WO2012077230A1 - Abnormality determination device for internal combustion engine - Google Patents

Abnormality determination device for internal combustion engine Download PDF

Info

Publication number
WO2012077230A1
WO2012077230A1 PCT/JP2010/072244 JP2010072244W WO2012077230A1 WO 2012077230 A1 WO2012077230 A1 WO 2012077230A1 JP 2010072244 W JP2010072244 W JP 2010072244W WO 2012077230 A1 WO2012077230 A1 WO 2012077230A1
Authority
WO
WIPO (PCT)
Prior art keywords
lift
valve
intake
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2010/072244
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 錦織
中川 徳久
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/072244 priority Critical patent/WO2012077230A1/en
Publication of WO2012077230A1 publication Critical patent/WO2012077230A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality determination device for an internal combustion engine, and more particularly to an abnormality determination device for an internal combustion engine that determines the presence or absence of an abnormality in a variable valve mechanism of an exhaust valve.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an abnormality determination device for an internal combustion engine that can determine an operation abnormality of a variable valve lift mechanism with a simple configuration. .
  • a first invention is an abnormality determination device for an internal combustion engine,
  • a variable valve lift mechanism capable of variably setting the lift characteristic of the exhaust valve of the internal combustion engine;
  • Intake pipe pressure acquisition means for acquiring the intake pipe pressure of the internal combustion engine;
  • the variable valve lift mechanism is driven to advance the closing timing of the exhaust valve in the BTDC direction, the variable valve lift is based on the change in the intake pipe pressure when the intake valve is opened immediately after the operation.
  • An abnormality determining means for determining an abnormal operation of the mechanism It is characterized by having.
  • the variable valve lift mechanism is A first lift cam; A second lift cam at which the closing timing of the exhaust valve is advanced in the BTDC direction relative to the first lift cam; A switching mechanism for switching a lift cam for operating the exhaust valve between the first lift cam and the second lift cam; The abnormality determining means determines an abnormality related to a switching operation from the first lift cam to the second lift cam by the switching mechanism.
  • the opening timing of the intake valve is in the vicinity of the intake TDC
  • the closing timing of the exhaust valve by the second lift cam is a timing advanced from the intake TDC in the BTDC direction.
  • 4th invention is 2nd or 3rd invention, A lift amount of the exhaust valve by the second lift cam is smaller than that of the first lift cam.
  • An intake valve phase variable mechanism capable of variably setting the phase of the intake valve;
  • Valve control means for driving the intake valve phase variable mechanism to vary the opening timing of the intake valve to the vicinity of the intake TDC when the abnormality determining means determines an abnormal operation of the variable valve lift mechanism; Is further provided.
  • a sixth invention is any one of the first to fifth inventions, An exhaust valve phase variable mechanism capable of variably setting the phase of the exhaust valve; A second valve control means for driving the exhaust valve phase variable mechanism to advance the closing timing of the exhaust valve in the BTDC direction when the abnormality determination means determines an operation abnormality of the variable valve lift mechanism; Is further provided.
  • a seventh invention is the invention according to any one of the first to sixth inventions,
  • the abnormality determining means is characterized by determining an operation abnormality of the variable valve lift mechanism during fuel cut of the internal combustion engine.
  • an abnormal operation of the variable valve lift mechanism provided in the exhaust valve is determined based on a change in the intake pipe pressure when the intake valve is opened (IVO).
  • the variable valve lift mechanism is driven to advance the exhaust valve closing timing (EVC) in the BTDC direction, the exhaust blowback to the intake system at IVO increases. The influence of the blowback is superimposed on the intake pipe pressure at the IVO.
  • the operation abnormality of the variable valve lift mechanism can be determined with high accuracy.
  • the EVC when the switching operation from the first lift cam to the second lift cam by the switching mechanism is normally performed, the EVC is advanced in the BTDC direction, so that the intake system at the IVO is moved to the intake system. Exhaust blowback increases. Therefore, according to the present invention, an abnormality related to the switching operation of the variable valve lift mechanism can be determined with high accuracy based on the intake pipe pressure at the IVO immediately after the switching operation of the lift cam.
  • the exhaust blow-back to the intake system can be increased in the IVO immediately after the switching operation by the variable valve lift mechanism, so that the accuracy of the abnormality determination can be effectively increased.
  • the lift amount of the exhaust valve by the second lift cam is configured to be smaller than that of the first lift cam. Therefore, according to the present invention, when the variable valve lift mechanism is driven to switch from the first lift cam to the second lift cam, the exhaust gas blowback to the intake system at the IVO immediately thereafter can be increased. Therefore, the accuracy of abnormality determination can be increased effectively.
  • the intake valve phase variable mechanism when determining whether or not the variable valve lift mechanism is operating abnormally, the intake valve phase variable mechanism is driven to vary the IVO in the vicinity of the intake TDC. For this reason, according to the present invention, it is possible to effectively suppress a situation in which an overlap with the exhaust valve occurs during abnormality determination.
  • the exhaust valve phase variable mechanism when determining whether or not there is an abnormal operation of the variable valve lift mechanism, the exhaust valve phase variable mechanism is driven to advance the EVC in the BTDC direction. For this reason, according to the present invention, it is possible to effectively suppress the occurrence of an overlap with the intake valve at the time of abnormality determination, and to effectively suppress the decrease in torque and the generation of abnormal noise from the intake manifold. it can.
  • the seventh aspect during the fuel cut of the internal combustion engine, it is determined whether there is an abnormal operation of the variable valve lift mechanism. Therefore, according to the present invention, it is possible to determine whether or not there is an abnormal operation of the variable valve lift mechanism without affecting the torque request of the driver.
  • FIG. 4 is a cross-sectional view of a first rocker arm 46 and second rocker arms 48R and 48L provided in the variable valve lift mechanism 32.
  • FIG. 4 is a side view of the first rocker arm 46.
  • FIG. It is a side view of the 2nd rocker arm 48R.
  • 4 is a cross-sectional view of a first rocker arm 46 and second rocker arms 48R and 48L provided in the variable valve lift mechanism 32.
  • FIG. FIG. 5 is a PV diagram showing a change in in-cylinder pressure P with respect to a stroke volume V in the cylinder.
  • FIG. It is a figure which compares the lift profile of the 1st lift cam 56 and the 2nd lift cam 64.
  • FIG. It is a figure which shows the change of the intake pipe pressure at the time of implementing switching operation by a variable valve lift mechanism. It is a figure for demonstrating the system configuration
  • FIG. 1 is a diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system shown in FIG. 1 includes an internal combustion engine 10.
  • a piston 12 is provided in each cylinder of the internal combustion engine 10.
  • a combustion chamber 14 is formed on the top side of the piston 12 in each cylinder.
  • An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
  • an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided.
  • a throttle valve 22 is provided downstream of the air flow meter 20.
  • Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 24 for injecting fuel into the intake port and an ignition plug 26 for igniting the air-fuel mixture in the combustion chamber 14.
  • Each cylinder of the internal combustion engine 10 is provided with two intake valves 28 and two exhaust valves 30.
  • the internal combustion engine 10 also includes a variable valve lift mechanism 32 that variably controls the lift characteristics of the exhaust valve 30.
  • the configuration and function of the variable valve lift mechanism 32 will be described later in detail.
  • crank angle sensor 38 for detecting the rotation angle (crank angle) of the crankshaft 36 and the engine speed is disposed in the vicinity of the crankshaft 36 of the internal combustion engine 10. Further, a surge tank 42 provided in the middle of the intake passage 16 is provided with a pressure sensor 44 for detecting the intake pipe pressure.
  • the system of the present embodiment includes an ECU (Electronic Control Unit) 40.
  • ECU Electronic Control Unit
  • Various sensors for controlling the internal combustion engine 10 such as the crank angle sensor 38 and the pressure sensor 44 described above are electrically connected to the ECU 40.
  • the ECU 40 is electrically connected to various actuators such as the fuel injection valve 24 described above.
  • the ECU 40 controls the operating state of the internal combustion engine 10 based on those sensor outputs.
  • FIG. 2 is a cross-sectional view of the first rocker arm 46 and the second rocker arms 48R and 48L provided in the variable valve lift mechanism 32.
  • the variable valve lift mechanism 32 includes a first rocker arm 46 and a pair of second rocker arms 48R and 48L disposed on both sides thereof.
  • These rocker arms 46, 48 ⁇ / b> R, 48 ⁇ / b> L can swing around a common rocker shaft 50.
  • the rocker shaft 50 is supported by the cylinder head of the internal combustion engine 10 via a pair of hydraulic lash adjusters 52.
  • FIG. 3 is a side view of the first rocker arm 46.
  • the variable valve lift mechanism 32 has a camshaft 54.
  • the camshaft 54 is connected to the crankshaft 36 via a timing chain or the like, and rotates at a half speed of the crankshaft 36.
  • the cam shaft 54 includes a first lift cam 56 for opening and closing one exhaust valve 30 (front).
  • the first rocker arm 46 is provided with a first roller 58.
  • the first rocker arm 46 is biased counterclockwise in FIG. 3 by a torsion coil spring 60.
  • the first roller 58 is pressed against the first lift cam 56 by this urging force. With such a configuration, the first rocker arm 46 swings as the first lift cam 56 rotates.
  • FIG. 4 is a side view of the second rocker arm 48R.
  • the movable end of the second rocker arm 48R is in contact with the end of the valve stem of one exhaust valve 30 (front).
  • the exhaust valve 30 (front) is biased in the valve closing direction by a valve spring 62.
  • the cam shaft 54 includes a second lift cam 64 at a position corresponding to the second rocker arm 48R.
  • the second lift cam 64 is a cam that opens and closes the exhaust valve 30 (front) via the second rocker arm 48R.
  • the profile of the second lift cam 64 is such that the closing timing of the exhaust valve 30 (rear) advances from the intake TDC toward BTDC as compared with the closing timing and lift amount of the exhaust valve 30 (front) driven by the first lift cam 56.
  • a second roller 66R is provided on the second rocker arm 48R.
  • the outer diameter of the roller 66 ⁇ / b> R is equal to the outer diameter of the first roller 58 provided on the first rocker arm 46.
  • the distance between the center of the rocker shaft 50 and the center of the second roller 66 ⁇ / b> R is equal to the distance between the center of the rocker shaft 50 and the center of the first roller 58.
  • FIG. 5 is a side view of the second rocker arm 48L.
  • the movable end of the second rocker arm 48L is in contact with the end of the valve stem of one exhaust valve 30 (rear).
  • the exhaust valve 30 (rear) is urged in the valve closing direction by a valve spring 62.
  • the cam shaft 54 includes a third lift cam 68 at a position corresponding to the second rocker arm 48L.
  • the third lift cam 68 is a cam that opens and closes the exhaust valve 30 (rear) via the second rocker arm 48L.
  • the profile of the third lift cam 68 is set similarly to that of the first lift cam 56.
  • the configuration of the second roller 66L is the same as the configuration of the second roller 66R.
  • the variable valve lift mechanism 32 includes a switching mechanism 70 that switches between a state where the first rocker arm 46 and the second rocker arm 48R are connected and a state where they are separated.
  • the switching mechanism 70 is configured such that the switching force causes the acting force of the first lift cam 56 to be transmitted to the second rocker arm 48R via the first rocker arm 46 and the acting force to the second rocker arm 48R.
  • the operation state of the exhaust valve 30 (front) can be switched between the valve operation state by the first lift cam 56 and the valve operation state by the second lift cam 64 by switching the state where it is not transmitted.
  • the first rocker arm 46 has a first support shaft 72 installed concentrically with the first roller 58, and the second rocker arms 48 ⁇ / b> R and 48 ⁇ / b> L have second rollers 66 ⁇ / b> R, The second support shafts 74R and 74L are provided concentrically with 66L.
  • the driving unit 80 is configured to be able to displace the displacement member 82 in the left-right direction in FIG. 2 in accordance with a command from the ECU 40.
  • first support shaft 72 of the first rocker arm 46 One end of the first support shaft 72 of the first rocker arm 46 is closed, and a return spring 84 is installed therein.
  • the return spring 84 presses the first pin 76 rightward in FIG.
  • the first pin 76 and the second pin 78 are urged to the right in FIG.
  • FIG. 6 is a cross-sectional view of the first rocker arm 46 and the second rocker arms 48R and 48L provided in the variable valve lift mechanism 32. In this state, the first pin 76 and the second pin 78 are in contact with each other in the gap between the first rocker arm 46 and the second rocker arm 48R.
  • the exhaust valve 30 (rear) is always opened and closed using the third lift cam 68, and the first rocker arm 46 and the second rocker arm 48R By switching between the connected state and the separated state, the operating state of the exhaust valve 30 (front) can be switched between the valve operating state by the first lift cam 56 and the valve operating state by the second lift cam 64.
  • the system according to the first embodiment is characterized by an operation for determining an abnormal operation of the variable valve lift mechanism 32. That is, when an operation abnormality occurs in the variable valve lift mechanism 32 and a situation in which the lift cam used for valve operation cannot be switched occurs, there is a concern that fuel consumption and emission may be deteriorated. For this reason, it is desirable that an abnormal operation occurring in the variable valve lift mechanism 32 is detected early and with high accuracy.
  • it is not realistic to provide a lift sensor for each valve because it is structurally limited and it is necessary to determine the failure of these sensors.
  • FIG. 7 is a PV diagram showing the change of the in-cylinder pressure P with respect to the in-cylinder stroke volume V.
  • the in-cylinder pressure at the intake TDC when the negative valve overlap is set ((a) in the figure) is the same as when the positive valve overlap is set ((b in the figure) ) And (c)).
  • the negative overlap amount is increased as the closing timing (EVC) of the exhaust valve 30 is advanced from the intake TDC toward BTDC.
  • EVC closing timing
  • the exhaust in the IVO immediately after the switch operation command to the variable valve lift mechanism 32 is taken into account.
  • the presence or absence of abnormal operation of the variable valve lift mechanism 32 is determined based on the gas blowback.
  • FIG. 8 is a diagram comparing the lift profiles of the first lift cam 56 and the second lift cam 64.
  • the lift profile of the first lift cam 56 of the variable valve lift mechanism 32 of the present embodiment is defined so that EVC is substantially the intake TDC.
  • the lift profile of the second lift cam 64 is set so that the EVC is advanced in the BTDC direction than that of the first lift cam 56 and the lift amount is low.
  • the EVC of the exhaust valve 30 (front) is inhaled.
  • the angle is advanced from TDC to BTDC.
  • the negative valve overlap increases, and the amount of exhaust gas blown back into the intake system immediately after the IVO increases.
  • the valve lift amount of the exhaust valve 30 (front) is reduced.
  • the in-cylinder pressure at the EVC increases, and the amount of exhaust gas blown back into the intake system in the IVO immediately after that increases.
  • FIG. 9 is a diagram illustrating a change in the intake pipe pressure when the switching operation by the variable valve lift mechanism is performed.
  • the intake pipe pressure absolute pressure
  • the abnormal operation of the variable valve lift mechanism 32 can be accurately detected by detecting the intake pipe pressure at this time (absolute pressure, pulsation between cycles, variation thereof) using the pressure sensor 44. It becomes possible.
  • the blowback of the exhaust gas in IVO is detected using the pressure sensor 44 arrange
  • the method for detecting the exhaust gas blowback at the IVO is not limited to this.
  • the in-cylinder pressure detection value at the IVO may be used. This can also be applied to the system of the second embodiment described later.
  • variable valve lift mechanism 32 capable of selecting the lift cam of one of the two exhaust valves 30 (front) from two is used.
  • the configuration of the applicable variable valve lift mechanism is not limited to this. That is, if the EVC of at least one exhaust valve can be changed from the vicinity of the intake TDC toward the BTDC toward the advance side, for example, a variable valve in which both lift cams of the two exhaust valves can be selected from a plurality of types.
  • a lift mechanism may be used.
  • an exhaust valve is provided for transmitting the rotational motion of the camshaft to the exhaust valve as a lift motion, and the exhaust valve is changed by changing the swing position of the swing member.
  • a working angle variable mechanism capable of expanding or reducing the working angle while keeping the valve opening timing substantially constant may be used. This can also be applied to the system of the second embodiment described later.
  • the pressure sensor 44 corresponds to the “intake pipe pressure acquisition means” in the first invention.
  • FIG. 10 is a diagram for explaining a system configuration according to the second embodiment of the present invention.
  • the system of the second embodiment is configured in the same manner as the system of the first embodiment shown in FIG. 1 described above except that the configuration of the variable valve device that drives the intake and exhaust valves 28 and 30 is different. Yes.
  • the system of the second embodiment includes a variable valve timing mechanism (VVT) 33 as a variable valve operating device for the intake valve 28.
  • VVT variable valve timing mechanism
  • the system according to the second embodiment includes a VVT 34 as a variable valve operating device for the exhaust valve 30.
  • the VVTs 33 and 34 are configured such that the camshaft phase angle with respect to the crankshaft 36 can be advanced or retarded by hydraulic pressure. Since the configuration and functions of the VVTs 33 and 34 are known techniques, detailed description thereof is omitted.
  • FIG. 11 is a diagram illustrating an example of control for varying the valve timing phase of the intake valve. In the example shown in this figure, the valve timing phase is varied so that the IVO of the intake valve 28 is close to the intake TDC.
  • the valve timing according to the engine request is controlled normally, and when the abnormality of the variable valve lift mechanism 32 is determined, the IVO is varied in the vicinity of the intake TDC and the exhaust valve 30 is connected. It is possible to eliminate valve overlap.
  • FIG. 12 is a diagram illustrating an example of control for varying the valve timing phase of the exhaust valve.
  • the valve timing phase is varied so that the EVC of the exhaust valve 30 becomes closer to the BTDC side.
  • the negative valve overlap with the intake valve 28 is further expanded when the abnormality is determined in the variable valve lift mechanism 32 while controlling the valve timing according to the engine demand in normal times. Therefore, it is possible to suppress the torque reduction and the generation of abnormal noise from the intake manifold.
  • Embodiment 2 Although there is no mention about the operation state at the time of determining the presence or absence of abnormality of the variable valve lift mechanism 32, it is preferable to execute during the fuel cut. As a result, it is possible to determine whether or not the variable valve lift mechanism 32 is abnormal without affecting the torque request of the driver. If the VVTs 33 and 34 are varied at the time of abnormality determination of the variable valve lift mechanism 32, it is desirable to return to the original VVT position after returning from the fuel cut after completion of the abnormality determination. Thereby, the deterioration of the emission when returning from the fuel cut can be effectively suppressed.
  • the pressure sensor 44 corresponds to the “intake pipe pressure acquisition means” in the first invention.
  • the VVT 33 corresponds to the “intake valve phase variable mechanism” in the fifth invention
  • the VVT 34 corresponds to the “exhaust valve phase variable mechanism” in the sixth invention.

Abstract

Provided is an abnormality determination device for an internal combustion engine, which is capable of determining the abnormality of the operation of a variable valve lift mechanism by a simple configuration. An abnormality determination device is provided with a variable valve lift mechanism (32) which comprises a first lift cam (56) and a second lift cam (64) by which the exhaust valve closing timing (EVC) is more advanced toward BTDC than by the first lift cam (56), and can variably set the lift characteristics of an exhaust valve (30) by switching between the lift cams, and a pressure sensor (44) which acquires intake pipe pressure, and when the switching from the first lift cam (56) to the second lift cam (64) is performed by driving the variable valve lift mechanism (32), determines the abnormality of the operation of the variable valve lift mechanism (32) on the basis of the change of the intake pipe pressure when an intake valve (28) is opened (IVO) immediately after the operation of the switching. More preferably, the abnormality of the operation of the variable valve lift mechanism (32) is determined during fuel cut.

Description

内燃機関の異常判定装置Abnormality determination device for internal combustion engine
 この発明は、内燃機関の異常判定装置に係り、特に、排気弁の可変動弁機構の異常有無を判定する内燃機関の異常判定装置に関する。 The present invention relates to an abnormality determination device for an internal combustion engine, and more particularly to an abnormality determination device for an internal combustion engine that determines the presence or absence of an abnormality in a variable valve mechanism of an exhaust valve.
 従来、例えば日本特開2004-100487号公報に開示されるように、吸気弁及び排気弁のリフト量を検出するリフトセンサを利用して、可変バルブリフト機構の動作異常を検出する装置が知られている。この装置では、具体的には、気筒休止機構付きエンジンにおける吸気弁および排気弁の動作異常をリフトセンサにより直接的に検出し、どの異常状態であるかを判定した上で適切な処理を実行することとしている。 2. Description of the Related Art Conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-1000048, there is known an apparatus that detects an abnormal operation of a variable valve lift mechanism using a lift sensor that detects lift amounts of intake valves and exhaust valves. ing. Specifically, in this apparatus, abnormal operation of the intake valve and the exhaust valve in an engine with a cylinder deactivation mechanism is directly detected by a lift sensor, and an appropriate process is executed after determining which abnormal state it is. I am going to do that.
日本特開2004-100487号公報Japanese Unexamined Patent Publication No. 2004-1000048 日本特開2005-172593号公報Japanese Unexamined Patent Publication No. 2005-172593 日本特開2004-100486号公報Japanese Unexamined Patent Publication No. 2004-1000048
 しかしながら、上述した従来の技術のように、可変バルブリフト機構の動作異常をリフトセンサにより検出する構成では、当該リフトセンサ自体の故障判定も必要となる。このため、既存の構成を活用して可変バルブリフト機構の動作異常を判定するシステムの構築が望まれていた。 However, in the configuration in which the abnormal operation of the variable valve lift mechanism is detected by the lift sensor as in the conventional technique described above, it is necessary to determine the failure of the lift sensor itself. For this reason, it has been desired to construct a system that uses an existing configuration to determine an abnormal operation of the variable valve lift mechanism.
 この発明は、上述のような課題を解決するためになされたもので、簡易な構成で可変バルブリフト機構の動作異常を判定することのできる内燃機関の異常判定装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an abnormality determination device for an internal combustion engine that can determine an operation abnormality of a variable valve lift mechanism with a simple configuration. .
 第1の発明は、上記の目的を達成するため、内燃機関の異常判定装置であって、
 内燃機関の排気弁のリフト特性を可変に設定可能な可変バルブリフト機構と、
 前記内燃機関の吸気管圧力を取得する吸気管圧力取得手段と、
 前記可変バルブリフト機構を駆動して前記排気弁の閉じ時期をBTDC方向へ進角する場合に、その動作直後の吸気弁の開弁時の前記吸気管圧力の変化に基づいて、前記可変バルブリフト機構の動作異常を判定する異常判定手段と、
 を備えることを特徴としている。
In order to achieve the above object, a first invention is an abnormality determination device for an internal combustion engine,
A variable valve lift mechanism capable of variably setting the lift characteristic of the exhaust valve of the internal combustion engine;
Intake pipe pressure acquisition means for acquiring the intake pipe pressure of the internal combustion engine;
When the variable valve lift mechanism is driven to advance the closing timing of the exhaust valve in the BTDC direction, the variable valve lift is based on the change in the intake pipe pressure when the intake valve is opened immediately after the operation. An abnormality determining means for determining an abnormal operation of the mechanism;
It is characterized by having.
 第2の発明は、第1の発明において、
 前記可変バルブリフト機構は、
 第1リフトカムと、
 前記排気弁の閉じ時期が前記第1リフトカムよりもBTDC方向へ進角された時期となる第2リフトカムと、
 前記排気弁を稼動するためのリフトカムを、前記第1リフトカムと前記第2リフトカムとの間で切り替える切り替え機構と、を有し、
 前記異常判定手段は、前記切り替え機構による前記第1リフトカムから前記第2リフトカムへの切り替え動作に係る異常を判定することを特徴としている。
According to a second invention, in the first invention,
The variable valve lift mechanism is
A first lift cam;
A second lift cam at which the closing timing of the exhaust valve is advanced in the BTDC direction relative to the first lift cam;
A switching mechanism for switching a lift cam for operating the exhaust valve between the first lift cam and the second lift cam;
The abnormality determining means determines an abnormality related to a switching operation from the first lift cam to the second lift cam by the switching mechanism.
 第3の発明は、第2の発明において、
 前記吸気弁の開き時期は吸気TDCの近傍であり、
 前記第2リフトカムによる前記排気弁の閉じ時期は、前記吸気TDCからBTDC方向へ進角された時期であることを特徴としている。
According to a third invention, in the second invention,
The opening timing of the intake valve is in the vicinity of the intake TDC,
The closing timing of the exhaust valve by the second lift cam is a timing advanced from the intake TDC in the BTDC direction.
 第4の発明は、第2または第3の発明において、
 前記第2リフトカムによる前記排気弁のリフト量は、前記第1リフトカムのそれよりも小さいことを特徴としている。
4th invention is 2nd or 3rd invention,
A lift amount of the exhaust valve by the second lift cam is smaller than that of the first lift cam.
 第5の発明は、第1乃至第4の何れか1つの発明において、
 前記吸気弁の位相を可変に設定可能な吸気弁位相可変機構と、
 前記異常判定手段により前記可変バルブリフト機構の動作異常を判定する場合に、前記吸気弁位相可変機構を駆動して前記吸気弁の開き時期を吸気TDCの近傍へ可変させる弁制御手段と、
 を更に備えることを特徴としている。
According to a fifth invention, in any one of the first to fourth inventions,
An intake valve phase variable mechanism capable of variably setting the phase of the intake valve;
Valve control means for driving the intake valve phase variable mechanism to vary the opening timing of the intake valve to the vicinity of the intake TDC when the abnormality determining means determines an abnormal operation of the variable valve lift mechanism;
Is further provided.
 第6の発明は、第1乃至第5の何れか1つの発明において、
 前記排気弁の位相を可変に設定可能な排気弁位相可変機構と、
 前記異常判定手段により前記可変バルブリフト機構の動作異常を判定する場合に、前記排気弁位相可変機構を駆動して前記排気弁の閉じ時期をBTDC方向へ進角させる第2の弁制御手段と、
 を更に備えることを特徴としている。
A sixth invention is any one of the first to fifth inventions,
An exhaust valve phase variable mechanism capable of variably setting the phase of the exhaust valve;
A second valve control means for driving the exhaust valve phase variable mechanism to advance the closing timing of the exhaust valve in the BTDC direction when the abnormality determination means determines an operation abnormality of the variable valve lift mechanism;
Is further provided.
 第7の発明は、第1乃至第6の何れか1つの発明において、
 前記異常判定手段は、前記内燃機関の燃料カット中に前記可変バルブリフト機構の動作異常を判定することを特徴としている。
A seventh invention is the invention according to any one of the first to sixth inventions,
The abnormality determining means is characterized by determining an operation abnormality of the variable valve lift mechanism during fuel cut of the internal combustion engine.
 第1の発明によれば、吸気弁が開弁されたとき(IVO)の吸気管圧力の変化に基づいて、排気弁に設けられた可変バルブリフト機構の動作異常が判定される。可変バルブリフト機構を駆動して排気弁の閉じ時期(EVC)をBTDC方向へ進角すると、IVOでの吸気系への排気の吹き返しが大きくなる。IVOでの吸気管圧力には、当該吹き返しの影響が重畳する。このため、本発明によれば、可変バルブリフト機構の動作直後のIVOでの吸気管圧力に基づいて、該可変バルブリフト機構の動作異常を高精度に判定することができる。 According to the first invention, an abnormal operation of the variable valve lift mechanism provided in the exhaust valve is determined based on a change in the intake pipe pressure when the intake valve is opened (IVO). When the variable valve lift mechanism is driven to advance the exhaust valve closing timing (EVC) in the BTDC direction, the exhaust blowback to the intake system at IVO increases. The influence of the blowback is superimposed on the intake pipe pressure at the IVO. For this reason, according to the present invention, based on the intake pipe pressure in the IVO immediately after the operation of the variable valve lift mechanism, the operation abnormality of the variable valve lift mechanism can be determined with high accuracy.
 第2の発明によれば、切り替え機構による第1リフトカムから第2リフトカムへの切り替え動作が正常に実施された場合においては、EVCがBTDC方向へ進角されることによりIVOでの吸気系への排気の吹き返しが大きくなる。このため、本発明によれば、リフトカムの切り替え動作直後のIVOでの吸気管圧力に基づいて、該可変バルブリフト機構の切り替え動作に係る異常を高精度に判定することができる。 According to the second invention, when the switching operation from the first lift cam to the second lift cam by the switching mechanism is normally performed, the EVC is advanced in the BTDC direction, so that the intake system at the IVO is moved to the intake system. Exhaust blowback increases. Therefore, according to the present invention, an abnormality related to the switching operation of the variable valve lift mechanism can be determined with high accuracy based on the intake pipe pressure at the IVO immediately after the switching operation of the lift cam.
 第3の発明によれば、排気弁のリフトカムが第1リフトカムから第2リフトカムへ切り替えられると、負のバルブオーバーラップが発生する。このため、本発明によれば、可変バルブリフト機構による切り替え動作直後のIVOにおいて、吸気系への排気の吹き返しを大きくすることができるので、異常判定の精度を有効に高めることができる。 According to the third invention, when the lift cam of the exhaust valve is switched from the first lift cam to the second lift cam, a negative valve overlap occurs. For this reason, according to the present invention, the exhaust blow-back to the intake system can be increased in the IVO immediately after the switching operation by the variable valve lift mechanism, so that the accuracy of the abnormality determination can be effectively increased.
 第4の発明によれば、第2リフトカムによる排気弁のリフト量は、第1リフトカムのそれよりも小さくなるように構成されている。このため、本発明によれば、可変バルブリフト機構を駆動して第1リフトカムから第2リフトカムへ切り替えた場合に、その直後のIVOでの吸気系への排気ガスの吹き返しを大きくすることができるので、異常判定の精度を有効に高めることができる。 According to the fourth invention, the lift amount of the exhaust valve by the second lift cam is configured to be smaller than that of the first lift cam. Therefore, according to the present invention, when the variable valve lift mechanism is driven to switch from the first lift cam to the second lift cam, the exhaust gas blowback to the intake system at the IVO immediately thereafter can be increased. Therefore, the accuracy of abnormality determination can be increased effectively.
 第5の発明によれば、可変バルブリフト機構の動作異常の有無を判定する場合に、吸気弁位相可変機構が駆動されてIVOが吸気TDCの近傍に可変される。このため、本発明によれば、異常判定の際に排気弁とのオーバーラップが発生する事態を有効に抑止することができる。 According to the fifth aspect of the invention, when determining whether or not the variable valve lift mechanism is operating abnormally, the intake valve phase variable mechanism is driven to vary the IVO in the vicinity of the intake TDC. For this reason, according to the present invention, it is possible to effectively suppress a situation in which an overlap with the exhaust valve occurs during abnormality determination.
 第6の発明によれば、可変バルブリフト機構の動作異常の有無を判定する場合に、排気弁位相可変機構が駆動されてEVCがBTDC方向に進角される。このため、本発明によれば、異常判定の際に吸気弁とのオーバーラップが発生する事態を有効に抑止するとともに、トルクの低下やインテークマニホールドからの異音の発生を有効に抑止することができる。 According to the sixth aspect of the invention, when determining whether or not there is an abnormal operation of the variable valve lift mechanism, the exhaust valve phase variable mechanism is driven to advance the EVC in the BTDC direction. For this reason, according to the present invention, it is possible to effectively suppress the occurrence of an overlap with the intake valve at the time of abnormality determination, and to effectively suppress the decrease in torque and the generation of abnormal noise from the intake manifold. it can.
 第7の発明によれば、内燃機関の燃料カット中に、可変バルブリフト機構の動作異常の有無が判定される。このため、本発明によれば、ドライバのトルク要求に影響を与えることなく、可変バルブリフト機構の動作異常の有無を判定することができる。 According to the seventh aspect, during the fuel cut of the internal combustion engine, it is determined whether there is an abnormal operation of the variable valve lift mechanism. Therefore, according to the present invention, it is possible to determine whether or not there is an abnormal operation of the variable valve lift mechanism without affecting the torque request of the driver.
本発明の実施の形態1のシステム構成を説明するための図である。It is a figure for demonstrating the system configuration | structure of Embodiment 1 of this invention. 可変バルブリフト機構32が備える第1ロッカーアーム46および第2ロッカーアーム48R、48Lの断面図である。4 is a cross-sectional view of a first rocker arm 46 and second rocker arms 48R and 48L provided in the variable valve lift mechanism 32. FIG. 第1ロッカーアーム46の側面図である。4 is a side view of the first rocker arm 46. FIG. 第2ロッカーアーム48Rの側面図である。It is a side view of the 2nd rocker arm 48R. 第2ロッカーアーム48Lの側面図である。It is a side view of the 2nd rocker arm 48L. 可変バルブリフト機構32が備える第1ロッカーアーム46および第2ロッカーアーム48R、48Lの断面図である。4 is a cross-sectional view of a first rocker arm 46 and second rocker arms 48R and 48L provided in the variable valve lift mechanism 32. FIG. 筒内の行程容積Vに対する筒内圧Pの変化を示すP-V線図である。FIG. 5 is a PV diagram showing a change in in-cylinder pressure P with respect to a stroke volume V in the cylinder. 第1リフトカム56および第2リフトカム64のリフトプロファイルを比較する図である。It is a figure which compares the lift profile of the 1st lift cam 56 and the 2nd lift cam 64. FIG. 可変バルブリフト機構による切り替え動作を実施した場合の吸気管圧力の変化を示す図である。It is a figure which shows the change of the intake pipe pressure at the time of implementing switching operation by a variable valve lift mechanism. 本発明の実施の形態2のシステム構成を説明するための図である。It is a figure for demonstrating the system configuration | structure of Embodiment 2 of this invention. 吸気弁のバルブタイミング位相を可変させる制御の一例を示す図である。It is a figure which shows an example of the control which varies the valve timing phase of an intake valve. 排気弁のバルブタイミング位相を可変させる制御の一例を示す図である。It is a figure which shows an example of the control which varies the valve timing phase of an exhaust valve.
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10の各気筒内には、ピストン12が設けられている。各気筒内には、ピストン12の頂部側に燃焼室14が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram for explaining a system configuration according to the first embodiment of the present invention. The system shown in FIG. 1 includes an internal combustion engine 10. A piston 12 is provided in each cylinder of the internal combustion engine 10. A combustion chamber 14 is formed on the top side of the piston 12 in each cylinder. An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
 吸気通路16の入口近傍には、吸気通路16に吸入される空気の流量に応じた信号を出力するエアフローメータ20が設けられている。エアフローメータ20の下流には、スロットルバルブ22が設けられている。また、内燃機関10の各気筒には、吸気ポート内に燃料を噴射するための燃料噴射弁24と、燃焼室14内の混合気に点火するための点火プラグ26とが設けられている。 Near the inlet of the intake passage 16, an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided. A throttle valve 22 is provided downstream of the air flow meter 20. Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 24 for injecting fuel into the intake port and an ignition plug 26 for igniting the air-fuel mixture in the combustion chamber 14.
 内燃機関10の各気筒には、吸気弁28と排気弁30とがそれぞれ2個ずつ設けられている。また、内燃機関10は、排気弁30のリフト特性を可変制御する可変バルブリフト機構32を備えている。尚、可変バルブリフト機構32の構成および機能等に関しては、その詳細を後述する。 Each cylinder of the internal combustion engine 10 is provided with two intake valves 28 and two exhaust valves 30. The internal combustion engine 10 also includes a variable valve lift mechanism 32 that variably controls the lift characteristics of the exhaust valve 30. The configuration and function of the variable valve lift mechanism 32 will be described later in detail.
 また、内燃機関10のクランクシャフト36の近傍には、クランクシャフト36の回転角度(クランク角度)やエンジン回転数を検出するためのクランク角センサ38が配置されている。更に、吸気通路16の途中に設けられたサージタンク42には、吸気管圧力を検出するための圧力センサ44が配置されている。 Further, a crank angle sensor 38 for detecting the rotation angle (crank angle) of the crankshaft 36 and the engine speed is disposed in the vicinity of the crankshaft 36 of the internal combustion engine 10. Further, a surge tank 42 provided in the middle of the intake passage 16 is provided with a pressure sensor 44 for detecting the intake pipe pressure.
 本実施形態のシステムは、ECU(Electronic Control Unit)40を備えている。ECU40には、上述したクランク角センサ38、圧力センサ44等の内燃機関10を制御するための各種センサが電気的に接続されている。また、ECU40には、上述した燃料噴射弁24等の各種アクチュエータが電気的に接続されている。ECU40は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御する。 The system of the present embodiment includes an ECU (Electronic Control Unit) 40. Various sensors for controlling the internal combustion engine 10 such as the crank angle sensor 38 and the pressure sensor 44 described above are electrically connected to the ECU 40. The ECU 40 is electrically connected to various actuators such as the fuel injection valve 24 described above. The ECU 40 controls the operating state of the internal combustion engine 10 based on those sensor outputs.
[実施の形態1の可変動弁装置の構成]
 次に、図2乃至図6を参照して、本実施形態の可変バルブリフト機構32の構成およびその動作について説明する。図2は、可変バルブリフト機構32が備える第1ロッカーアーム46および第2ロッカーアーム48R、48Lの断面図である。図2に示すように、可変バルブリフト機構32は、第1ロッカーアーム46と、その両側に配置された一対の第2ロッカーアーム48R、48Lとを各気筒に備えている。これらのロッカーアーム46、48R、48Lは、共通のロッカーシャフト50を中心として揺動可能になっている。ロッカーシャフト50は、一対の油圧ラッシュアジャスタ52を介して内燃機関10のシリンダヘッドに支持されている。
[Configuration of Variable Valve Operating Apparatus of Embodiment 1]
Next, with reference to FIG. 2 thru | or FIG. 6, the structure and operation | movement of the variable valve lift mechanism 32 of this embodiment are demonstrated. FIG. 2 is a cross-sectional view of the first rocker arm 46 and the second rocker arms 48R and 48L provided in the variable valve lift mechanism 32. As shown in FIG. 2, the variable valve lift mechanism 32 includes a first rocker arm 46 and a pair of second rocker arms 48R and 48L disposed on both sides thereof. These rocker arms 46, 48 </ b> R, 48 </ b> L can swing around a common rocker shaft 50. The rocker shaft 50 is supported by the cylinder head of the internal combustion engine 10 via a pair of hydraulic lash adjusters 52.
 図3は、第1ロッカーアーム46の側面図である。図3に示すように、可変バルブリフト機構32は、カムシャフト54を有している。カムシャフト54は、タイミングチェーン等を介してクランクシャフト36と連結されており、クランクシャフト36の2分の1の速度で回転する。カムシャフト54は、一方の排気弁30(前)を開閉駆動させるための第1リフトカム56を備えている。一方、第1ロッカーアーム46には、第1ローラ58が設けられている。第1ロッカーアーム46は、捩じりコイルばね60により、図3中で反時計回りに付勢されている。この付勢力により、第1ローラ58は、第1リフトカム56に押し当てられている。このような構成により、第1リフトカム56の回転に伴い、第1ロッカーアーム46が揺動する。 FIG. 3 is a side view of the first rocker arm 46. As shown in FIG. 3, the variable valve lift mechanism 32 has a camshaft 54. The camshaft 54 is connected to the crankshaft 36 via a timing chain or the like, and rotates at a half speed of the crankshaft 36. The cam shaft 54 includes a first lift cam 56 for opening and closing one exhaust valve 30 (front). On the other hand, the first rocker arm 46 is provided with a first roller 58. The first rocker arm 46 is biased counterclockwise in FIG. 3 by a torsion coil spring 60. The first roller 58 is pressed against the first lift cam 56 by this urging force. With such a configuration, the first rocker arm 46 swings as the first lift cam 56 rotates.
 図4は、第2ロッカーアーム48Rの側面図である。図4に示すように、第2ロッカーアーム48Rの可動端は、一方の排気弁30(前)のバルブステムの端部に当接している。排気弁30(前)は、バルブスプリング62により、閉弁方向に付勢されている。カムシャフト54は、第2ロッカーアーム48Rに対応した位置に、第2リフトカム64を備えている。第2リフトカム64は、第2ロッカーアーム48Rを介して、排気弁30(前)を開閉駆動するカムである。第2リフトカム64のプロファイルは、第1リフトカム56により駆動される排気弁30(前)の閉じ時期およびリフト量と比べて、排気弁30(後)の閉じ時期が吸気TDCからBTDCに向かって進角側且つ低リフト量になるように設定されている。第2ロッカーアーム48Rには、第2ローラ66Rが設けられている。このローラ66Rの外径は、第1ロッカーアーム46に設けられた第1ローラ58の外径に等しい。また、ロッカーシャフト50の中心と第2ローラ66Rの中心との距離は、ロッカーシャフト50の中心と第1ローラ58の中心との距離に等しい。排気弁30(前)が閉じているときには、第2ローラ66Rは、第2リフトカム64に当接している。 FIG. 4 is a side view of the second rocker arm 48R. As shown in FIG. 4, the movable end of the second rocker arm 48R is in contact with the end of the valve stem of one exhaust valve 30 (front). The exhaust valve 30 (front) is biased in the valve closing direction by a valve spring 62. The cam shaft 54 includes a second lift cam 64 at a position corresponding to the second rocker arm 48R. The second lift cam 64 is a cam that opens and closes the exhaust valve 30 (front) via the second rocker arm 48R. The profile of the second lift cam 64 is such that the closing timing of the exhaust valve 30 (rear) advances from the intake TDC toward BTDC as compared with the closing timing and lift amount of the exhaust valve 30 (front) driven by the first lift cam 56. It is set so as to have a small lift amount on the corner side. A second roller 66R is provided on the second rocker arm 48R. The outer diameter of the roller 66 </ b> R is equal to the outer diameter of the first roller 58 provided on the first rocker arm 46. The distance between the center of the rocker shaft 50 and the center of the second roller 66 </ b> R is equal to the distance between the center of the rocker shaft 50 and the center of the first roller 58. When the exhaust valve 30 (front) is closed, the second roller 66R is in contact with the second lift cam 64.
 図5は、第2ロッカーアーム48Lの側面図である。図5に示すように、第2ロッカーアーム48Lの可動端は、一方の排気弁30(後)のバルブステムの端部に当接している。排気弁30(後)は、バルブスプリング62により、閉弁方向に付勢されている。カムシャフト54は、第2ロッカーアーム48Lに対応した位置に、第3リフトカム68を備えている。第3リフトカム68は、第2ロッカーアーム48Lを介して、排気弁30(後)を開閉駆動するカムである。第3リフトカム68のプロファイルは、第1リフトカム56のそれと同様に設定されている。第2ローラ66Lの構成は、第2ローラ66Rの構成と同様である。 FIG. 5 is a side view of the second rocker arm 48L. As shown in FIG. 5, the movable end of the second rocker arm 48L is in contact with the end of the valve stem of one exhaust valve 30 (rear). The exhaust valve 30 (rear) is urged in the valve closing direction by a valve spring 62. The cam shaft 54 includes a third lift cam 68 at a position corresponding to the second rocker arm 48L. The third lift cam 68 is a cam that opens and closes the exhaust valve 30 (rear) via the second rocker arm 48L. The profile of the third lift cam 68 is set similarly to that of the first lift cam 56. The configuration of the second roller 66L is the same as the configuration of the second roller 66R.
 可変バルブリフト機構32は、第1ロッカーアーム46と第2ロッカーアーム48Rとが連結した状態と分離した状態とを切り替える切り替え機構70を備えている。切り替え機構70は、そのような切り替え動作により、第1リフトカム56の作用力が第1ロッカーアーム46を介して第2ロッカーアーム48Rに伝達される状態と、当該作用力が第2ロッカーアーム48Rに伝達されない状態とを切り換えて、排気弁30(前)の動作状態を、第1リフトカム56による弁稼動状態と第2リフトカム64による弁稼動状態との間で切り換えることができるようになっている。 The variable valve lift mechanism 32 includes a switching mechanism 70 that switches between a state where the first rocker arm 46 and the second rocker arm 48R are connected and a state where they are separated. The switching mechanism 70 is configured such that the switching force causes the acting force of the first lift cam 56 to be transmitted to the second rocker arm 48R via the first rocker arm 46 and the acting force to the second rocker arm 48R. The operation state of the exhaust valve 30 (front) can be switched between the valve operation state by the first lift cam 56 and the valve operation state by the second lift cam 64 by switching the state where it is not transmitted.
 図2に示すように、第1ロッカーアーム46は、第1ローラ58と同心的に設置された第1支軸72を有し、第2ロッカーアーム48R、48Lは、それぞれ、第2ローラ66R、66Lと同心的に設置された第2支軸74R、74Lを有している。 As shown in FIG. 2, the first rocker arm 46 has a first support shaft 72 installed concentrically with the first roller 58, and the second rocker arms 48 </ b> R and 48 </ b> L have second rollers 66 </ b> R, The second support shafts 74R and 74L are provided concentrically with 66L.
 図2に示す状態では、第2ロッカーアーム48Rの第2支軸74Rには、大部分が第1ロッカーアーム46に挿入された第1ピン76の一部が挿入されている。これにより、第1ロッカーアーム46と第2ロッカーアーム48Rとが第1ピン76を介して連結される。従って、第1リフトカム56の回転に伴って第1ロッカーアーム46が揺動すると、これに伴って第2ロッカーアーム48Rも揺動するので、排気弁30(前)が第1リフトカム56のプロファイルに従い開閉動作を行う。 In the state shown in FIG. 2, a part of the first pin 76 that is mostly inserted into the first rocker arm 46 is inserted into the second support shaft 74R of the second rocker arm 48R. Thus, the first rocker arm 46 and the second rocker arm 48R are connected via the first pin 76. Accordingly, when the first rocker arm 46 swings with the rotation of the first lift cam 56, the second rocker arm 48R also swings with this, so that the exhaust valve 30 (front) follows the profile of the first lift cam 56. Open and close.
 第2支軸74Rに挿入された第2ピン78の一端は、第2ロッカーアーム48Rの側面を超えて突出している。この突出した第2ピン78の一端は、駆動手段80の変位部材82に当接している。駆動手段80は、ECU40の指令に従って、変位部材82を図2中の左右方向に変位させることができるように構成されている。 One end of the second pin 78 inserted into the second support shaft 74R protrudes beyond the side surface of the second rocker arm 48R. One end of the protruding second pin 78 is in contact with the displacement member 82 of the driving means 80. The driving unit 80 is configured to be able to displace the displacement member 82 in the left-right direction in FIG. 2 in accordance with a command from the ECU 40.
 第1ロッカーアーム46の第1支軸72の一端は閉じられており、その中にはリターンスプリング84が設置されている。このリターンスプリング84は、第1ピン76を図2中で右方向へ押圧している。これにより、第1ピン76および第2ピン78は、図2中で右方向へ付勢されている。 One end of the first support shaft 72 of the first rocker arm 46 is closed, and a return spring 84 is installed therein. The return spring 84 presses the first pin 76 rightward in FIG. Thus, the first pin 76 and the second pin 78 are urged to the right in FIG.
 図2に示す連結状態において、駆動手段80がリターンスプリング84の付勢力に打ち勝つ力で変位部材82を図2中の左方向に変位させると、第2ピン78および第1ピン76が図2中の左方向に移動し、図6に示す状態となる。図6は、可変バルブリフト機構32が備える第1ロッカーアーム46および第2ロッカーアーム48R、48Lの断面図である。この状態では、第1ピン76と第2ピン78とは、第1ロッカーアーム46と第2ロッカーアーム48Rとの隙間において互いに当接している。このため、第1リフトカム56の回転に伴って第1ロッカーアーム46が揺動しても、その揺動は第2ロッカーアーム48Rへは伝達されない。そして、第2ロッカーアーム48Rの第2ローラ66Rは、第2リフトカム64と接触している。このため、第2リフトカム64の回転に伴って第2ロッカーアーム48Rが揺動すると、排気弁30(前)は第2リフトカム64のプロファイルに従い開閉動作を行う。 In the connected state shown in FIG. 2, when the driving member 80 displaces the displacement member 82 in the left direction in FIG. 2 with a force that overcomes the urging force of the return spring 84, the second pin 78 and the first pin 76 are shown in FIG. To the left, and the state shown in FIG. 6 is obtained. FIG. 6 is a cross-sectional view of the first rocker arm 46 and the second rocker arms 48R and 48L provided in the variable valve lift mechanism 32. In this state, the first pin 76 and the second pin 78 are in contact with each other in the gap between the first rocker arm 46 and the second rocker arm 48R. For this reason, even if the first rocker arm 46 swings as the first lift cam 56 rotates, the swing is not transmitted to the second rocker arm 48R. The second roller 66R of the second rocker arm 48R is in contact with the second lift cam 64. For this reason, when the second rocker arm 48R swings with the rotation of the second lift cam 64, the exhaust valve 30 (front) opens and closes according to the profile of the second lift cam 64.
 また、図6に示す状態、すなわち、第1ロッカーアーム46と、第2ロッカーアーム48Rとが分離した状態において、第1ロッカーアーム46の第1ローラ58が図2に示すように第1リフトカム56のベース円に接触しているときには、2つのピン76、78の中心が一致する。このときに、駆動手段80を作動させ、これらのピン76、78を図6中の右方向に移動させることにより、図2に示す連結状態に切り換えることができる。 Further, in the state shown in FIG. 6, that is, in the state where the first rocker arm 46 and the second rocker arm 48R are separated, the first roller 58 of the first rocker arm 46 is moved to the first lift cam 56 as shown in FIG. When touching the base circle, the centers of the two pins 76 and 78 coincide. At this time, it is possible to switch to the connected state shown in FIG. 2 by operating the driving means 80 and moving these pins 76 and 78 in the right direction in FIG.
 以上説明したように、可変バルブリフト機構32によれば、排気弁30(後)については常時第3リフトカム68を用いて開閉動作をさせつつ、第1ロッカーアーム46と第2ロッカーアーム48Rとが連結した状態と分離した状態とを切り換えることにより、排気弁30(前)の動作状態を、第1リフトカム56による弁稼動状態と第2リフトカム64による弁稼動状態との間で切り替えることができる。 As described above, according to the variable valve lift mechanism 32, the exhaust valve 30 (rear) is always opened and closed using the third lift cam 68, and the first rocker arm 46 and the second rocker arm 48R By switching between the connected state and the separated state, the operating state of the exhaust valve 30 (front) can be switched between the valve operating state by the first lift cam 56 and the valve operating state by the second lift cam 64.
[本実施の形態1の特徴的動作]
 次に、図7乃至図10を参照して、本実施の形態1のシステムの特徴的動作について説明する。本実施の形態1のシステムは、可変バルブリフト機構32の動作異常を判定する動作に特徴を有している。すなわち、可変バルブリフト機構32に動作異常が発生し、弁稼動に用いるリフトカムを切り替えることができない事態が発生した場合、燃費やエミッションの悪化を招くおそれがある。このため、可変バルブリフト機構32に発生した動作異常は、早期に且つ精度よく検出されることが望ましい。この点、例えば、排気弁30のそれぞれにリフトセンサを設けて動作異常を検出することが考えられる。しかしながら、近年の多弁構造の内燃機関においては、各弁にリフトセンサを設けることは構造上の制約がある上に、これらのセンサの故障判定も行う必要があり現実的ではない。
[Characteristic operation of the first embodiment]
Next, characteristic operations of the system according to the first embodiment will be described with reference to FIGS. The system according to the first embodiment is characterized by an operation for determining an abnormal operation of the variable valve lift mechanism 32. That is, when an operation abnormality occurs in the variable valve lift mechanism 32 and a situation in which the lift cam used for valve operation cannot be switched occurs, there is a concern that fuel consumption and emission may be deteriorated. For this reason, it is desirable that an abnormal operation occurring in the variable valve lift mechanism 32 is detected early and with high accuracy. In this regard, for example, it is conceivable to provide a lift sensor for each of the exhaust valves 30 to detect an abnormal operation. However, in an internal combustion engine having a multi-valve structure in recent years, it is not realistic to provide a lift sensor for each valve because it is structurally limited and it is necessary to determine the failure of these sensors.
 ここで、吸気弁28を開くタイミング(IVO)における吸気系への排気ガスの吹き返しは、排気弁30とのバルブオーバーラップ量によって変化する。図7は、筒内の行程容積Vに対する筒内圧Pの変化を示すP-V線図である。この図に示すとおり、負のバルブオーバーラップが設定されている場合(図中の(a))の吸気TDCにおける筒内圧は、正のバルブオーバーラップが設定されている場合(図中の(b)および(c))のそれよりも大きな値となっている。このことからも分かるように、例えばIVOが吸気TDC近傍に設定されている場合には、排気弁30の閉じタイミング(EVC)が吸気TDCからBTDCに向かって進角されるほど負のオーバーラップ量が大きくなり、これにより排気ガスの吹き返し量が増大することとなる。 Here, the return of exhaust gas to the intake system at the timing of opening the intake valve 28 (IVO) varies depending on the valve overlap amount with the exhaust valve 30. FIG. 7 is a PV diagram showing the change of the in-cylinder pressure P with respect to the in-cylinder stroke volume V. As shown in this figure, the in-cylinder pressure at the intake TDC when the negative valve overlap is set ((a) in the figure) is the same as when the positive valve overlap is set ((b in the figure) ) And (c)). As can be seen from this, for example, when IVO is set in the vicinity of the intake TDC, the negative overlap amount is increased as the closing timing (EVC) of the exhaust valve 30 is advanced from the intake TDC toward BTDC. As a result, the amount of exhaust gas blown back increases.
 そこで、本実施の形態のシステムでは、可変バルブリフト機構32によるリフトカムの切り替え動作によってEVCを変化させることができる点に着目し、当該可変バルブリフト機構32への切り替え動作指令の直後のIVOにおける排気ガスの吹き返しに基づいて、該可変バルブリフト機構32の動作異常の有無を判定することとした。 Accordingly, in the system of the present embodiment, focusing on the fact that the EVC can be changed by the lift cam switching operation by the variable valve lift mechanism 32, the exhaust in the IVO immediately after the switch operation command to the variable valve lift mechanism 32 is taken into account. The presence or absence of abnormal operation of the variable valve lift mechanism 32 is determined based on the gas blowback.
 特に、本実施の形態の可変バルブリフト機構32では、異常判定の精度を高めるために、第1リフトカム56から第2リフトカム64への切り替えによって、IVOにおける排気ガスの吹き返しが大きくなるように、これらのリフトカムのリフトプロファイルが設定されている。図8は、第1リフトカム56および第2リフトカム64のリフトプロファイルを比較する図である。この図に示すとおり、本実施の形態の可変バルブリフト機構32の第1リフトカム56は、EVCが略吸気TDCとなるようにそのリフトプロファイルが規定されている。また、第2リフトカム64は、EVCが第1リフトカム56のそれよりもBTDC方向に進角され、且つリフト量が低リフトとなるようにそのリフトプロファイルが設定されている。 In particular, in the variable valve lift mechanism 32 of the present embodiment, in order to increase the accuracy of the abnormality determination, switching from the first lift cam 56 to the second lift cam 64 increases the exhaust gas blowback in the IVO. The lift profile of the lift cam is set. FIG. 8 is a diagram comparing the lift profiles of the first lift cam 56 and the second lift cam 64. As shown in this figure, the lift profile of the first lift cam 56 of the variable valve lift mechanism 32 of the present embodiment is defined so that EVC is substantially the intake TDC. The lift profile of the second lift cam 64 is set so that the EVC is advanced in the BTDC direction than that of the first lift cam 56 and the lift amount is low.
 このようなリフトプロファイルの第1リフトカム56および第2リフトカム64によれば、第1リフトカム56から第2リフトカム64への切り替え動作が正常に実施されると、排気弁30(前)のEVCが吸気TDCからBTDC方向へ進角される。これにより、負のバルブオーバーラップが拡大するので、その直後のIVOにおける吸気系への排気ガスの吹き返し量が増大する。また、第1リフトカム56から第2リフトカム64への切り替え動作が正常に実施されると、排気弁30(前)のバルブリフト量が小さくされる。これにより、EVCでの筒内圧が上昇するので、その直後のIVOにおける吸気系への排気ガスの吹き返し量が増大する。 According to the first lift cam 56 and the second lift cam 64 having such a lift profile, when the switching operation from the first lift cam 56 to the second lift cam 64 is normally performed, the EVC of the exhaust valve 30 (front) is inhaled. The angle is advanced from TDC to BTDC. As a result, the negative valve overlap increases, and the amount of exhaust gas blown back into the intake system immediately after the IVO increases. Further, when the switching operation from the first lift cam 56 to the second lift cam 64 is normally performed, the valve lift amount of the exhaust valve 30 (front) is reduced. As a result, the in-cylinder pressure at the EVC increases, and the amount of exhaust gas blown back into the intake system in the IVO immediately after that increases.
 IVOにおける排気ガスの吹き返しは、吸気管圧力として検出することができる。図9は、可変バルブリフト機構による切り替え動作を実施した場合の吸気管圧力の変化を示す図である。この図に示すとおり、可変バルブリフト機構32による切り替え動作に異常が発生した場合には、正常に切り替えが実施された場合に比して吸気管圧力(絶対圧)が大きくなっている。したがって、圧力センサ44を用いてこのときの吸気管圧力(絶対圧、サイクル間の脈動、それらの変化量等)を検出することにより、可変バルブリフト機構32の動作異常を精度よく検出することが可能となる。 The exhaust gas blowback in the IVO can be detected as the intake pipe pressure. FIG. 9 is a diagram illustrating a change in the intake pipe pressure when the switching operation by the variable valve lift mechanism is performed. As shown in this figure, when an abnormality occurs in the switching operation by the variable valve lift mechanism 32, the intake pipe pressure (absolute pressure) is larger than when switching is normally performed. Therefore, the abnormal operation of the variable valve lift mechanism 32 can be accurately detected by detecting the intake pipe pressure at this time (absolute pressure, pulsation between cycles, variation thereof) using the pressure sensor 44. It becomes possible.
 ところで、上述した実施の形態1においては、サージタンク42内に配置された圧力センサ44を用いてIVOでの排気ガスの吹き返しを検出し、これにより可変バルブリフト機構32の異常有無を判定することとしている。しかしながら、IVOでの排気ガスの吹き返しを検出する方法はこれに限られず、例えば、筒内圧センサを備える内燃機関において、IVOでの筒内圧検出値を用いることとしてもよい。尚、このことは、後述する実施の形態2のシステムに対しても同様に適用することができる。 By the way, in Embodiment 1 mentioned above, the blowback of the exhaust gas in IVO is detected using the pressure sensor 44 arrange | positioned in the surge tank 42, and this determines the presence or absence of abnormality of the variable valve lift mechanism 32. It is said. However, the method for detecting the exhaust gas blowback at the IVO is not limited to this. For example, in an internal combustion engine including an in-cylinder pressure sensor, the in-cylinder pressure detection value at the IVO may be used. This can also be applied to the system of the second embodiment described later.
 また、上述した実施の形態1においては、2つの排気弁30のうち一方の排気弁30(前)のリフトカムを2つから選択可能な可変バルブリフト機構32を用いることとしているが、本発明を適用可能な可変バルブリフト機構の構成はこれに限られない。すなわち、少なくとも1つの排気弁のEVCを吸気TDC近傍からBTDCに向かって進角側へ変化させることができるのであれば、例えば、2つの排気弁の両方のリフトカムを複数種類から選択可能な可変バルブリフト機構を用いることとしてもよいし、また、カムシャフトの回転運動を排気弁にリフト運動として伝達するための揺動部材を備え、当該揺動部材の揺動位置を変化させることにより、排気弁の開弁時期を略一定に保ちながら作用角を拡大或いは縮小させることができる作用角可変機構を用いることとしてもよい。尚、このことは、後述する実施の形態2のシステムに対しても同様に適用することができる。 In the first embodiment described above, the variable valve lift mechanism 32 capable of selecting the lift cam of one of the two exhaust valves 30 (front) from two is used. The configuration of the applicable variable valve lift mechanism is not limited to this. That is, if the EVC of at least one exhaust valve can be changed from the vicinity of the intake TDC toward the BTDC toward the advance side, for example, a variable valve in which both lift cams of the two exhaust valves can be selected from a plurality of types. A lift mechanism may be used. Also, an exhaust valve is provided for transmitting the rotational motion of the camshaft to the exhaust valve as a lift motion, and the exhaust valve is changed by changing the swing position of the swing member. A working angle variable mechanism capable of expanding or reducing the working angle while keeping the valve opening timing substantially constant may be used. This can also be applied to the system of the second embodiment described later.
 また、上述した実施の形態1においては、可変バルブリフト機構32の異常有無を判定する際の運転状態については何ら言及していないが、燃料カット中に実行することが好ましい。これにより、ドライバのトルク要求に影響を与えることなく可変バルブリフト機構32の異常有無を判定することが可能となる。 Further, in the above-described first embodiment, no mention is made of the operating state when determining whether or not the variable valve lift mechanism 32 is abnormal, but it is preferable to execute it during the fuel cut. As a result, it is possible to determine whether or not the variable valve lift mechanism 32 is abnormal without affecting the torque request of the driver.
 尚、上述した実施の形態1においては、圧力センサ44が前記第1の発明における「吸気管圧力取得手段」に相当している。 In the first embodiment described above, the pressure sensor 44 corresponds to the “intake pipe pressure acquisition means” in the first invention.
実施の形態2.
[実施の形態2の特徴]
 次に、図10および図11を参照して、本発明の実施の形態2について説明する。図10は、本発明の実施の形態2のシステム構成を説明するための図である。尚、本実施の形態2のシステムは、吸排気弁28,30を駆動する可変動弁装置の構成が異なる点を除き、上述した図1に示す実施の形態1のシステムと同様に構成されている。
Embodiment 2. FIG.
[Features of Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIG. 10 and FIG. FIG. 10 is a diagram for explaining a system configuration according to the second embodiment of the present invention. The system of the second embodiment is configured in the same manner as the system of the first embodiment shown in FIG. 1 described above except that the configuration of the variable valve device that drives the intake and exhaust valves 28 and 30 is different. Yes.
 図10に示すとおり、本実施の形態2のシステムは、吸気弁28の可変動弁装置としての可変バルブタイミング機構(VVT)33を備えている。また、本実施の形態2のシステムは、排気弁30の可変動弁装置として、上述した可変バルブリフト機構32に加えて、VVT34を備えている。VVT33,34は、クランクシャフト36に対するカムシャフトの位相角を油圧により進角或いは遅角させることが可能に構成されている。尚、VVT33,34の構成および機能等に関しては公知の技術であるため、その詳細な説明を省略する。 As shown in FIG. 10, the system of the second embodiment includes a variable valve timing mechanism (VVT) 33 as a variable valve operating device for the intake valve 28. In addition to the variable valve lift mechanism 32 described above, the system according to the second embodiment includes a VVT 34 as a variable valve operating device for the exhaust valve 30. The VVTs 33 and 34 are configured such that the camshaft phase angle with respect to the crankshaft 36 can be advanced or retarded by hydraulic pressure. Since the configuration and functions of the VVTs 33 and 34 are known techniques, detailed description thereof is omitted.
 上述した実施の形態1のシステムでは、IVOが吸気TDC近傍に設定されているシステムにおいて、可変バルブリフト機構32の異常有無の判定を実施することとしている。この点、本実施の形態2のシステムでは、可変バルブリフト機構32の異常有無の判定を実施する際に、VVT33を駆動してIVOを吸気TDC近傍へ可変させることとしている。図11は、吸気弁のバルブタイミング位相を可変させる制御の一例を示す図である。この図に示す例では、吸気弁28のIVOが吸気TDC近傍となるようにバルブタイミング位相を可変させる場合を示している。このようなVVT33の動作によれば、通常時は機関要求に応じたバルブタイミングに制御しつつ、可変バルブリフト機構32の異常判定時には、IVOを吸気TDCの近傍に可変させて排気弁30とのバルブオーバーラップを無くすことが可能となる。 In the system of the first embodiment described above, in the system in which the IVO is set in the vicinity of the intake TDC, it is determined whether or not the variable valve lift mechanism 32 is abnormal. In this regard, in the system of the second embodiment, when determining whether or not the variable valve lift mechanism 32 is abnormal, the VVT 33 is driven to vary the IVO to the vicinity of the intake TDC. FIG. 11 is a diagram illustrating an example of control for varying the valve timing phase of the intake valve. In the example shown in this figure, the valve timing phase is varied so that the IVO of the intake valve 28 is close to the intake TDC. According to such an operation of the VVT 33, the valve timing according to the engine request is controlled normally, and when the abnormality of the variable valve lift mechanism 32 is determined, the IVO is varied in the vicinity of the intake TDC and the exhaust valve 30 is connected. It is possible to eliminate valve overlap.
 また、本実施の形態2のシステムでは、可変バルブリフト機構32の異常有無の判定を実施する際に、VVT34を駆動してEVCをよりBTDC側に可変させることができる。図12は、排気弁のバルブタイミング位相を可変させる制御の一例を示す図である。この図に示す例では、排気弁30のEVCがよりBTDC側となるようにバルブタイミング位相を可変させる場合を示している。このようなVVT34の動作によれば、通常時は機関要求に応じたバルブタイミングに制御しつつ、可変バルブリフト機構32の異常判定時には、吸気弁28との負のバルブオーバーラップを更に拡大することができるので、トルク低下の抑制やインテークマニホールドからの異音の発生の抑制を図ることができる。 In the system according to the second embodiment, when determining whether or not the variable valve lift mechanism 32 is abnormal, the VVT 34 can be driven to make the EVC more variable to the BTDC side. FIG. 12 is a diagram illustrating an example of control for varying the valve timing phase of the exhaust valve. In the example shown in this figure, the valve timing phase is varied so that the EVC of the exhaust valve 30 becomes closer to the BTDC side. According to such an operation of the VVT 34, the negative valve overlap with the intake valve 28 is further expanded when the abnormality is determined in the variable valve lift mechanism 32 while controlling the valve timing according to the engine demand in normal times. Therefore, it is possible to suppress the torque reduction and the generation of abnormal noise from the intake manifold.
 ところで、上述した実施の形態2においては、可変バルブリフト機構32の異常有無を判定する際の運転状態については何ら言及していないが、燃料カット中に実行することが好ましい。これにより、ドライバのトルク要求に影響を与えることなく可変バルブリフト機構32の異常有無を判定することが可能となる。尚、可変バルブリフト機構32の異常判定時にVVT33,34を可変させた場合には、異常判定の終了後燃料カットからの復帰前に元のVVT位置まで戻しておくことが望ましい。これにより、燃料カットから復帰した際のエミッションの悪化を有効に抑止することができる。 By the way, in Embodiment 2 mentioned above, although there is no mention about the operation state at the time of determining the presence or absence of abnormality of the variable valve lift mechanism 32, it is preferable to execute during the fuel cut. As a result, it is possible to determine whether or not the variable valve lift mechanism 32 is abnormal without affecting the torque request of the driver. If the VVTs 33 and 34 are varied at the time of abnormality determination of the variable valve lift mechanism 32, it is desirable to return to the original VVT position after returning from the fuel cut after completion of the abnormality determination. Thereby, the deterioration of the emission when returning from the fuel cut can be effectively suppressed.
 尚、上述した実施の形態2においては、圧力センサ44が前記第1の発明における「吸気管圧力取得手段」に相当している。 In the second embodiment described above, the pressure sensor 44 corresponds to the “intake pipe pressure acquisition means” in the first invention.
 また、上述した実施の形態2においては、VVT33が前記第5の発明における「吸気弁位相可変機構」に、VVT34が前記第6の発明における「排気弁位相可変機構」に、それぞれ相当している。 In the second embodiment, the VVT 33 corresponds to the “intake valve phase variable mechanism” in the fifth invention, and the VVT 34 corresponds to the “exhaust valve phase variable mechanism” in the sixth invention. .
10 内燃機関
16 吸気通路
18 排気通路
24 燃料噴射弁
26 点火プラグ
28 吸気弁
30 排気弁
32 可変バルブリフト機構
33,34 可変バルブタイミング機構
36 クランクシャフト
38 クランク角センサ
40 ECU(Electronic Control Unit)
42 サージタンク
44 圧力センサ
46 第1ロッカーアーム
48L、48R 第2ロッカーアーム
54 カムシャフト
56 第1リフトカム
64 第2リフトカム
68 第3リフトカム
70 切り替え機構
76 第1ピン
78 第2ピン
80 駆動手段
82 変位部材
84 リターンスプリング
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 16 Intake passage 18 Exhaust passage 24 Fuel injection valve 26 Spark plug 28 Intake valve 30 Exhaust valve 32 Variable valve lift mechanism 33, 34 Variable valve timing mechanism 36 Crankshaft 38 Crank angle sensor 40 ECU (Electronic Control Unit)
42 Surge tank 44 Pressure sensor 46 First rocker arm 48L, 48R Second rocker arm 54 Camshaft 56 First lift cam 64 Second lift cam 68 Third lift cam 70 Switching mechanism 76 First pin 78 Second pin 80 Driving means 82 Displacement member 84 Return spring

Claims (7)

  1.  内燃機関の排気弁のリフト特性を可変に設定可能な可変バルブリフト機構と、
     前記内燃機関の吸気管圧力を取得する吸気管圧力取得手段と、
     前記可変バルブリフト機構を駆動して前記排気弁の閉じ時期をBTDC方向へ進角する場合に、その動作直後の吸気弁の開弁時の前記吸気管圧力の変化に基づいて、前記可変バルブリフト機構の動作異常を判定する異常判定手段と、
     を備えることを特徴とする内燃機関の異常判定装置。
    A variable valve lift mechanism capable of variably setting the lift characteristic of the exhaust valve of the internal combustion engine;
    Intake pipe pressure acquisition means for acquiring the intake pipe pressure of the internal combustion engine;
    When the variable valve lift mechanism is driven to advance the closing timing of the exhaust valve in the BTDC direction, the variable valve lift is based on the change in the intake pipe pressure when the intake valve is opened immediately after the operation. An abnormality determining means for determining an abnormal operation of the mechanism;
    An abnormality determination device for an internal combustion engine, comprising:
  2.  前記可変バルブリフト機構は、
     第1リフトカムと、
     前記排気弁の閉じ時期が前記第1リフトカムよりもBTDC方向へ進角された時期となる第2リフトカムと、
     前記排気弁を稼動するためのリフトカムを、前記第1リフトカムと前記第2リフトカムとの間で切り替える切り替え機構と、を有し、
     前記異常判定手段は、前記切り替え機構による前記第1リフトカムから前記第2リフトカムへの切り替え動作に係る異常を判定することを特徴とする請求項1記載の内燃機関の異常判定装置。
    The variable valve lift mechanism is
    A first lift cam;
    A second lift cam at which the closing timing of the exhaust valve is advanced in the BTDC direction relative to the first lift cam;
    A switching mechanism for switching a lift cam for operating the exhaust valve between the first lift cam and the second lift cam;
    2. The abnormality determination device for an internal combustion engine according to claim 1, wherein the abnormality determination unit determines an abnormality related to a switching operation from the first lift cam to the second lift cam by the switching mechanism.
  3.  前記吸気弁の開き時期は吸気TDCの近傍であり、
     前記第2リフトカムによる前記排気弁の閉じ時期は、前記吸気TDCからBTDC方向へ進角された時期であることを特徴とする請求項2記載の内燃機関の異常判定装置。
    The opening timing of the intake valve is in the vicinity of the intake TDC,
    The abnormality determination device for an internal combustion engine according to claim 2, wherein the closing timing of the exhaust valve by the second lift cam is a timing advanced from the intake TDC in the BTDC direction.
  4.  前記第2リフトカムによる前記排気弁のリフト量は、前記第1リフトカムのそれよりも小さいことを特徴とする請求項2または3記載の内燃機関の異常判定装置。 The internal combustion engine abnormality determination device according to claim 2 or 3, wherein a lift amount of the exhaust valve by the second lift cam is smaller than that of the first lift cam.
  5.  前記吸気弁の位相を可変に設定可能な吸気弁位相可変機構と、
     前記異常判定手段により前記可変バルブリフト機構の動作異常を判定する場合に、前記吸気弁位相可変機構を駆動して前記吸気弁の開き時期を吸気TDCの近傍へ可変させる弁制御手段と、
     を更に備えることを特徴とする請求項1乃至4の何れか1項記載の内燃機関の異常判定装置。
    An intake valve phase variable mechanism capable of variably setting the phase of the intake valve;
    Valve control means for driving the intake valve phase variable mechanism to vary the opening timing of the intake valve to the vicinity of the intake TDC when the abnormality determining means determines an abnormal operation of the variable valve lift mechanism;
    The abnormality determination device for an internal combustion engine according to claim 1, further comprising:
  6.  前記排気弁の位相を可変に設定可能な排気弁位相可変機構と、
     前記異常判定手段により前記可変バルブリフト機構の動作異常を判定する場合に、前記排気弁位相可変機構を駆動して前記排気弁の閉じ時期をBTDC方向へ進角させる第2の弁制御手段と、
     を更に備えることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の異常判定装置。
    An exhaust valve phase variable mechanism capable of variably setting the phase of the exhaust valve;
    A second valve control means for driving the exhaust valve phase variable mechanism to advance the closing timing of the exhaust valve in the BTDC direction when the abnormality determination means determines an operation abnormality of the variable valve lift mechanism;
    The abnormality determination device for an internal combustion engine according to any one of claims 1 to 5, further comprising:
  7.  前記異常判定手段は、前記内燃機関の燃料カット中に前記可変バルブリフト機構の動作異常を判定することを特徴とする請求項1乃至6の何れか1項記載の内燃機関の異常判定装置。 The abnormality determination device for an internal combustion engine according to any one of claims 1 to 6, wherein the abnormality determination means determines an operation abnormality of the variable valve lift mechanism during fuel cut of the internal combustion engine.
PCT/JP2010/072244 2010-12-10 2010-12-10 Abnormality determination device for internal combustion engine WO2012077230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072244 WO2012077230A1 (en) 2010-12-10 2010-12-10 Abnormality determination device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072244 WO2012077230A1 (en) 2010-12-10 2010-12-10 Abnormality determination device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2012077230A1 true WO2012077230A1 (en) 2012-06-14

Family

ID=46206749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072244 WO2012077230A1 (en) 2010-12-10 2010-12-10 Abnormality determination device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2012077230A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223156A (en) * 2016-12-09 2018-06-29 现代自动车株式会社 For diagnosing the method and apparatus of engine system
WO2021018875A1 (en) * 2019-08-01 2021-02-04 Vitesco Technologies GmbH Method and device for checking the state of the outlet valves of an engine of a motor vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106472A (en) * 1991-10-14 1993-04-27 Toyota Motor Corp Abnormality detection device for variable valve timing device
JP2005248825A (en) * 2004-03-04 2005-09-15 Denso Corp Abnormality diagnostic device for internal combustion engine
JP2006207434A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Failure diagnostic device for variable valve system mechanism
JP2009047005A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Control device for internal combustion engine provided with turbocharger
JP2009121263A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Control device for internal combustion engine
JP2009216035A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Control device of internal combustion engine
JP2010185300A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106472A (en) * 1991-10-14 1993-04-27 Toyota Motor Corp Abnormality detection device for variable valve timing device
JP2005248825A (en) * 2004-03-04 2005-09-15 Denso Corp Abnormality diagnostic device for internal combustion engine
JP2006207434A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Failure diagnostic device for variable valve system mechanism
JP2009047005A (en) * 2007-08-13 2009-03-05 Toyota Motor Corp Control device for internal combustion engine provided with turbocharger
JP2009121263A (en) * 2007-11-13 2009-06-04 Toyota Motor Corp Control device for internal combustion engine
JP2009216035A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Control device of internal combustion engine
JP2010185300A (en) * 2009-02-10 2010-08-26 Toyota Motor Corp Control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223156A (en) * 2016-12-09 2018-06-29 现代自动车株式会社 For diagnosing the method and apparatus of engine system
WO2021018875A1 (en) * 2019-08-01 2021-02-04 Vitesco Technologies GmbH Method and device for checking the state of the outlet valves of an engine of a motor vehicle
CN114174655A (en) * 2019-08-01 2022-03-11 纬湃科技有限责任公司 Method and device for checking the state of an exhaust valve of an engine of a motor vehicle
US20220275766A1 (en) * 2019-08-01 2022-09-01 Vitesco Technologies GmbH Method and Device for Checking the State of the Outlet Valves of an Engine of a Motor Vehicle
US11761397B2 (en) 2019-08-01 2023-09-19 Vitesco Technologies GmbH Method and device for checking the state of the outlet valves of an engine of a motor vehicle

Similar Documents

Publication Publication Date Title
US7761221B2 (en) Variable valve controller for an internal combustion engine and method for operating the same
JP5765494B2 (en) Control device and control method for internal combustion engine
CN101641505A (en) Control apparatus for internal-combustion engine with variable valve mechanism
JP4931740B2 (en) Control device for internal combustion engine
US8511266B2 (en) Valve control apparatus for internal combustion engine
JP6135580B2 (en) Engine control device
US6990937B2 (en) Variable valve control system and method for an internal combustion engine
US9133775B2 (en) Valvetrain fault indication systems and methods using engine misfire
JP6733824B2 (en) Control method and control device for internal combustion engine
WO2012077230A1 (en) Abnormality determination device for internal combustion engine
JP4802717B2 (en) Valve characteristic control device for internal combustion engine
JP4380499B2 (en) Control device for internal combustion engine
JP5310497B2 (en) Abnormality determination device for internal combustion engine
JP5611309B2 (en) Phase control device and phase control method for variable valve timing device
JP4973448B2 (en) Variable valve mechanism control apparatus for internal combustion engine
JP5930126B2 (en) Control device and control method for internal combustion engine
JP2009299655A (en) Valve system for internal combustion engine
JP4919878B2 (en) Intake control device for internal combustion engine
JP4300357B2 (en) Intake device for internal combustion engine
JP2005248705A (en) Intake air controller for internal combustion engine
JP2010185400A (en) Control device of internal combustion engine
JP2009115058A (en) Internal combustion engine
JP2006312930A (en) Intake control apparatus of internal combustion engine
JP2010031694A (en) Control device for variable valve train
JP2009030519A (en) Control device for internal combustion engine provided with variable valve mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP