG. 4 is a flowchart showing control contents.
FIG. 5 is a flowchart showing control contents.
FIG. 6 is a characteristic diagram of an example of an exhaust pressure map.
FIG. 7 is a characteristic diagram of an example of an exhaust gas temperature map.
FIG. 8 is a characteristic diagram of an example of an intake pressure map.
FIG. 9 is a characteristic diagram of the intake air amount with respect to the exhaust valve closing timing.
FIG. 10 is a characteristic diagram of the intake air amount with respect to the intake valve opening timing.
FIG. 11 is a characteristic diagram of an intake air amount with respect to a valve overlap amount.
FIG. 12 is a characteristic diagram illustrating an example of a criterion for determining the engine speed.
FIG. 13 is a characteristic diagram showing an example of determination criteria for engine speed and accelerator opening.
[Explanation of symbols]
2 Cylinder 3 Intake valve 4 Exhaust valve 5 Intake pipe 6 Exhaust pipe 8 Fuel injection valve 10, 11 Electromagnetic actuator 17 Drive circuit 20 Control unit 21 Intake amount sensor 22 Rotation speed sensor (crank angle sensor)
23 Accelerator opening sensor 24 Water temperature sensor 25 Intake air temperature sensor 26 Display device 30, 31 Seating sensor

Claims (6)

吸、排気弁を備え、これらの弁の開閉時期によってシリンダの吸入空気量および排気ガスの排出を制御する一方、吸気通路に吸入空気量を計測する吸気量センサを備える可変動弁エンジンにおいて、
少なくとも吸気弁の閉時期のシリンダ内容積を基に実際の吸入空気量を推定する吸入空気量推定手段と、
この推定値と吸気量センサの計測値を比較する比較手段と、
この比較結果を基に吸気量センサの故障判定を行う故障判定手段とを設けると共に、
吸気管に絞り弁を設け、
前記吸入空気量推定手段は、吸入空気量の推定値を、その絞り弁の開度に応じて補正する補正手段を持ち、該補正手段は、絞り弁の開度が小さく吸気管負圧が大きいほど、吸入空気量の推定値を減少補正することを特徴とする可変動弁エンジンの故障検出装置。
In a variable valve engine having intake and exhaust valves, and controlling intake air amount and exhaust gas discharge of cylinders according to opening and closing timing of these valves, and having an intake air amount sensor for measuring the intake air amount in an intake passage,
An intake air amount estimating means for estimating an actual intake air amount based on at least the volume in the cylinder at the closing timing of the intake valve;
Comparison means for comparing the estimated value and the measured value of the intake air sensor,
Rutotomoni provided a failure determination means for performing a failure determination of the intake air quantity sensor based on the comparison result,
Provide a throttle valve in the intake pipe,
The intake air amount estimation means has correction means for correcting the estimated value of the intake air amount according to the opening of the throttle valve, and the correction means has a small opening of the throttle valve and a large intake pipe negative pressure. The failure detection device for a variable valve engine, wherein the estimated value of the intake air amount is decreased and corrected .
前記故障判定手段は、前記吸入空気量推定手段の吸入空気量の推定値と吸気量センサの計測値との差が、予め定めた所定の故障判定基準値よりも大きいときに、吸気量センサを故障と判定する請求項1に記載の可変動弁エンジンの故障検出装置。 The failure determination means sets the intake air amount sensor when a difference between the estimated value of the intake air amount of the intake air amount estimation means and the measured value of the intake air sensor is larger than a predetermined failure determination reference value. The variable valve engine failure detection device according to claim 1, wherein the failure detection device is determined to be a failure. 前記故障判定手段による故障判定基準を、少なくともエンジン回転数を含むエンジンの運転条件毎に設定してある請求項1に記載の可変動弁エンジンの故障検出装置。The failure detection device for a variable valve engine according to claim 1, wherein a failure determination criterion by the failure determination means is set for each engine operating condition including at least the engine speed . 前記吸入空気量推定手段は、吸、排気弁の開閉制御時期より吸、排気弁の開閉時期を判別する請求項1に記載の可変動弁エンジンの故障検出装置。 The variable valve engine failure detection apparatus according to claim 1 , wherein the intake air amount estimation means determines the intake and exhaust valve opening / closing timing from the intake and exhaust valve opening / closing control timing . 吸、排気弁の開閉時期を検出する着座センサを備え、前記吸入空気量推定手段は、着座センサによるに吸、排気弁の開閉時期の検出値を基に実際の吸入空気量を推定する請求項1に記載の可変動弁エンジンの故障検出装置。 A seating sensor for detecting opening and closing timings of the intake and exhaust valves is provided, and the intake air amount estimating means estimates an actual intake air amount based on a detected value of the intake and exhaust valve opening and closing timings by the seating sensor. The failure detection device for a variable valve engine according to claim 1. 吸気量センサの故障を表示する表示装置を備える請求項1に記載の可変動弁エンジンの故障検出装置。 The variable valve engine failure detection device according to claim 1, further comprising a display device that displays a failure of the intake air amount sensor .
JP33429898A 1998-11-25 1998-11-25 Failure detection device for variable valve engine Expired - Fee Related JP3680599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33429898A JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33429898A JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Publications (2)

Publication Number Publication Date
JP2000161124A JP2000161124A (en) 2000-06-13
JP3680599B2 true JP3680599B2 (en) 2005-08-10

Family

ID=18275790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33429898A Expired - Fee Related JP3680599B2 (en) 1998-11-25 1998-11-25 Failure detection device for variable valve engine

Country Status (1)

Country Link
JP (1) JP3680599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240084755A1 (en) * 2021-01-29 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Real-Time Determination of a Fresh-Air Mass in a Cylinder

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106373A (en) 2000-10-02 2002-04-10 Mikuni Corp Engine intake valve control device by electromagnetic actuator
JP4524528B2 (en) * 2001-02-05 2010-08-18 日産自動車株式会社 Engine internal EGR rate estimation device
JP4078932B2 (en) 2002-09-26 2008-04-23 トヨタ自動車株式会社 Control method of internal combustion engine having variable valve system
JP4083647B2 (en) * 2003-08-21 2008-04-30 トヨタ自動車株式会社 Intake air amount control device for internal combustion engine
DE102004058185A1 (en) * 2004-12-02 2006-06-08 Robert Bosch Gmbh Internal combustion engine e.g. diesel engine, controlling method for motor vehicle, involves determining gas masses using gas pressures reigning in engine`s cylinders and comparing values formed from masses and formed independent of masses
WO2006104273A1 (en) * 2005-03-31 2006-10-05 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
JP4576303B2 (en) * 2005-08-01 2010-11-04 本田技研工業株式会社 Valve operating device for internal combustion engine
JP4655229B2 (en) * 2006-08-25 2011-03-23 株式会社デンソー Abnormality diagnosis apparatus for intake system of internal combustion engine
JP5174547B2 (en) 2007-07-10 2013-04-03 ヤマハ発動機株式会社 Intake system and motorcycle equipped with the same
US8224559B2 (en) * 2010-01-21 2012-07-17 GM Global Technology Operations LLC Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
KR101891477B1 (en) * 2018-04-23 2018-09-28 정균식 Combustion analysis apparatus for large-sized low-speed engine and method for determining combustion state of engine using the same
CN112523886A (en) * 2020-12-31 2021-03-19 潍柴动力扬州柴油机有限责任公司 Control method for ensuring air intake flow accuracy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240084755A1 (en) * 2021-01-29 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Real-Time Determination of a Fresh-Air Mass in a Cylinder

Also Published As

Publication number Publication date
JP2000161124A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP3680599B2 (en) Failure detection device for variable valve engine
JP4988681B2 (en) High pressure fuel pump control device for internal combustion engine
EP1149234B1 (en) Intake-air quantity control apparatus and method for internal combustion engines
KR100843995B1 (en) Controller of internal combustion engine
EP1108872B1 (en) Control apparatus and method for internal combustion engine with variably operated engine valve
JP4448883B2 (en) Electronic device for controlling inlet valve of internal combustion engine and method for controlling inlet valve of internal combustion engine
JP3572442B2 (en) Intake air amount estimation device for variable valve engine
JPH11311135A (en) Engine intake controller
US6266606B1 (en) Control system for internal combustion engine
JP2001050090A (en) Intake air volume calculation system for variable valve timing engine
US6477993B1 (en) Control device for solenoid driving valve
US6502546B2 (en) Intake air control system of engine
KR20080060194A (en) Method for detecting an ambient pressure in an internal combustion engine
JP3622538B2 (en) Engine intake air amount detection device
KR20170051334A (en) Method and device for adaption of a valve control variable for an inlet- and/or an outlet valve of an internal combustion engine
JP3603612B2 (en) Engine intake air amount detection device
JP3572383B2 (en) Failure detection device for variable valve engine
JP3807173B2 (en) Intake air amount detection device and fuel injection control device for variable valve engine
JPH11257137A (en) Fuel injection controller of engine
JP2001221071A (en) Controller of adjustable valve engine
JP2934682B2 (en) Hydraulic drive of engine valve for internal combustion engine
JP2004036406A (en) Sensor abnormality detecting device of variable valve system
JP2000080936A (en) Cylinder suction air quantity detector for variable valve system engine
JP2000087767A (en) Intake air density estimating device of variable valve engine
JP2001050065A (en) Control device for electromagnetic valve of engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees