JP2000159786A - Organotitanium peroxide compound, its production and formation of complex oxide containing titanium - Google Patents
Organotitanium peroxide compound, its production and formation of complex oxide containing titaniumInfo
- Publication number
- JP2000159786A JP2000159786A JP10335186A JP33518698A JP2000159786A JP 2000159786 A JP2000159786 A JP 2000159786A JP 10335186 A JP10335186 A JP 10335186A JP 33518698 A JP33518698 A JP 33518698A JP 2000159786 A JP2000159786 A JP 2000159786A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- compound
- solution
- acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、チタンの酸化物や
他の金属との複合酸化物の粉体、焼結体、薄膜、ファイ
バー、単結晶を作製する際のチタン源として用いること
ができ、水に安定に溶ける有機チタンペロキシ化合物、
その製造方法、及びチタン含有複合酸化物の作製法に関
する。The present invention can be used as a titanium source for producing powders, sintered bodies, thin films, fibers, and single crystals of oxides of titanium and composite oxides with other metals. , Organic titanium peroxy compounds that are stably soluble in water,
The present invention relates to a method for producing the same and a method for producing a titanium-containing composite oxide.
【0002】[0002]
【従来の技術】水に対して高い溶解性を有し、しかも水
溶液中、及び空気中にて安定であるチタン化合物(有機
チタネート)は、表1に示すように現在のところ知られ
ていない。2. Description of the Related Art As shown in Table 1, a titanium compound (organic titanate) which has high solubility in water and is stable in an aqueous solution and in air is not known at present.
【表1】 [Table 1]
【0003】表1に示すようにチタン化合物には2価〜
4価のものが多い。二酸化チタン等は顔料その他に使用
されているように安定であるが、水には全く溶解しな
い。三塩化チタン等は水に溶解するが、空気酸化を受け
易い。チタンアルコキシドは、多数知られているが、何
れも非常に加水分解を受け易いので、不活性ガス雰囲気
中での操作、保存が必要である。また、チタンアルコキ
シドやトリスアセチルアセトナトチタン塩は、引火点が
15〜74℃程度と極めて低く、工業上の操作、保存に
おいては極めて制約が多い。[0003] As shown in Table 1, a titanium compound has two or more valences.
Many are tetravalent. Titanium dioxide and the like are stable as used in pigments and the like, but do not dissolve in water at all. Titanium trichloride and the like dissolve in water, but are susceptible to air oxidation. Many titanium alkoxides are known, but all of them are very susceptible to hydrolysis, and thus require operation and storage in an inert gas atmosphere. Further, titanium alkoxide and trisacetylacetonato titanium salt have a very low flash point of about 15 to 74 ° C., and are extremely restricted in industrial operation and storage.
【0004】[0004]
【発明が解決しようとする課題】本発明者らはこのよう
な事情に鑑み、水に対して高い溶解性を有し、しかも水
溶液中、及び空気中にて加水分解等を生ずることなく安
定な新規チタン化合物を提案することを目的とする。SUMMARY OF THE INVENTION In view of such circumstances, the present inventors have high solubility in water and are stable in aqueous solutions and air without causing hydrolysis. The purpose is to propose a new titanium compound.
【0005】なお、このような特性を有するチタン化合
物は、強誘電体として極めて有用なチタン酸バリウム等
の製造に際してチタン源として用いることが期待され
る。以下、このチタン酸バリウム等の製造における従来
技術と問題点を説明する。[0005] A titanium compound having such properties is expected to be used as a titanium source when producing barium titanate or the like which is extremely useful as a ferroelectric substance. Hereinafter, conventional techniques and problems in the production of barium titanate and the like will be described.
【0006】ペロブスカイト型構造を有するセラミック
スは極めて優れた誘電特性(強誘電性)を有し、音響機
器或いはコンデンサー等の種々の電子部品原料として重
要である。例えば上記ペロブスカイト型セラミックスと
して知られるチタン酸バリウムは、従来、高温固相反
応法、共沈法、ゾル−ゲル法の何れかで作製されて
きた。 高温固相反応法では、原料として酸化チタン
と炭酸バリウムの粉末を用い、混合後、高温で焼成して
目的物を製造する。沈殿法では、しゅう酸チタンカリ
ウム2水和物(K2TiO(C2O4)2・2H2O)を水に溶か
し、ここに硝酸バリウム水溶液を加えて得られる共沈物
をろ別、乾燥後、焼成して目的物を製造する。ゾル−
ゲル法では、チタン及びバリウムのアルコキシドをアル
コールに溶解させ、ここに水を添加して得られるゲル
を、乾燥後、焼成して目的物を製造する。[0006] Ceramics having a perovskite structure have extremely excellent dielectric properties (ferroelectricity) and are important as raw materials for various electronic parts such as audio equipment and capacitors. For example, barium titanate, which is known as a perovskite-type ceramic, has conventionally been produced by any of a high-temperature solid-state reaction method, a coprecipitation method, and a sol-gel method. In the high-temperature solid-state reaction method, powders of titanium oxide and barium carbonate are used as raw materials, mixed, and fired at a high temperature to produce a target product. In the precipitation method, potassium potassium oxalate dihydrate (K 2 TiO (C 2 O 4 ) 2 .2H 2 O) is dissolved in water, and a coprecipitate obtained by adding an aqueous barium nitrate solution thereto is filtered off. After drying, it is fired to produce the desired product. Sol-
In the gel method, an alkoxide of titanium and barium is dissolved in alcohol, water is added thereto, and the resulting gel is dried and fired to produce a target product.
【0007】前記高温固相反応法では、粉体、焼結
体、単結晶を作製することが可能であるが、反応を完結
させるため1000℃以上の高温での焼成が必要であ
り、このため成分金属の蒸発による組成のズレが生じ、
また高温での熱処理は異常粒成長を促進させ、再現性の
ある電気特性が得られないという問題がある。In the high-temperature solid-state reaction method, powders, sintered bodies, and single crystals can be produced. However, firing at a high temperature of 1000 ° C. or more is necessary to complete the reaction. Deviation of composition occurs due to evaporation of component metals,
Also, heat treatment at a high temperature promotes abnormal grain growth, and there is a problem that reproducible electrical characteristics cannot be obtained.
【0008】前記共沈法でも粉体、焼結体、単結晶を
作製することが可能であるが、熱処理温度を下げること
が可能であるものの、沈殿生成を伴うので、高温固相
反応法と同様に薄膜、ファイバーを作製できないという
問題がある。Although the above-mentioned coprecipitation method can produce powders, sintered bodies, and single crystals, it is possible to lower the heat treatment temperature, but it involves precipitation, so that the high-temperature solid-state reaction method can be used. Similarly, there is a problem that thin films and fibers cannot be produced.
【0009】前記ゾル−ゲル法では、粉体、焼結体、
単結晶体に加えて薄膜、ファイバーも作製することが可
能であるからより実用性が高く、上述の問題点を解決可
能であるものの、チタンの原料として使われるチタンア
ルコキシドが水に対して著しく不安定であるため、全て
の操作及び原料の保存を水分のないアルゴンなどの不活
性ガス雰囲気下で行わなければならないこと、溶媒とし
て非水溶媒を用いなければならないこと、などの問題が
ある。In the sol-gel method, powder, sintered body,
Although it is possible to produce thin films and fibers in addition to single crystals, it is more practical and can solve the above-mentioned problems, but the titanium alkoxide used as a titanium raw material is extremely incompatible with water. Due to its stability, there are problems such as that all operations and storage of raw materials must be performed in an inert gas atmosphere such as argon without moisture, and that a non-aqueous solvent must be used as a solvent.
【0010】前述のようにゾル−ゲル法では再現性に
優れ、所望の形態の製造物を作製できるという利点を有
するにも関わらず、水に対して安定な化合物がないた
め、製造上の制約が多いという課題があった。即ち、本
発明の目的とする新規チタン化合物は、前述のチタン酸
バリウムの製造並びに原料の保存に際しても種々の制約
を受けることなく、安定に且つ穏和な条件下にて操作で
きる。したがって、本発明の目的とする新規チタン化合
物は、前記ゾル−ゲル法のように非水溶媒を用いるこ
となく水に安定に溶解し、途中共沈法などのように沈
殿生成を伴なうこともなく、粉体、焼結体、単結晶体、
薄膜、ファイバー等所望の形態のチタン酸バリウムを作
製でき、しかも高温固相反応法のように1000℃以
上もの極めて高温での焼成を必要としない製造を実施で
きることが見込まれる。As described above, the sol-gel method has the advantage of being excellent in reproducibility and being capable of producing a product in a desired form, but has no water-stable compound, and therefore has limitations in production. There was a problem that there were many. That is, the novel titanium compound aimed at by the present invention can be operated stably and under mild conditions without being subjected to various restrictions in the above-mentioned production of barium titanate and storage of the raw materials. Therefore, the novel titanium compound aimed at by the present invention is stably dissolved in water without using a non-aqueous solvent as in the above-mentioned sol-gel method, and accompanied by precipitation as in the case of a coprecipitation method. No powder, sintered body, single crystal,
It is expected that barium titanate having a desired form, such as a thin film or a fiber, can be produced, and that production that does not require firing at an extremely high temperature of 1000 ° C. or more as in a high-temperature solid-state reaction method can be performed.
【0011】[0011]
【課題を解決するための手段】前記目的を達成するた
め、本発明者は、一般式TiXAY(O2)Z(但し、1≦X
≦4,1≦Y≦4,1≦Z≦4である)で表され、配位
子Aはカルボン酸、アセチルアセトン、アミン類、ペロ
キソイオンからなる群から選ばれる一種以上である有機
チタンペロキシ化合物が水に対して高い溶解性を有する
ことを見出し、またこの粉体、水溶液が長期間にわたり
安定であることを見出し、さらにこの有機チタンペロキ
シ化合物をチタンの出発原料として、水を溶媒として用
いているにもかかわらず途中沈殿生成を伴うことなく各
種チタン含有複合酸化物を製造できることを見出し、本
発明を完成した。Means for Solving the Problems In order to achieve the above-mentioned object, the present inventor has set forth a formula Ti X A Y (O 2 ) Z (where 1 ≦ X
≦ 4, 1 ≦ Y ≦ 4, 1 ≦ Z ≦ 4), and the ligand A is one or more organic titanium peroxy compounds selected from the group consisting of carboxylic acids, acetylacetones, amines, and peroxo ions. And found that the powder and the aqueous solution are stable for a long period of time, and that the organic titanium peroxy compound is used as a starting material for titanium and water is used as a solvent. Regardless, it has been found that various titanium-containing composite oxides can be produced without generating precipitates on the way, and the present invention has been completed.
【0012】[0012]
【発明の実施の形態】本発明の有機チタンペロキシ化合
物TiXAY(O2)Zにおける配位子Aは、前記のようにカ
ルボン酸、アセチルアセトン、アミン類、ペロキソイオ
ンからなる群から選ばれる一種以上である。カルボン酸
としては、α−ヒドロキシカルボン酸(クエン酸、リン
ゴ酸、酒石酸、シトラマル酸、乳酸、グリコール酸)、
トリカルバリル酸、コハク酸、シュウ酸、マレイン酸、
マロン酸、アクリル酸、酢酸を使用することが好まし
い。アミン類としては、エチレンジアミン、エチレンジ
アミン四酢酸(EDTA)を使用することが好ましい。
また、これらの配位子Aの中では、クエン酸、リンゴ
酸、グリコール酸、EDTAを使用することが特に好ま
しい。BEST MODE FOR CARRYING OUT THE INVENTION The ligand A in the organic titanium peroxy compound Ti X A Y (O 2 ) Z of the present invention is at least one selected from the group consisting of carboxylic acids, acetylacetones, amines and peroxo ions as described above. It is. As the carboxylic acid, α-hydroxycarboxylic acid (citric acid, malic acid, tartaric acid, citramalic acid, lactic acid, glycolic acid),
Tricarballylic acid, succinic acid, oxalic acid, maleic acid,
It is preferable to use malonic acid, acrylic acid, acetic acid. As the amines, it is preferable to use ethylenediamine and ethylenediaminetetraacetic acid (EDTA).
Further, among these ligands A, it is particularly preferable to use citric acid, malic acid, glycolic acid, and EDTA.
【0013】本発明の有機チタンペロキシ化合物TiX
AY(O2)ZにおけるTiモル数Xは4を越えるとチタン
金属のポリマーが生成し、水に不溶化する。また、配位
子Aモル数Yは4を越えると分子が過剰に負イオン化
し、分解しやすくなる。ペロキソイオンモル数Zも4を
越えると分子が過剰に負イオン化し、分解しやすくな
る。The organic titanium peroxy compound Ti X of the present invention
When the number of Ti moles X in A Y (O 2 ) Z exceeds 4, a polymer of titanium metal is formed and becomes insoluble in water. On the other hand, when the number of moles of the ligand A exceeds 4, the molecule is excessively ionized negatively and is easily decomposed. If the molar number Z of peroxo ions also exceeds 4, the molecules are excessively negatively ionized and are easily decomposed.
【0014】このような有機チタンペロキシ化合物Ti
XAY(O2)Zは、金属チタン粉末に過酸化水素水を作用さ
せて溶解したチタンペロキシ溶液に、チタンに対して1
倍モル以上の前述のカルボン酸、アセチルアセトン、ア
ミン類、ペロキソイオンからなる群から選ばれる一種以
上を加え溶解させ、これを加熱乾燥して得られる。Such an organic titanium peroxy compound Ti
X A Y (O 2 ) Z is prepared by dissolving 1 part of titanium in a titanium peroxide solution obtained by dissolving hydrogen peroxide in titanium metal powder.
One or more times the molar amount of the above-mentioned carboxylic acid, acetylacetone, amines, and peroxo ion are added and dissolved, and the mixture is dissolved and heated and dried.
【0015】得られた有機チタンペロキシ化合物TiX
AY(O2)Zは、新規な化合物であり、水に対して高い溶
解性を有し、粉体状態(TiXAY(O2)ZMW,M=(NH4
+),K,Na,Cs,Rb)でも、水溶液の状態でも長
期間にわたり安定である。引火点も高い。The obtained organic titanium peroxy compound Ti X
A Y (O 2) Z is a novel compound has a high solubility in water, the powder state (Ti X A Y (O 2 ) Z M W, M = (NH 4
+ ), K, Na, Cs, Rb) and in the state of an aqueous solution are stable for a long period of time. The flash point is also high.
【0016】また、本発明は、前記有機チタンペロキシ
化合物の工業的応用例として、有機チタンペロキシ化合
物と、アルカリ金属、アルカリ土類金属、第4〜6周期
遷移金属元素、希土類元素、アクチノイド元素の金属塩
からなる群より選ばれる一種以上の化合物とを水に混合
溶解させ、得られた溶液を濃縮してゲル化させた後、そ
のまま、或いは適当な基板上にゲルを薄膜にコーティン
グして、或いはゲルを繊維状に引き延ばして所定の温度
で熱処理するチタン含有複合酸化物の作製法をも提案す
る。The present invention also relates to an industrial application of the organotitanium peroxy compound as a metal salt of an organotitanium peroxy compound, an alkali metal, an alkaline earth metal, a transition metal element of the fourth to sixth period, a rare earth element, and an actinoid element. One or more compounds selected from the group consisting of and mixed and dissolved in water, the resulting solution is concentrated and gelled, and then the gel is coated on a thin film as it is or on an appropriate substrate, or Also proposed is a method for producing a titanium-containing composite oxide in which is stretched into a fibrous form and heat-treated at a predetermined temperature.
【0017】[0017]
【実施例】[チタンペロキシクエン酸化合物の合成]ま
ず、金属チタン粉末(350メッシュ)約0.25g、
30%過酸化水素水20ml、30%アンモニア水5mlを
ビーカーの中で混合し、ウォーターバスで冷却しながら
溶かし、黄色い透明なチタンペロキシ溶液を得た。次
に、得られた溶液に、チタンに対して1倍モル以上のク
エン酸を加えた。加えたクエン酸が完全に溶けきった
後、ホットプレート上80℃で加熱乾燥させ、目的のチ
タンペロキシクエン酸化合物の黄色い粉末を得た。この
粉末をX線回折法、ラマン分光法、炭素13NMR分光
法により、チタンペロキシクエン酸化合物(NH4)4[T
i2(C6H4O7)2(O2)2]・4H2Oであることを確認し
た。EXAMPLES [Synthesis of Titanium Peroxycitrate Compound] First, about 0.25 g of titanium metal powder (350 mesh) was prepared.
20 ml of 30% aqueous hydrogen peroxide and 5 ml of 30% aqueous ammonia were mixed in a beaker and dissolved while cooling in a water bath to obtain a yellow transparent titanium peroxy solution. Next, citric acid was added to the obtained solution in an amount of 1 mol or more with respect to titanium. After the added citric acid was completely dissolved, it was dried by heating at 80 ° C. on a hot plate to obtain a yellow powder of the target titanium peroxycitrate compound. The powder was analyzed by X-ray diffraction, Raman spectroscopy, and carbon-13 NMR spectroscopy to obtain a titanium peroxycitrate compound (NH 4 ) 4 [T
i 2 (C 6 H 4 O 7 ) 2 (O 2 ) 2 ] .4H 2 O.
【0018】得られたチタンペロキシクエン酸化合物の
性状を表2に示す。Table 2 shows the properties of the obtained titanium peroxycitrate compound.
【表2】 なお、表中における溶解度と安定性の欄の評価記号は、
以下の内容を示すものである。後記する表3も同様。 溶解度:◎=水100gに対して50g以上溶解する。 ○=水100gに対して10〜50g溶解する。 △=水100gに対して1〜10g溶解する。 ×=水に不溶または水100gに対して1g以下溶解する。 安定性:◎=加水分解せずに長期間安定である。 ○=極めて徐々に加水分解するものの水溶性を維持する。 △=徐々に加水分解し不溶化する。 ×=非常に速く加水分解し不溶化する。[Table 2] In addition, the evaluation symbol in the column of solubility and stability in the table,
The following contents are shown. The same applies to Table 3 described later. Solubility: == 50 g or more dissolved in 100 g of water. == 10 to 50 g dissolved in 100 g of water. Δ = 1 to 10 g dissolved in 100 g of water. × = insoluble in water or 1 g or less in 100 g of water. Stability: == stable for a long time without hydrolysis. == Hydrolyses very slowly but maintains water solubility. Δ = gradual hydrolysis and insolubilization. × = Very fast hydrolysis and insolubilization.
【0019】[チタンペロキシリンゴ酸化合物の合成]
まず、金属チタン粉末(350メッシュ)約0.25
g、30%過酸化水素水20ml、30%アンモニア水5
mlをビーカーの中で混合し、ウォーターバスで冷却しな
がら溶かし、黄色い透明なチタンペロキシ溶液を得た。
次に、得られた溶液に、チタンに対して1倍モル以上の
リンゴ酸を加えた。加えたリンゴ酸が完全に溶けきった
後、ホットプレート上80℃で加熱乾燥させ、目的のチ
タンペロキシリンゴ酸化合物の黄色い粉末を得た。この
粉末をX線回折法、ラマン分光法、炭素13NMR分光
法により、チタンペロキシリンゴ酸化合物(NH4)2[T
i2(C4H3O5)2(O2)2]・4H2Oであることを確認し
た。得られたチタンペロキシリンゴ酸化合物の性状を表
2に併記した。[Synthesis of Titanium Peroxymalate Compound]
First, metal titanium powder (350 mesh) of about 0.25
g, 30% hydrogen peroxide solution 20 ml, 30% ammonia solution 5
ml was mixed in a beaker and dissolved while cooling in a water bath to obtain a yellow transparent titanium peroxy solution.
Next, malic acid was added to the obtained solution in an amount of at least 1 mol of titanium. After the added malic acid was completely dissolved, it was heated and dried at 80 ° C. on a hot plate to obtain a yellow powder of the target titanium peroxymalate compound. The powder was analyzed by X-ray diffraction, Raman spectroscopy, and carbon-13 NMR spectroscopy to obtain a titanium peroxymalate compound (NH 4 ) 2 [T
i 2 (C 4 H 3 O 5) 2 (O 2) 2] · 4H was confirmed to be 2 O. Table 2 also shows the properties of the obtained titanium peroxymalate compound.
【0020】[チタンペロキシグリコール酸化合物の合
成]まず、金属チタン粉末(350メッシュ)約0.2
5g、30%過酸化水素水20ml、30%アンモニア水
5mlをビーカーの中で混合し、ウォーターバスで冷却し
ながら溶かし、黄色い透明なチタンペロキシ溶液を得
た。次に得られた溶液に、チタンに対して1倍モル以上
のグリコール酸を加えた。加えたグリコール酸が完全に
溶けきった後、ホットプレート上80℃で加熱乾燥さ
せ、目的のチタンペロキシグリコール酸化合物の黄色い
粉末を得た。この粉末をX線回折法、ラマン分光法、炭
素13NMR分光法により、チタンペロキシグリコール
酸化合物(NH4)4[Ti2(C2H2O3)4(O2)2]・4H2Oで
あることを確認した。得られたチタンペロキシグリコー
ル酸化合物の性状を表2に併記した。[Synthesis of Titanium Peroxyglycolic Acid Compound] First, a titanium metal powder (350 mesh) of about 0.2
5 g, 20 ml of 30% aqueous hydrogen peroxide and 5 ml of 30% aqueous ammonia were mixed in a beaker and dissolved while cooling in a water bath to obtain a yellow transparent titanium peroxy solution. Next, glycolic acid was added to the obtained solution in an amount of at least 1 mole of titanium. After the added glycolic acid was completely dissolved, it was heated and dried at 80 ° C. on a hot plate to obtain a yellow powder of the target titanium peroxyglycolic acid compound. The powder was analyzed by X-ray diffraction, Raman spectroscopy, and carbon-13 NMR spectroscopy to obtain a titanium peroxyglycolic acid compound (NH 4 ) 4 [Ti 2 (C 2 H 2 O 3 ) 4 (O 2 ) 2 ] .4H 2 O was confirmed. The properties of the obtained titanium peroxyglycolic acid compound are also shown in Table 2.
【0021】[チタンペロキシEDTA化合物の合成]
まず、金属チタン粉末(350メッシュ)約0.25
g、30%過酸化水素水20ml、30%アンモニア水5
mlをビーカーの中で混合し、ウォーターバスで冷却しな
がら溶かし、黄色い透明なチタンペロキシ溶液を得た。
次に、得られた溶液に、チタンに対して1倍モル以上の
EDTAを加えた。加えたEDTAが完全に溶けきった
後、ホットプレート上80℃で加熱乾燥させ、目的のチ
タンペロキシEDTA化合物の黄色い粉末を得た。この
粉末をX線回折法、ラマン分光法、炭素13NMR分光
法により、チタンペロキシEDTA化合物(NH4)4[T
i2(EDTA)2(O2)2]・4H2O であることを確認し
た。得られたチタンペロキシEDTA化合物の性状を表
2に併記した。[Synthesis of Titanium Peroxy EDTA Compound]
First, metal titanium powder (350 mesh) of about 0.25
g, 30% hydrogen peroxide solution 20 ml, 30% ammonia solution 5
ml was mixed in a beaker and dissolved while cooling in a water bath to obtain a yellow transparent titanium peroxy solution.
Next, EDTA was added to the resulting solution in an amount of 1 mol or more with respect to titanium. After the added EDTA was completely dissolved, it was heated and dried at 80 ° C. on a hot plate to obtain a yellow powder of the target titanium peroxy EDTA compound. This powder was subjected to X-ray diffraction, Raman spectroscopy, and carbon-13 NMR spectroscopy to obtain a titanium peroxy EDTA compound (NH 4 ) 4 [T
i 2 (EDTA) 2 (O 2 ) 2 ] .4H 2 O. Table 2 also shows the properties of the obtained titanium peroxy EDTA compound.
【0022】また、比較例として代表的なチタンアルコ
キシド(3種)、トリスアセチルアセトナトチタン塩
(1種)の性状を表3に示す。Table 3 shows the properties of typical titanium alkoxides (three kinds) and trisacetylacetonato titanium salts (one kind) as comparative examples.
【表3】 [Table 3]
【0023】[チタン酸ストロンチウム(SrTi
O3 )の合成]前記のように得られたチタンペロキシク
エン酸化合物と硝酸ストロンチウムとを金属のモル比T
i:Srが1:1となるように秤量し、水に溶解させ
た。得られた溶液を80℃に加熱しながら撹拌し、水を
徐々に蒸発させ、ゲルを作製した。得られたゲルを35
0℃に設定したマントルヒーター中で加熱分解させ、前
駆体を得た。得られた前駆体を空気中で250℃、30
0℃、400℃、450℃、500℃でそれぞれ12時
間、550℃、600℃、650℃でそれぞれ2時間熱
処理した。図1のX線回析パターンからわかるように、
前駆体及び250〜400℃の熱処理で得られた粉体は
アモルファスであった。一方450℃からチタン酸スト
ロンチウムの結晶化が始まり、500℃以上では単相の
チタン酸ストロンチウムが得られた。[Strontium titanate (SrTi
Synthesis of O 3 )] The titanium peroxycitric acid compound obtained as described above and strontium nitrate are used in a molar ratio T of metal.
i: Sr was weighed so as to be 1: 1 and dissolved in water. The obtained solution was stirred while being heated to 80 ° C., and water was gradually evaporated to produce a gel. The obtained gel is 35
The precursor was heated and decomposed in a heating mantle set at 0 ° C. to obtain a precursor. The obtained precursor was heated at 250 ° C.
Heat treatment was performed at 0 ° C., 400 ° C., 450 ° C., and 500 ° C. for 12 hours each, and at 550 ° C., 600 ° C., and 650 ° C. for 2 hours. As can be seen from the X-ray diffraction pattern in FIG.
The precursor and the powder obtained by the heat treatment at 250 to 400 ° C. were amorphous. On the other hand, crystallization of strontium titanate started at 450 ° C., and at 500 ° C. or higher, single-phase strontium titanate was obtained.
【0024】[テトラチタン酸バリウム(BaTi
4O9)の合成]前記のように得られたチタンペロキシク
エン酸化合物と硝酸バリウムとを金属のモル比Ti:B
aが4:1となるように秤量し、水に溶解させた。前記
チタン酸ストロンチウムの合成と同様の工程を経て得ら
れた前駆体を空気中で700℃、800℃でそれぞれ2
時間熱処理した。図2のX線回析パターンからわかるよ
うに800℃の熱処理で単相のテトラチタン酸バリウム
が得られた。[Barium tetratitanate (BaTi
Synthesis of 4 O 9 )] The titanium peroxycitric acid compound obtained as described above and barium nitrate are used in a molar ratio of metal Ti: B.
The sample was weighed so that a became 4: 1 and dissolved in water. The precursor obtained through the same steps as in the synthesis of the strontium titanate was heated at 700 ° C. and 800 ° C. in air at 2 ° C., respectively.
Heat treated for hours. As can be seen from the X-ray diffraction pattern in FIG. 2, single-phase barium tetratitanate was obtained by the heat treatment at 800 ° C.
【0025】以上本発明の実施例を数例示したが、本発
明は前記した実施例に限定されるものではなく、特許請
求の範囲に記載した構成を変更しない限りどのようにで
も実施することができる。例えばチタンペロキシ化合物
については、アンモニウム塩の形態に限らず、K,N
a,Cs,Rbの各塩の形態でも確認実験を行った。ま
た、他の配位子についても確認実験を行い、同様な三次
元立体構造となることを確認した。また、チタン含有複
合酸化物についても、前記の実施例に限らず、アルカリ
金属、アルカリ土類金属、第4〜6周期遷移金属元素、
希土類元素、アクチノイド元素の金属塩を用いて種々の
複合酸化物を同様に製造し得ることを確認した。さら
に、粉体ばかりでなく、薄膜状、繊維状に加工して熱処
理しても同様に製造し得ることを確認した。Although several embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in any manner unless the configuration described in the claims is changed. it can. For example, titanium peroxy compounds are not limited to ammonium salt forms, but may be K, N
Confirmation experiments were also performed on the respective salt forms of a, Cs, and Rb. In addition, confirmation experiments were performed on other ligands, and it was confirmed that a similar three-dimensional structure was obtained. Further, the titanium-containing composite oxide is not limited to the examples described above, and may include an alkali metal, an alkaline earth metal, a fourth to sixth period transition metal element,
It has been confirmed that various composite oxides can be similarly produced using metal salts of rare earth elements and actinoid elements. Furthermore, it was confirmed that not only powder but also a thin film and a fiber could be processed and heat-treated to produce the same.
【0026】[0026]
【発明の効果】以上説明したように本発明の有機チタン
ペロキシ化合物は、新規な化合物であり、従来のゾル−
ゲル法にて用いられるチタンアルコキシドのように水分
或いは湿気の影響を受けることなく、粉体状態でも、水
溶液の状態でも長期間に亘って安定であり、また、水に
対して高い溶解性を有し、引火点も高いという、従来の
有機チタネートにはない優れた特性を有する。そのた
め、本発明の有機チタンペロキシ化合物は、取り扱い操
作及び保存に際して不活性ガス等を必要とすることがな
く汎用の設備にて容易に行うことができ、各種のチタン
含有複合酸化物のチタン源として極めて有用である。As described above, the organotitanium peroxy compound of the present invention is a novel compound,
Unlike the titanium alkoxide used in the gel method, it is not affected by moisture or moisture, is stable in a powder state or an aqueous solution state over a long period of time, and has high solubility in water. In addition, it has a high flash point, an excellent property not found in conventional organic titanates. Therefore, the organotitanium peroxy compound of the present invention can be easily used in a general-purpose facility without requiring an inert gas or the like for handling operation and storage, and is extremely useful as a titanium source for various titanium-containing composite oxides. Useful.
【0027】また、本発明の有機チタンペロキシ化合物
の製造方法は、特殊な装置、設備や高価な試薬等を使用
することなく、大気中で水を用いた穏やかな条件で製造
を行うことができ、極めて実用性が高い。The method for producing an organotitanium peroxy compound of the present invention can be produced under mild conditions using water in the air without using special equipment, equipment, expensive reagents and the like. Extremely practical.
【0028】さらに、本発明のチタン含有複合酸化物の
作製法は、水に安定に溶ける有機チタンペロキシ化合物
を出発原料とし、従来の共沈法のように沈殿生成を伴う
ことがないので粉体、焼結体、単結晶は勿論、薄膜、フ
ァイバーを作製することもでき、高温固相反応法のよう
に1000℃以上もの極めて高温での焼成を必要としな
いで作製することができる。Further, the method for producing a titanium-containing composite oxide of the present invention uses an organic titanium peroxy compound which is stably soluble in water as a starting material and does not involve the formation of precipitates as in the conventional coprecipitation method. Not only a sintered body and a single crystal, but also a thin film and a fiber can be produced, and they can be produced without requiring firing at an extremely high temperature of 1000 ° C. or more as in a high-temperature solid-state reaction method.
【図1】実施例で得られたチタン酸ストロンチウムのX
線回析パターンを示すチャートである。FIG. 1 shows the X of strontium titanate obtained in Examples.
4 is a chart showing a line diffraction pattern.
【図2】実施例で得られたテトラチタン酸バリウムのX
線回析パターンを示すチャートである。FIG. 2 shows the X of barium tetratitanate obtained in an example.
4 is a chart showing a line diffraction pattern.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H049 VN05 VP01 VP02 VP03 VP04 VQ31 VQ92 VR44 VS32 VS99 VT32 VT33 VU36 VW02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4H049 VN05 VP01 VP02 VP03 VP04 VQ31 VQ92 VR44 VS32 VS99 VT32 VT33 VU36 VW02
Claims (3)
アミン類、ペロキソイオンからなる群から選ばれる一種
以上であることを特徴とする有機チタンペロキシ化合
物。1. The compound represented by the general formula: Ti X A Y (O 2 ) Z (where 1 ≦ X ≦ 4, 1 ≦ Y ≦ 4, 1 ≦ Z ≦ 4), and the ligand A is a carboxylic acid. , Acetylacetone,
An organic titanium peroxy compound, which is at least one selected from the group consisting of amines and peroxo ions.
せて溶解したチタンペロキシ溶液に、チタンに対してカ
ルボン酸、アセチルアセトン、アミン類、ペロキソイオ
ンからなる群から選ばれる一種以上を加え溶解させ、こ
れを加熱乾燥することを特徴とする有機チタンペロキシ
化合物の製造方法。2. A titanium peroxy solution, which is prepared by dissolving a metal titanium powder by the action of a hydrogen peroxide solution, adding and dissolving at least one selected from the group consisting of carboxylic acid, acetylacetone, amines and peroxo ions to titanium. Is dried by heating.
合物と、アルカリ金属、アルカリ土類金属、第4〜6周
期遷移金属元素、希土類元素、アクチノイド元素の金属
塩からなる群より選ばれる一種以上の化合物とを水に混
合溶解させ、得られた溶液を濃縮してゲル化させた後、
所定の温度で熱処理することを特徴とするチタン含有複
合酸化物の作製法。3. The organic titanium peroxy compound according to claim 1, and at least one selected from the group consisting of alkali metal, alkaline earth metal, fourth to sixth period transition metal elements, rare earth elements, and metal salts of actinoid elements. After mixing and dissolving the compound in water and concentrating and gelling the obtained solution,
A method for producing a titanium-containing composite oxide, comprising heat-treating at a predetermined temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10335186A JP2000159786A (en) | 1998-11-26 | 1998-11-26 | Organotitanium peroxide compound, its production and formation of complex oxide containing titanium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10335186A JP2000159786A (en) | 1998-11-26 | 1998-11-26 | Organotitanium peroxide compound, its production and formation of complex oxide containing titanium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000159786A true JP2000159786A (en) | 2000-06-13 |
Family
ID=18285733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10335186A Pending JP2000159786A (en) | 1998-11-26 | 1998-11-26 | Organotitanium peroxide compound, its production and formation of complex oxide containing titanium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000159786A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006169491A (en) * | 2004-12-16 | 2006-06-29 | Matsumoto Seiyaku Kogyo Kk | Cross-linking agent of water soluble resin |
KR100708488B1 (en) | 2006-06-16 | 2007-04-18 | 한국화학연구원 | Highly dispersible crystalline barium titanate in organic medium and the method of preparing the same |
JP2007177212A (en) * | 2005-11-29 | 2007-07-12 | Denki Kagaku Kogyo Kk | Elastic composition and repairing method using the same |
JP2008156167A (en) * | 2006-12-25 | 2008-07-10 | Ishihara Sangyo Kaisha Ltd | Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same |
JP2008184502A (en) * | 2007-01-29 | 2008-08-14 | Denki Kagaku Kogyo Kk | Hydrogel-forming material, hydrogel composition, and ground-reinforcing method |
JP2008239484A (en) * | 2000-12-19 | 2008-10-09 | Idemitsu Kosan Co Ltd | Aqueous solution containing titanium and process for producing the same |
JP2008247811A (en) * | 2007-03-30 | 2008-10-16 | Denki Kagaku Kogyo Kk | Method for synthesizing low-ammonium type titanium peroxo compound |
JP2009197072A (en) * | 2008-02-19 | 2009-09-03 | Denki Kagaku Kogyo Kk | Composition, underwater-inseparable hydrogel composition, and soil enhancement method using the same |
JP2012056947A (en) * | 2010-08-09 | 2012-03-22 | Toto Ltd | Titanium complex, and aqueous coating liquid containing the same |
JP2012188312A (en) * | 2011-03-09 | 2012-10-04 | Seiko Epson Corp | Method for producing precursor solution of solid electrolyte and method for producing the solid electrolyte |
JP2015131775A (en) * | 2014-01-10 | 2015-07-23 | 日立金属株式会社 | Non-hydrofluoric acid-based aqueous solution of refractory metal and production method therefor |
WO2022004786A1 (en) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | Hydrogenation treatment catalyst for hydrocarbon oil, method for producing hydrogenation treatment catalyst for hydrocarbon oil, and hydrogenation treatment method for hydrocarbon oil |
-
1998
- 1998-11-26 JP JP10335186A patent/JP2000159786A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008239484A (en) * | 2000-12-19 | 2008-10-09 | Idemitsu Kosan Co Ltd | Aqueous solution containing titanium and process for producing the same |
JP4614764B2 (en) * | 2004-12-16 | 2011-01-19 | マツモトファインケミカル株式会社 | Water-soluble resin crosslinking agent |
JP2006169491A (en) * | 2004-12-16 | 2006-06-29 | Matsumoto Seiyaku Kogyo Kk | Cross-linking agent of water soluble resin |
JP2007177212A (en) * | 2005-11-29 | 2007-07-12 | Denki Kagaku Kogyo Kk | Elastic composition and repairing method using the same |
KR100708488B1 (en) | 2006-06-16 | 2007-04-18 | 한국화학연구원 | Highly dispersible crystalline barium titanate in organic medium and the method of preparing the same |
JP2008156167A (en) * | 2006-12-25 | 2008-07-10 | Ishihara Sangyo Kaisha Ltd | Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same |
JP2008184502A (en) * | 2007-01-29 | 2008-08-14 | Denki Kagaku Kogyo Kk | Hydrogel-forming material, hydrogel composition, and ground-reinforcing method |
JP2008247811A (en) * | 2007-03-30 | 2008-10-16 | Denki Kagaku Kogyo Kk | Method for synthesizing low-ammonium type titanium peroxo compound |
JP2009197072A (en) * | 2008-02-19 | 2009-09-03 | Denki Kagaku Kogyo Kk | Composition, underwater-inseparable hydrogel composition, and soil enhancement method using the same |
JP2012056947A (en) * | 2010-08-09 | 2012-03-22 | Toto Ltd | Titanium complex, and aqueous coating liquid containing the same |
JP2012188312A (en) * | 2011-03-09 | 2012-10-04 | Seiko Epson Corp | Method for producing precursor solution of solid electrolyte and method for producing the solid electrolyte |
JP2015131775A (en) * | 2014-01-10 | 2015-07-23 | 日立金属株式会社 | Non-hydrofluoric acid-based aqueous solution of refractory metal and production method therefor |
WO2022004786A1 (en) | 2020-07-03 | 2022-01-06 | コスモ石油株式会社 | Hydrogenation treatment catalyst for hydrocarbon oil, method for producing hydrogenation treatment catalyst for hydrocarbon oil, and hydrogenation treatment method for hydrocarbon oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process | |
KR100497938B1 (en) | Method for producing complex oxide powder and complex oxide powder | |
JP2000159786A (en) | Organotitanium peroxide compound, its production and formation of complex oxide containing titanium | |
EP0255193A2 (en) | Method of producing alkaline-earth metal titanates in powder form | |
Choi et al. | Characteristics of BaTiO3 Particles Prepared by Spray− Coprecipitation Method Using Titanium Acylate-Based Precursors | |
US20080260624A1 (en) | Process for Production of Composition | |
JP3875589B2 (en) | Method for producing oxide powder | |
JP3526886B2 (en) | Method for producing composite oxide | |
CN110590357A (en) | Preparation method of barium strontium titanate nano powder | |
JP2007161502A (en) | Solution for making titanium-containing multiple oxide, method of preparing the same, method of manufacturing titanium-containng multiple oxide, precursor for titanium-containng multiple oxide, dielectric material and method of manufacturing dielectric material | |
Kumar et al. | Synthesis of barium titanate by a basic pH Pechini process | |
Van der Gijp et al. | Peroxo‐oxalate Preparation of Doped Barium Titanate | |
JP2000256862A (en) | Production of composite oxidized film | |
KR100436836B1 (en) | Mothod for preparing titanate powder using ethylene glycol | |
JP2001233604A (en) | Application solution for forming thin oxide film, method for producing the same and method for producing thin oxide film | |
Das et al. | Low temperature chemical synthesis of nanosized ceramic powders | |
JP2001261611A (en) | Method for producing compound metal oxide and its precursor and method for producing water-soluble organometallic compound to be used for production of the precursor | |
JP2013253002A (en) | Li-CONTAINING PIEZOELECTRIC CERAMIC POWDER MATERIAL AND METHOD FOR PRODUCING THE SAME | |
JP2996776B2 (en) | Method for producing lead zirconate titanate | |
JPH10236824A (en) | Titania-zirconia multiple oxide fine powder and its production | |
van der Gijp | Preparation of homogeneously-doped barium titanate | |
JPH0574528B2 (en) | ||
Hardy et al. | Crystallization of alkaline earth zirconates and niobates from compositionally flexible aqueous solution-gel syntheses | |
KR950008602B1 (en) | Process for producing piezoelectric material using ammonia gas | |
Chang et al. | A New drying Preparation of PZT Powders Chemically Derived by Sol-gel process |