JP3572383B2 - Failure detection device for variable valve engine - Google Patents

Failure detection device for variable valve engine Download PDF

Info

Publication number
JP3572383B2
JP3572383B2 JP24690898A JP24690898A JP3572383B2 JP 3572383 B2 JP3572383 B2 JP 3572383B2 JP 24690898 A JP24690898 A JP 24690898A JP 24690898 A JP24690898 A JP 24690898A JP 3572383 B2 JP3572383 B2 JP 3572383B2
Authority
JP
Japan
Prior art keywords
intake pipe
pipe pressure
failure
intake
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24690898A
Other languages
Japanese (ja)
Other versions
JP2000073792A (en
Inventor
初雄 永石
啓介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24690898A priority Critical patent/JP3572383B2/en
Publication of JP2000073792A publication Critical patent/JP2000073792A/en
Application granted granted Critical
Publication of JP3572383B2 publication Critical patent/JP3572383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンの故障検出装置に関する。
【0002】
【従来の技術】
従来の可変動弁エンジンの故障検出装置として、特開平2−308913号公報に示されるように、吸気管圧力の絶対値を検出して、所定値を超えたときに故障と判定するものがある。これは、エンジンの吸入負圧の大きい領域では、残留ガス割合により吸入負圧(吸気管圧力)が変わることを利用したもので、特にバルブオーバーラップの大小により残ガスが変わるので、それを判定できる。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の可変動弁エンジンの故障検出装置にあっては、(1)温度や気圧の影響を受け、誤検出しやすい。(2)バルブオーバーラップ以外の検出感度が小さく、それ以外の故障を検出し難い。(3)特定気筒のみの故障では、感度が小さく、検出しにくい。(4)スロットル開度の影響を大きく受けるので、アイドル以外では検出できず、また、アイドルでもフリクションや補機負荷の影響で誤検出しやすい。
【0004】
本発明は、このような従来の問題点に鑑み、可変動弁エンジンにおける電磁駆動式の吸排気弁の故障を精度良く検出できるようにすることを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1に係る発明では、電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、図1に示すように、吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間における吸気管圧力の変動幅を検出する第1の圧力変動検出手段と、検出された吸気管圧力の変動幅に基づいて、吸気弁開故障の有無を判定する第1の故障判定手段と、を設けて、可変動弁エンジンの故障検出装置を構成する。
【0006】
請求項2に係る発明では、電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、図1に示すように、吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間毎に吸気管圧力の平均値を算出し、これらの平均値の変動幅を検出する第2の圧力変動検出手段と、検出された吸気管圧力の平均値の変動幅に基づいて、少なくとも、吸気弁閉故障、排気弁開故障、排気弁閉故障のいずれかの有無を判定する第2の故障判定手段と、を設けて、可変動弁エンジンの故障検出装置を構成する。
請求項3に係る発明では、電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間における吸気管圧力の変動幅を検出する第1の圧力変動検出手段と、検出された吸気管圧力の変動幅に基づいて、吸気弁開故障の有無を判定する第1の故障判定手段と、吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間毎に吸気管圧力の平均値を算出し、これらの平均値の変動幅を検出する第2の圧力変動検出手段と、検出された吸気管圧力の平均値の変動幅に基づいて、少なくとも、吸気弁閉故障、排気弁開故障、排気弁閉故障のいずれかの有無を判定する第2の故障判定手段と、を設けて、可変動弁エンジンの故障検出装置を構成する。
【0007】
請求項4に係る発明では、少なくともスロットル弁により吸気管負圧を確保している領域であることを診断条件として判定する診断条件判定手段を設け、診断条件の成立時にのみ、前記故障判定手段による故障判定を行わせることを特徴とする。
【0008】
【発明の効果】
請求項1〜請求項3に係る発明によれば、吸気管圧力を検出する圧力センサとクランク角センサとを用いて吸気管圧力の変動状態を検出し、これに基づいて吸排気弁の故障の有無を判定することで、精度の高い故障判定を可能とし、誤診断を防止できる。
また、リフトセンサや着座センサ等の特殊なセンサを用いずに故障を判定でき、しかも1個の圧力センサで多気筒分の診断ができるので、安価に提供できる。
【0009】
特に請求項1、請求項3に係る発明によれば、吸気管圧力の変動状態として、所定のクランク角期間における吸気管圧力の変動幅を検出して、判定レベルと比較することで、吸気弁開故障(開きっぱなしで故障)を確実に検出できる。
特に請求項2、請求項3に係る発明によれば、吸気管圧力の変動状態として、所定のクランク角期間毎に吸気管圧力の平均値を算出し、これらの平均値の変動幅を検出して、判定レベルと比較することで、吸気弁閉故障(閉じっぱなしで故障)、排気弁開故障及び閉故障を確実に検出できる。
【0010】
請求項4に係る発明によれば、スロットル弁により吸気管負圧を確保している領域で故障判定を行わせることにより、圧力変動の小さいスロットル全開時の誤診断を防止できる。
【0011】
【発明の実施の形態】
以下に本発明の一実施形態を図2〜図7により説明する。
図2は本発明の一実施形態を示す可変動弁エンジンのシステム図である。
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火栓4を囲むように、電磁駆動式の吸気弁5及び排気弁6を備えている。7は吸気通路、8は排気通路である。
【0012】
吸気弁5及び排気弁6の電磁駆動装置(可変動弁装置)の基本構造を図3に示す。弁体20の弁軸21にプレート状の可動子22が取付けられており、この可動子22はスプリング23,24により中立位置に付勢されている。そして、この可動子22の下側に開弁用電磁コイル25が配置され、上側に閉弁用電磁コイル26が配置されている。
【0013】
従って、開弁させる際は、上側の閉弁用電磁コイル26への通電を停止した後、下側の開弁用電磁コイル25に通電して、可動子22を下側へ吸着することにより、弁体20をリフトさせて開弁させる。逆に、閉弁させる際は、下側の開弁用電磁コイル25への通電を停止した後、上側の閉弁用電磁コイル26に通電して、可動子22を上側へ吸着することにより、弁体20をシート部に着座させて閉弁させる。
【0014】
図2に戻って、吸気通路7には、全気筒共通の集合部に、電制スロットル弁(吸気絞り弁)9が設けられている。
吸気通路7にはまた、各気筒毎の吸気ポート部分に、電磁式の燃料噴射弁10が設けられている。
ここにおいて、吸気弁5、排気弁6、電制スロットル弁9、燃料噴射弁10及び点火栓4の作動は、コントロールユニット11により制御され、このコントロールユニット11には、エンジン回転に同期してクランク角信号を出力しこれによりクランク角位置と共にエンジン回転数Neを検出可能なクランク角センサ12、アクセル開度(アクセルペダルの踏込み量)APOを検出するアクセルペダルセンサ13、吸気通路7のスロットル弁9上流にて吸入空気量Qaを検出するエアフローメータ14、スロットル弁9の開度TVOを検出するスロットルセンサ15、吸気通路7のスロットル弁9下流にて吸気管圧力(吸気管内の絶対圧力)MAPを検出する圧力センサ16等から、信号が入力されている。
【0015】
このエンジン1では、ポンプロスの低減による燃費向上を目的として、電磁駆動式の吸気弁5及び排気弁6のバルブタイミングを制御、特に吸気弁5の閉時期(IVC)を早閉じ制御することにより吸入空気量を制御して、実質的にノンスロットル運転を行う。この場合、電制スロットル弁9は、所定のエンジン運転条件にて吸気通路7内に負圧を得る目的で設けられている。
【0016】
詳しくは、吸気弁5の開時期(IVO)は、排気上死点(TDC)付近の略一定タイミングとし、吸気弁5の閉時期(IVC)は、アクセル開度APOとエンジン回転数Neとに基づいて定められる目標トルク相当の目標空気量に応じて、スロットル開度TVO及び/又は吸気管圧力MAPを勘案しつつ、制御する。
排気弁6の開時期(EVO)及び閉時期(EVC)は、最も熱効率の良いタイミングとなるように制御する。
【0017】
燃料噴射弁10の燃料噴射時期及び燃料噴射量は、エンジン運転条件に基づいて制御するが、燃料噴射量は、基本的には、エアフローメータ14により検出される吸入空気量Qaに基づいて、所望の空燃比となるように制御する。
点火栓4による点火時期は、エンジン運転条件に基づいて、MBT又はノック限界に制御する。
【0018】
次に、可変動弁装置(電磁駆動式の吸気弁5及び排気弁6)の故障検出について、フローチャートにより説明する。
図4は故障検出のメインフローであり、1msジョブとして実行される。
ステップ1(図にはS1と記す。以下同様)では、圧力センサ16の出力電圧を読込んでA/D変換することにより、吸気管圧力MAPを検出する。
【0019】
ステップ2では、720°CA/気筒数毎のタイミング、すなわち、4気筒の場合、180°CA毎のタイミングか否かを判定し、NOの場合は、ステップ3〜6へ進む。
ステップ3では、180°CA間での吸気管圧力MAPの最大値MAPmax を検出する。具体的には、初回は、検出された吸気管圧力MAPをそのまま最大値MAPmax とし(MAPmax =MAP)、それ以降は、記憶保持されている最大値MAPmax と新たに検出された吸気管圧力MAPとを比較し、新たに検出された吸気管圧力MAPの方が大きい場合に、最大値MAPmax =MAPとして更新する。
【0020】
ステップ4では、180°CA間での吸気管圧力MAPの最小値MAPmin を検出する。具体的には、初回は、検出された吸気管圧力MAPをそのまま最小値MAPmin とし(MAPmin =MAP)、それ以降は、記憶保持されている最小値MAPmin と新たに検出された吸気管圧力MAPとを比較し、新たに検出された吸気管圧力MAPの方が小さい場合に、最小値MAPmin =MAPとして更新する。
【0021】
ステップ5では、吸気管圧力MAPを平均値算出用に積算し、その積算値SMAPを求める(SMAP=SMAP+MAP)。
ステップ6では、積算回数を示すカウンタCNTを1アップする(CNT=CNT+1)。以上で処理を終了する。
180°CA毎のタイミングの場合は、ステップ7以降へ進む。
【0022】
ステップ7では、180°CA間での吸気管圧力MAPの最大値MAPmax と最小値MAPmin とに基づいて、180°CA間での吸気管圧力MAPの変動幅(振幅)A=MAPmax −MAPmin を算出する。
ステップ8では、この振幅Aに基づいて、図5のフローに従って、第1の故障判定(振幅A判定)を行う。これについては後述する。
【0023】
ステップ9では、気筒判別を行って、n=1〜4のいずれかに設定する(4気筒の場合)。
ステップ10では、180°CA間での吸気管圧力MAPの積算値SMAPと積算回数CNTとから、180°CA間での吸気管圧力MAPの平均値AMAP=SMAP/CNTを算出する。
【0024】
ステップ11では、算出された吸気管圧力平均値AMAPを気筒(n=1〜4)別に記憶保持する(AMAPn=AMAP)。
ステップ12では、次式のごとく、気筒別の吸気管圧力平均値AMAP1〜AMAP4のうち、最大値と最小値との差をとって、AMAP1〜AMAP4の変動幅Bを算出する。
【0025】
B=MAX(AMAP1〜AMAP4)−MIN(AMAP1〜AMAP4)
ステップ13では、このAMAP1〜AMAP4の変動幅Bに基づいて、図6のフローに従って、第2の故障判定(平均値変動幅B判定)を行う。これについては後述する。
ステップ14では、積算値SMAP及び積算回数CNTをクリアして、処理を終了する。
【0026】
ここで、ステップ7(及び3,4)の部分が第1の圧力変動検出手段に相当し、ステップ8の部分が第1の故障判定手段に相当する。また、ステップ9〜12(及び5,6)の部分が第2の圧力変動検出手段に相当し、ステップ13の部分が第2の故障検出手段に相当する。
図5は第1の故障判定(振幅A判定)フローである。
【0027】
ステップ21では、所定の診断条件か否かを判定する。この部分が診断条件判定手段に相当する。ここで、所定の診断条件とは、次の(1)〜(3)の全てが成立していることとする。
(1)スロットル開度TVOがエンジン回転数Neに応じて比例的に割り付けたしきい値TVOSL以下(TVO≦TVOSL)。吸気管内に負圧があることを条件とするためである。
【0028】
(2)アクセル開度APOの変化量の絶対値ΔAPOが所定値以下(ΔAPO≦所定値)。過渡運転時を避けるためである。
(3)エンジン回転数Neの変化量の絶対値ΔNeが所定値以下(ΔNe≦所定値)。過渡運転時を避けるためである。
診断条件が成立していない場合は、本フローを終了し、診断条件が成立している場合に、ステップ22へ進む。
【0029】
ステップ22では、180°CA間での吸気管圧力MAPの変動幅(振幅)Aを予め定めた判定レベルと比較する。
比較の結果、A<判定レベルの場合は、一応正常とみなし、ステップ23で、カウンタOK1を1アップする(OK1=OK1+1)。
これに対し、A≧判定レベルの場合は、一応故障とみなし、ステップ24で、カウンタNG1を1アップする(NG1=NG1+1)。
【0030】
ステップ25では、サンプル数OKか、すなわち、OK1とNG1との和であるサンプル数が所定値以上か否かを判定し、所定値未満の場合は、処理を終了する。
サンプル数(OK1+NG1)が所定値以上の場合は、ステップ26へ進む。
ステップ26では、OK1に対するNG1の比(NG1/OK1)を所定値NG1#と比較する。
【0031】
比較の結果、NG1/OK1<NG1#の場合は、最終的に正常とみなし、ステップ28でカウンタOK1,NG1をクリアして、本フローを終了する。
これに対し、NG1/OK1≧NG1#の場合は、最終的に、ステップ27で故障と判定し(NG1判定)、ステップ28でカウンタOK1,NG1をクリアして、本フローを終了する。
【0032】
図6は第2の故障判定(平均値変動幅B判定)フローである。
ステップ31では、所定の診断条件か否かを判定する。この部分が診断条件判定手段に相当する。診断条件については、図5のステップ21での条件と同じである。
診断条件が成立していない場合は、本フローを終了し、診断条件が成立している場合に、ステップ32へ進む。
【0033】
ステップ32では、気筒間での吸気管圧力平均値AMAP1〜AMAP4の変動幅Bを予め定めた判定レベルと比較する。
比較の結果、B<判定レベルの場合は、一応正常とみなし、ステップ33で、カウンタOK2を1アップする(OK2=OK2+1)。
これに対し、B≧判定レベルの場合は、一応故障とみなし、ステップ34で、カウンタNG2を1アップする(NG2=NG2+1)。
【0034】
ステップ35では、サンプル数OKか、すなわち、OK2とNG2との和であるサンプル数が所定値以上か否かを判定し、所定値未満の場合は、処理を終了する。
サンプル数(OK2+NG2)が所定値以上の場合は、ステップ36へ進む。
ステップ36では、OK2に対するNG2の比(NG2/OK2)を所定値NG2#と比較する。
【0035】
比較の結果、NG2/OK2<NG2#の場合は、最終的に正常とみなし、ステップ38でカウンタOK2,NG2をクリアして、本フローを終了する。
これに対し、NG2/OK2≧NG2#の場合は、最終的に、ステップ37で故障と判定し(NG2判定)、ステップ38でカウンタOK2,NG2をクリアして、本フローを終了する。
【0036】
尚、図5の第1の故障判定フローのステップ27にて、NG1判定がなされた場合、又は、図6の第2の故障判定フローのステップ28にて、NG2判定がなされた場合は、それぞれ、所定のフェイルセーフ処理に移行する。
次に、各種故障モードに対する故障判定について、図7の模式図により説明する。
【0037】
各気筒の吸気弁を早閉じ制御している場合、正常時において、吸気管圧力MAPは、各サイクルの吸気弁開期間にて低下し、吸気弁が閉じると上昇する。
故障モード(1)…吸気弁開故障
例えば#1気筒の吸気弁が開故障(開きっぱなしで故障)すると、#1気筒のピストンの挙動が殆どそのまま吸気管圧力MAPに反映され、#1気筒の吸気行程時に吸気管圧力MAPが大きく低下し、圧縮行程時に吸気管圧力MAPが大きく上昇する。よって、180°CA間での吸気管圧力MAPの変動幅(振幅)Aが大となり、これにより故障が検出される。
【0038】
故障モード(2)…吸気弁閉故障
例えば#3気筒の吸気弁が閉故障(閉じっぱなしで故障)すると、#3気筒の吸気行程にて、吸気管圧力MAPが低下せず、上昇するので、このときの吸気管圧力平均値AMAP3が大きくなる。よって、気筒間での吸気管圧力平均値の変動幅Bが大となり、これにより故障が検出される。
【0039】
故障モード(3)…排気弁故障
例えば#3気筒の排気弁が開故障(開きっぱなしで故障)すると、#3気筒の吸気行程にて、吸気弁が開いたときに、排気弁も開いているため、排気が逆流し、吸気管圧力MAPが低下せず、上昇するので、このときの吸気管圧力平均値AMAP3が大きくなる。よって、気筒間での吸気管圧力平均値の変動幅Bが大となり、これにより故障が検出される。
【0040】
故障モード(4)…排気弁故障
例えば#3気筒の排気弁が閉故障(閉じっぱなしで故障)すると、#3気筒の吸気弁が開く直前の状態において、#3気筒のシリンダ内のガスが排出されず高圧状態にあるため、#3気筒の吸気弁が開いたときに、シリンダ内の高圧ガスが逆流し、吸気管圧力MAPが低下せず、上昇するので、このときの吸気管圧力平均値AMAP3が大きくなる。よって、気筒間での吸気管圧力平均値の変動幅Bが大となり、これにより故障が検出される。
【図面の簡単な説明】
【図1】本発明の構成を示す機能ブロック図
【図2】本発明の一実施形態を示す可変動弁エンジンのシステム図
【図3】吸排気弁の電磁駆動装置の基本構造図
【図4】故障検出のメインフローチャート
【図5】第1の故障判定(振幅A判定)のフローチャート
【図6】第2の故障判定(平均値変動幅B判定)のフローチャート
【図7】各種故障時の吸気管圧力変動を示す模式図
【符号の説明】
1 エンジン
4 点火栓
5 電磁駆動式の吸気弁
6 電磁駆動式の排気弁
9 電制スロットル弁
10 燃料噴射弁
11 コントロールユニット
12 クランク角センサ
13 アクセルペダルセンサ
14 エアフローメータ
15 スロットルセンサ
16 圧力センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a failure detection device for a variable valve engine including an electromagnetically driven intake / exhaust valve and a throttle valve.
[0002]
[Prior art]
2. Description of the Related Art As a conventional variable valve engine failure detection device, as disclosed in Japanese Patent Application Laid-Open No. 2-308913, there is a device that detects an absolute value of an intake pipe pressure and determines a failure when the pressure exceeds a predetermined value. . This is based on the fact that the suction negative pressure (intake pipe pressure) changes depending on the residual gas ratio in a region where the engine suction negative pressure is large. In particular, the residual gas changes depending on the magnitude of the valve overlap. it can.
[0003]
[Problems to be solved by the invention]
However, in such a conventional variable valve engine failure detection device, (1) it is likely to be erroneously detected due to the influence of temperature and atmospheric pressure. (2) Detection sensitivity other than valve overlap is small, and other failures are difficult to detect. (3) If a failure occurs only in a specific cylinder, the sensitivity is low and it is difficult to detect the failure. (4) Since it is greatly affected by the throttle opening, it cannot be detected other than at idle, and even at idle, it is easy to make an erroneous detection due to the effects of friction and auxiliary equipment loads.
[0004]
The present invention has been made in view of such conventional problems, and has as its object to enable a failure of an electromagnetically driven intake / exhaust valve in a variable valve engine to be accurately detected.
[0005]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, in a variable valve engine having an electromagnetically driven intake / exhaust valve and a throttle valve, as shown in FIG. 1, a signal from a pressure sensor for detecting an intake pipe pressure is provided. and based on the signal from the crank angle sensor, a variation state of the intake pipe pressure, a first pressure fluctuation detecting means for detecting the variation range of the intake pipe pressure at the crank angle periods 720 ° CA / number of cylinders, detection A first failure determination means for determining whether or not there is an intake valve opening failure based on the variation range of the intake pipe pressure thus configured, to configure a failure detection device for a variable valve engine.
[0006]
According to a second aspect of the present invention, in a variable valve engine having an electromagnetically driven intake / exhaust valve and a throttle valve, a signal from a pressure sensor for detecting an intake pipe pressure and a crank angle are provided as shown in FIG. Based on the signal from the sensor, the average value of the intake pipe pressure is calculated for each crank angle period of 720 ° CA / cylinder as a variation state of the intake pipe pressure, and the variation range of these average values is detected. A second pressure fluctuation detecting means for determining at least one of an intake valve closing failure, an exhaust valve opening failure, and an exhaust valve closing failure based on the fluctuation width of the detected average value of the intake pipe pressure; And a failure determination means of the present invention are provided to constitute a failure detection device for a variable valve engine.
According to the third aspect of the present invention, in a variable valve engine having an electromagnetically driven intake / exhaust valve and a throttle valve, based on a signal from a pressure sensor for detecting intake pipe pressure and a signal from a crank angle sensor. The first pressure fluctuation detecting means for detecting the fluctuation width of the intake pipe pressure during the crank angle period of 720 ° CA / cylinder as the fluctuation state of the intake pipe pressure, and the fluctuation width of the detected intake pipe pressure. A first failure determination unit that determines whether there is an intake valve opening failure; and a signal from a pressure sensor that detects intake pipe pressure and a signal from a crank angle sensor. A second pressure fluctuation detecting means for calculating an average value of the intake pipe pressure for each crank angle period of 720 ° CA / cylinder number and detecting a fluctuation range of the average value; and an average value of the detected intake pipe pressure. At least one of an intake valve closing fault, an exhaust valve opening fault, and an exhaust valve closing fault based on the fluctuation range of the variable valve engine. Configure the device.
[0007]
According to the fourth aspect of the present invention, there is provided a diagnostic condition determining means for determining, as a diagnostic condition, at least a region in which the intake pipe negative pressure is secured by the throttle valve. It is characterized by performing a failure determination.
[0008]
【The invention's effect】
According to the first to third aspects of the present invention, the fluctuation state of the intake pipe pressure is detected using the pressure sensor for detecting the intake pipe pressure and the crank angle sensor, and the failure of the intake and exhaust valves is detected based on the detected state. By determining the presence / absence, highly accurate failure determination can be performed, and erroneous diagnosis can be prevented.
Further, a failure can be determined without using a special sensor such as a lift sensor or a seat sensor, and diagnosis for multiple cylinders can be performed with one pressure sensor.
[0009]
In particular , according to the first and third aspects of the present invention, the variation of the intake pipe pressure is detected as a variation state of the intake pipe pressure and is compared with a determination level by detecting a variation width of the intake pipe pressure during a predetermined crank angle period. Open faults (failures when left open) can be reliably detected.
In particular , according to the second and third aspects of the present invention, the average value of the intake pipe pressure is calculated every predetermined crank angle period as the fluctuation state of the intake pipe pressure, and the fluctuation range of these average values is detected. Then, by comparing with the determination level, it is possible to reliably detect the intake valve closing failure (failure with the valve closed), the exhaust valve opening failure, and the closing failure.
[0010]
According to the fourth aspect of the present invention, by performing the failure determination in the region where the intake pipe negative pressure is secured by the throttle valve, it is possible to prevent erroneous diagnosis when the throttle with a small pressure fluctuation is fully opened.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 2 is a system diagram of a variable valve engine showing one embodiment of the present invention.
A combustion chamber 3 defined by a piston 2 of each cylinder of the engine 1 is provided with an electromagnetically driven intake valve 5 and an exhaust valve 6 so as to surround an ignition plug 4. 7, an intake passage; and 8, an exhaust passage.
[0012]
FIG. 3 shows a basic structure of an electromagnetic driving device (variable valve operating device) for the intake valve 5 and the exhaust valve 6. A plate-shaped mover 22 is attached to a valve shaft 21 of the valve body 20, and the mover 22 is urged to a neutral position by springs 23 and 24. The valve opening electromagnetic coil 25 is disposed below the movable element 22, and the valve closing electromagnetic coil 26 is disposed above the movable element 22.
[0013]
Therefore, when the valve is opened, the power supply to the upper valve closing electromagnetic coil 26 is stopped, and then the current is supplied to the lower valve opening electromagnetic coil 25 to attract the movable element 22 to the lower side. The valve body 20 is lifted to open the valve. Conversely, when closing the valve, the power supply to the lower valve-opening electromagnetic coil 25 is stopped, and then the current is supplied to the upper valve-closing electromagnetic coil 26 to attract the mover 22 upward. The valve body 20 is seated on the seat and closed.
[0014]
Returning to FIG. 2, in the intake passage 7, an electrically controlled throttle valve (intake throttle valve) 9 is provided in a common portion common to all cylinders.
The intake passage 7 is also provided with an electromagnetic fuel injection valve 10 at an intake port portion for each cylinder.
Here, the operations of the intake valve 5, the exhaust valve 6, the electronically controlled throttle valve 9, the fuel injection valve 10, and the spark plug 4 are controlled by a control unit 11, and the control unit 11 A crank angle sensor 12 capable of detecting an engine speed Ne together with a crank angle position by outputting an angle signal, an accelerator pedal sensor 13 detecting an accelerator opening (depression amount of an accelerator pedal) APO, a throttle valve 9 in the intake passage 7 An air flow meter 14 for detecting the intake air amount Qa upstream, a throttle sensor 15 for detecting the opening TVO of the throttle valve 9, and an intake pipe pressure (absolute pressure in the intake pipe) MAP downstream of the throttle valve 9 in the intake passage 7. A signal is input from the pressure sensor 16 or the like for detection.
[0015]
In the engine 1, in order to improve fuel efficiency by reducing pump loss, the valve timing of the electromagnetically driven intake valve 5 and the exhaust valve 6 is controlled, and particularly, the closing timing (IVC) of the intake valve 5 is early closed to control the intake. The air amount is controlled to perform the substantially non-throttle operation. In this case, the electronically controlled throttle valve 9 is provided for obtaining a negative pressure in the intake passage 7 under predetermined engine operating conditions.
[0016]
More specifically, the opening timing (IVO) of the intake valve 5 is set at a substantially constant timing near the exhaust top dead center (TDC), and the closing timing (IVC) of the intake valve 5 is determined by the accelerator opening APO and the engine speed Ne. Control is performed in consideration of the throttle opening TVO and / or the intake pipe pressure MAP according to a target air amount corresponding to a target torque determined based on the target air amount.
The opening timing (EVO) and closing timing (EVC) of the exhaust valve 6 are controlled so as to be the timing having the highest thermal efficiency.
[0017]
The fuel injection timing and the fuel injection amount of the fuel injection valve 10 are controlled based on the engine operating conditions. The fuel injection amount is basically controlled based on the intake air amount Qa detected by the air flow meter 14. Is controlled so that the air-fuel ratio becomes.
The ignition timing of the ignition plug 4 is controlled to the MBT or knock limit based on the engine operating conditions.
[0018]
Next, failure detection of the variable valve apparatus (the electromagnetically driven intake valve 5 and the exhaust valve 6) will be described with reference to a flowchart.
FIG. 4 is a main flow of the failure detection, which is executed as a 1 ms job.
In step 1 (referred to as S1 in the figure, the same applies hereinafter), the output voltage of the pressure sensor 16 is read and A / D converted to detect the intake pipe pressure MAP.
[0019]
In step 2, it is determined whether the timing is 720 ° CA / the number of cylinders, that is, in the case of four cylinders, whether the timing is every 180 ° CA or not. If NO, the process proceeds to steps 3 to 6.
In step 3, the maximum value MAPmax of the intake pipe pressure MAP between 180 ° CA is detected. Specifically, for the first time, the detected intake pipe pressure MAP is directly used as the maximum value MAPmax (MAPmax = MAP), and thereafter, the maximum value MAPmax stored and held and the newly detected intake pipe pressure MAP are used. Are compared, and when the newly detected intake pipe pressure MAP is larger, the maximum value MAPmax = MAP is updated.
[0020]
In step 4, the minimum value MAPmin of the intake pipe pressure MAP between 180 ° CA is detected. Specifically, for the first time, the detected intake pipe pressure MAP is directly set to the minimum value MAPmin (MAPmin = MAP), and thereafter, the minimum value MAPmin stored and held and the newly detected intake pipe pressure MAP are set. Are compared, and when the newly detected intake pipe pressure MAP is smaller, the minimum value MAPmin = MAP is updated.
[0021]
In step 5, the intake pipe pressure MAP is integrated for calculating the average value, and the integrated value SMAP is obtained (SMAP = SMAP + MAP).
In step 6, the counter CNT indicating the number of times of integration is incremented by 1 (CNT = CNT + 1). Thus, the process ends.
If the timing is for every 180 ° CA, the process proceeds to step 7 and subsequent steps.
[0022]
In step 7, based on the maximum value MAPmax and the minimum value MAPmin of the intake pipe pressure MAP between 180 ° CA, a variation width (amplitude) A = MAPmax−MAPmin of the intake pipe pressure MAP between 180 ° CA is calculated. I do.
In step 8, a first failure determination (amplitude A determination) is performed based on the amplitude A according to the flow of FIG. This will be described later.
[0023]
In step 9, cylinder discrimination is performed and n is set to one of 1 to 4 (in the case of four cylinders).
In step 10, an average value AMAP = SMAP / CNT of the intake pipe pressure MAP between 180 ° CA is calculated from the integrated value SMAP of the intake pipe pressure MAP between 180 ° CA and the integrated number CNT.
[0024]
In step 11, the calculated intake pipe pressure average value AMAP is stored and held for each cylinder (n = 1 to 4) (AMAPn = AMAP).
In step 12, the difference B between the maximum value and the minimum value among the average values of the intake pipe pressures AMAP1 to AMAP4 for each cylinder is calculated as in the following equation, and the fluctuation width B of AMAP1 to AMAP4 is calculated.
[0025]
B = MAX (AMAP1 to AMAP4) -MIN (AMAP1 to AMAP4)
In step 13, a second failure determination (average value variation B determination) is performed based on the variation B of AMAP1 to AMAP4 according to the flow of FIG. This will be described later.
In step 14, the integrated value SMAP and the integrated number CNT are cleared, and the process ends.
[0026]
Here, the step 7 (and 3, 4) corresponds to the first pressure fluctuation detecting means, and the step 8 corresponds to the first failure determining means. Steps 9 to 12 (and 5, 6) correspond to second pressure fluctuation detecting means, and step 13 corresponds to second failure detecting means.
FIG. 5 is a first failure determination (amplitude A determination) flow.
[0027]
In step 21, it is determined whether or not a predetermined diagnosis condition is satisfied. This part corresponds to diagnostic condition determination means. Here, the predetermined diagnosis condition is that all of the following (1) to (3) are satisfied.
(1) The throttle opening TVO is equal to or smaller than a threshold TVOSL proportionally allocated according to the engine speed Ne (TVO ≦ TVOSL). This is because the condition is that there is a negative pressure in the intake pipe.
[0028]
(2) The absolute value ΔAPO of the change amount of the accelerator opening APO is equal to or less than a predetermined value (ΔAPO ≦ predetermined value). This is to avoid transient operation.
(3) The absolute value ΔNe of the variation of the engine speed Ne is equal to or less than a predetermined value (ΔNe ≦ predetermined value). This is to avoid transient operation.
If the diagnosis condition is not satisfied, the flow ends, and if the diagnosis condition is satisfied, the process proceeds to step 22.
[0029]
In step 22, the fluctuation width (amplitude) A of the intake pipe pressure MAP between 180 ° CA is compared with a predetermined determination level.
As a result of the comparison, if A <determination level, it is regarded as normal, and the counter OK1 is incremented by one in step 23 (OK1 = OK1 + 1).
On the other hand, if A ≧ determination level, it is regarded as a failure, and the counter NG1 is incremented by 1 in step 24 (NG1 = NG1 + 1).
[0030]
In step 25, it is determined whether or not the number of samples is OK, that is, whether the number of samples, which is the sum of OK1 and NG1, is equal to or greater than a predetermined value.
If the number of samples (OK1 + NG1) is equal to or larger than the predetermined value, the process proceeds to step S26.
In step 26, the ratio of NG1 to OK1 (NG1 / OK1) is compared with a predetermined value NG1 #.
[0031]
As a result of the comparison, if NG1 / OK1 <NG1 #, it is finally regarded as normal, the counters OK1 and NG1 are cleared in step 28, and this flow ends.
On the other hand, if NG1 / OK1 ≧ NG1 #, it is finally determined that a failure has occurred in step 27 (NG1 determination), the counters OK1 and NG1 are cleared in step 28, and this flow ends.
[0032]
FIG. 6 is a flow of the second failure determination (average value variation width B determination) flow.
In step 31, it is determined whether or not a predetermined diagnostic condition is satisfied. This part corresponds to diagnostic condition determination means. The diagnostic conditions are the same as the conditions in step 21 of FIG.
If the diagnosis condition is not satisfied, the flow ends, and if the diagnosis condition is satisfied, the process proceeds to step 32.
[0033]
In step 32, the variation width B of the average intake pipe pressure values AMAP1 to AMAP4 between the cylinders is compared with a predetermined determination level.
If B <determination level as a result of the comparison, it is regarded as normal, and the counter OK2 is incremented by 1 in step 33 (OK2 = OK2 + 1).
On the other hand, if B ≧ determination level, it is regarded as a failure, and the counter NG2 is incremented by 1 in step 34 (NG2 = NG2 + 1).
[0034]
In step 35, it is determined whether or not the number of samples is OK, that is, the number of samples, which is the sum of OK2 and NG2, is equal to or greater than a predetermined value.
If the number of samples (OK2 + NG2) is equal to or larger than the predetermined value, the process proceeds to step S36.
In step 36, the ratio of NG2 to OK2 (NG2 / OK2) is compared with a predetermined value NG2 #.
[0035]
As a result of the comparison, if NG2 / OK2 <NG2 #, it is finally regarded as normal, the counters OK2 and NG2 are cleared in step 38, and this flow ends.
On the other hand, if NG2 / OK2 ≧ NG2 #, it is finally determined that a failure has occurred in step 37 (NG2 determination), the counters OK2 and NG2 are cleared in step 38, and this flow is terminated.
[0036]
Note that, when the NG1 determination is made in step 27 of the first failure determination flow in FIG. 5, or when the NG2 determination is made in step 28 of the second failure determination flow in FIG. Then, the process proceeds to a predetermined fail-safe process.
Next, failure determination for various failure modes will be described with reference to the schematic diagram of FIG.
[0037]
In the case where the intake valves of each cylinder are controlled to be closed early, the intake pipe pressure MAP decreases during a normal period of the intake valve opening period in each cycle, and increases when the intake valve is closed.
Failure mode (1): Intake valve open failure If, for example, the intake valve of cylinder # 1 opens (failure while opening), the behavior of the piston of cylinder # 1 is reflected almost directly on the intake pipe pressure MAP, and cylinder # 1 During the intake stroke, the intake pipe pressure MAP greatly decreases, and during the compression stroke, the intake pipe pressure MAP greatly increases. Therefore, the fluctuation width (amplitude) A of the intake pipe pressure MAP between 180 ° CA becomes large, and thereby a failure is detected.
[0038]
Failure mode (2): Intake valve closing failure If, for example, the intake valve of the # 3 cylinder closes (failure while being closed), the intake pipe pressure MAP does not decrease but increases in the intake stroke of the # 3 cylinder. At this time, the intake pipe pressure average value AMAP3 increases. Therefore, the fluctuation width B of the average value of the intake pipe pressure between the cylinders becomes large, whereby a failure is detected.
[0039]
Failure mode (3): Exhaust valve open failure For example, if the exhaust valve of cylinder # 3 opens (fails while it remains open), the exhaust valve opens when the intake valve opens in the intake stroke of cylinder # 3. Therefore, the exhaust gas flows backward, and the intake pipe pressure MAP does not decrease but rises, so that the intake pipe pressure average value AMAP3 at this time increases. Therefore, the fluctuation width B of the average value of the intake pipe pressure between the cylinders becomes large, whereby a failure is detected.
[0040]
Failure mode (4): Exhaust valve closing failure For example, if the exhaust valve of the # 3 cylinder closes (fails when it is left closed), the gas in the cylinder of the # 3 cylinder immediately before the intake valve of the # 3 cylinder opens. Is not discharged, and when the intake valve of the # 3 cylinder is opened, the high-pressure gas in the cylinder flows backward, and the intake pipe pressure MAP does not decrease but rises. The average value AMAP3 increases. Therefore, the fluctuation width B of the average value of the intake pipe pressure between the cylinders becomes large, whereby a failure is detected.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing the configuration of the present invention. FIG. 2 is a system diagram of a variable valve engine showing one embodiment of the present invention. FIG. 3 is a basic structural diagram of an electromagnetic drive device for intake and exhaust valves. FIG. 5 is a flowchart of a first failure determination (amplitude A determination). FIG. 6 is a flowchart of a second failure determination (average value fluctuation width B determination). FIG. 7 is an intake at various failures. Schematic diagram showing pipe pressure fluctuations [Explanation of symbols]
Reference Signs List 1 engine 4 ignition plug 5 electromagnetically driven intake valve 6 electromagnetically driven exhaust valve 9 electrically controlled throttle valve 10 fuel injection valve 11 control unit 12 crank angle sensor 13 accelerator pedal sensor 14 air flow meter 15 throttle sensor 16 pressure sensor

Claims (4)

電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、
吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間における吸気管圧力の変動幅を検出する第1の圧力変動検出手段と、
検出された吸気管圧力の変動幅に基づいて、吸気弁開故障の有無を判定する第1の故障判定手段と、
を設けたことを特徴とする可変動弁エンジンの故障検出装置。
In a variable valve engine having an electromagnetically driven intake / exhaust valve and a throttle valve,
Based on the signal from the pressure sensor for detecting the intake pipe pressure and the signal from the crank angle sensor , the variation range of the intake pipe pressure during the crank angle period of 720 ° CA / number of cylinders is detected as the variation state of the intake pipe pressure. First pressure fluctuation detecting means for performing
First failure determination means for determining the presence or absence of an intake valve opening failure based on the detected fluctuation width of the intake pipe pressure;
A failure detection device for a variable valve engine, comprising:
電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、
吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間毎に吸気管圧力の平均値を算出し、これらの平均値の変動幅を検出する第2の圧力変動検出手段と、
検出された吸気管圧力の平均値の変動幅に基づいて、少なくとも、吸気弁閉故障、排気弁開故障、排気弁閉故障のいずれかの有無を判定する第2の故障判定手段と、
を設けたことを特徴とする可変動弁エンジンの故障検出装置。
In a variable valve engine having an electromagnetically driven intake / exhaust valve and a throttle valve,
Based on the signal from the pressure sensor for detecting the intake pipe pressure and the signal from the crank angle sensor , the average value of the intake pipe pressure is set for each crank angle period of 720 ° CA / cylinder as a variation state of the intake pipe pressure. A second pressure fluctuation detecting means for calculating and detecting a fluctuation width of these average values ;
A second failure determination unit configured to determine at least one of an intake valve closing failure, an exhaust valve opening failure, and an exhaust valve closing failure based on a variation range of the detected average value of the intake pipe pressure;
A failure detection device for a variable valve engine, comprising:
電磁駆動式の吸排気弁を備えると共に、スロットル弁を備える可変動弁エンジンにおいて、In a variable valve engine including an electromagnetically driven intake / exhaust valve and a throttle valve,
吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間における吸気管圧力の変動幅を検出する第1の圧力変動検出手段と、Based on the signal from the pressure sensor for detecting the intake pipe pressure and the signal from the crank angle sensor, the variation range of the intake pipe pressure during the crank angle period of 720 ° CA / cylinder is detected as the variation state of the intake pipe pressure. A first pressure fluctuation detecting means,
検出された吸気管圧力の変動幅に基づいて、吸気弁開故障の有無を判定する第1の故障判定手段と、First failure determination means for determining the presence or absence of an intake valve opening failure based on the detected fluctuation width of the intake pipe pressure;
吸気管圧力を検出する圧力センサからの信号とクランク角センサからの信号とに基づいて、吸気管圧力の変動状態として、720°CA/気筒数のクランク角期間毎に吸気管圧力の平均値を算出し、これらの平均値の変動幅を検出する第2の圧力変動検出手段と、Based on the signal from the pressure sensor for detecting the intake pipe pressure and the signal from the crank angle sensor, the average value of the intake pipe pressure is set for each crank angle period of 720 ° CA / cylinder as a variation state of the intake pipe pressure. A second pressure fluctuation detecting means for calculating and detecting a fluctuation width of these average values;
検出された吸気管圧力の平均値の変動幅に基づいて、少なくとも、吸気弁閉故障、排気弁開故障、排気弁閉故障のいずれかの有無を判定する第2の故障判定手段と、A second failure determination unit configured to determine at least one of an intake valve closing failure, an exhaust valve opening failure, and an exhaust valve closing failure based on a variation range of the detected average value of the intake pipe pressure;
を設けたことを特徴とする可変動弁エンジンの故障検出装置。A failure detection device for a variable valve engine, comprising:
少なくともスロットル弁により吸気管負圧を確保している領域であることを診断条件として判定する診断条件判定手段を設け、診断条件の成立時にのみ、前記故障判定手段による故障判定を行わせることを特徴とする請求項1〜請求項3のいずれか1つに記載の可変動弁エンジンの故障検出装置。Diagnosis condition determining means for determining as a diagnostic condition that at least the region where the intake pipe negative pressure is secured by the throttle valve is provided, and the failure determination by the failure determination means is performed only when the diagnostic condition is satisfied. The variable valve engine failure detection device according to any one of claims 1 to 3.
JP24690898A 1998-09-01 1998-09-01 Failure detection device for variable valve engine Expired - Fee Related JP3572383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24690898A JP3572383B2 (en) 1998-09-01 1998-09-01 Failure detection device for variable valve engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24690898A JP3572383B2 (en) 1998-09-01 1998-09-01 Failure detection device for variable valve engine

Publications (2)

Publication Number Publication Date
JP2000073792A JP2000073792A (en) 2000-03-07
JP3572383B2 true JP3572383B2 (en) 2004-09-29

Family

ID=17155547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24690898A Expired - Fee Related JP3572383B2 (en) 1998-09-01 1998-09-01 Failure detection device for variable valve engine

Country Status (1)

Country Link
JP (1) JP3572383B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221668A (en) 2010-11-18 2013-07-24 丰田自动车株式会社 Control device of internal combustion engine
JP6135580B2 (en) 2014-03-31 2017-05-31 マツダ株式会社 Engine control device
KR102394549B1 (en) * 2016-12-09 2022-05-04 현대자동차 주식회사 Method and apparatus for diagnosing engine system
DE102019211495B4 (en) * 2019-08-01 2021-04-01 Vitesco Technologies GmbH Method and device for checking the condition of the exhaust valves of an engine of a motor vehicle

Also Published As

Publication number Publication date
JP2000073792A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US6779508B2 (en) Control system of internal combustion engine
US6827051B2 (en) Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
US6741924B2 (en) Apparatus and method for engine cylinder intake air quantity calculation
JP2001050091A (en) Cylinder intake air volume calculation unit in engine with variable valve timing
JP3747700B2 (en) Intake air amount calculation device for variable valve engine
JP3572442B2 (en) Intake air amount estimation device for variable valve engine
US8209112B2 (en) Method and device for operating an internal combustion engine
CN112166245B (en) Control device for internal combustion engine and control method for internal combustion engine
JP3323700B2 (en) Diagnostic device for exhaust gas recirculation system of internal combustion engine
JP2964447B2 (en) Diagnostic device for exhaust gas recirculation system of internal combustion engine
JP3572383B2 (en) Failure detection device for variable valve engine
US7721707B2 (en) Abnormality determination apparatus and abnormality determination method for valve
JP2012132423A (en) Control device for internal combustion engine
JP3807173B2 (en) Intake air amount detection device and fuel injection control device for variable valve engine
JP3799833B2 (en) Cylinder intake air amount detection device for variable valve engine
JP3915367B2 (en) Control device for variable valve engine
JP3791267B2 (en) Control device for variable valve engine
JP5798796B2 (en) Engine control device
JP3800828B2 (en) Cylinder residual gas amount detection device for variable valve engine
JP3620381B2 (en) Control device for variable valve engine
JPH11257137A (en) Fuel injection controller of engine
JP3189001B2 (en) Diagnosis device for exhaust gas recirculation system of internal combustion engine
JP3941489B2 (en) Intake valve control device for internal combustion engine
JP2014020206A (en) Failure detection device of internal combustion engine
JPH04112908A (en) Apparatus for diagnosing operational condition of variable valve timing mechanism in internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees