JP2008156167A - Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same - Google Patents

Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same Download PDF

Info

Publication number
JP2008156167A
JP2008156167A JP2006347638A JP2006347638A JP2008156167A JP 2008156167 A JP2008156167 A JP 2008156167A JP 2006347638 A JP2006347638 A JP 2006347638A JP 2006347638 A JP2006347638 A JP 2006347638A JP 2008156167 A JP2008156167 A JP 2008156167A
Authority
JP
Japan
Prior art keywords
spherical
titanium oxide
metal element
peroxotitanium hydrate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347638A
Other languages
Japanese (ja)
Other versions
JP4841421B2 (en
Inventor
Masayuki Togawa
公志 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2006347638A priority Critical patent/JP4841421B2/en
Publication of JP2008156167A publication Critical patent/JP2008156167A/en
Application granted granted Critical
Publication of JP4841421B2 publication Critical patent/JP4841421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical peroxotitanium hydrate and a spherical titanium oxide containing a metallic element such as niobium. <P>SOLUTION: A peroxotitanic acid solution is held at a temperature of 20°C or lower to obtain a spherical peroxotitanium hydrate containing a metallic element having an average particle size of 0.1-5 μm, wherein the metallic element is at least one selected from the group consisting of Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W, and Hf. The resulting spherical particles are further heat-treated to obtain a titanium dioxide containing a metallic element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塗料、化粧料、有色顔料、触媒、光触媒、熱線反射材料、電磁遮蔽、導電材等に有用な金属元素を含有する球状ペルオキソチタン水和物及び該金属元素を含有する球状二酸化チタン並びにそれらの製造方法に関する。   The present invention relates to spherical peroxotitanium hydrate containing metal elements useful for paints, cosmetics, colored pigments, catalysts, photocatalysts, heat ray reflective materials, electromagnetic shielding, conductive materials, and the like, and spherical titanium dioxide containing the metal elements In addition, the present invention relates to a manufacturing method thereof.

二酸化チタンに金属元素を含有することで、有色顔料、光触媒、導電性等の用途で広く利用することができる。例えば、金属元素として、Fe、Cu、Mo、Nbなどをドープする方法として、過酸化水素と混合してなるチタン含有水溶液と金属塩を70〜300℃で加熱処理する方法(特許文献1)、カルボン酸など有機物が配位した有機チタンペロキシ化合物と金属塩を水に溶解後、濃縮してゲル化したものを熱処理する方法(特許文献2)が知られている。また,金属元素としてNb等をドープする方法として、チタン水溶液と金属塩を加え水熱処理する方法や、塩基性物質などの沈殿形成剤の添加による沈殿物やゲル化物を熱処理する方法が知られている(特許文献3)。 By containing a metal element in titanium dioxide, it can be widely used in applications such as colored pigments, photocatalysts, and conductivity. For example, as a method of doping Fe, Cu, Mo, Nb or the like as a metal element, a titanium-containing aqueous solution mixed with hydrogen peroxide and a metal salt are heated at 70 to 300 ° C. (Patent Document 1), A method (Patent Document 2) is known in which an organic titanium peroxy compound coordinated with an organic substance such as carboxylic acid and a metal salt are dissolved in water and then heat-treated after being concentrated and gelled. In addition, as a method of doping Nb or the like as a metal element, a method of hydrothermal treatment by adding a titanium aqueous solution and a metal salt, and a method of heat treatment of a precipitate or a gelled product by addition of a precipitation forming agent such as a basic substance are known. (Patent Document 3).

特開2006-21991号公報JP 2006-21991 A 特開2000-159786公報JP 2000-159786 A 特開2004-199641号公報JP 2004-199641 A

上記特許文献1〜3に開示されている金属ドープの酸化チタンの製造方法では、溶液の加熱処理、有機物含有物のゲル化、沈殿剤の添加による沈殿物やゲル化といった、溶液の加熱にエネルギーを消費する方法、沈殿物やゲル化物の濾過分別に長時間を要しエネルギーを消費する方法である。さらに、沈殿物やゲル化物では金属ドープ酸化チタンとするために、熱処理が必要で、焼結による固い凝集塊が生じ、これを粉砕するためにエネルギーを消費する。   In the method for producing metal-doped titanium oxide disclosed in Patent Documents 1 to 3, energy for heating the solution, such as heat treatment of the solution, gelation of the organic substance-containing material, precipitation or gelation due to the addition of a precipitant, is used. Is a method that consumes energy by requiring a long time for the separation of precipitates and gelled products. Furthermore, in order to obtain a metal-doped titanium oxide in a precipitate or a gelled product, heat treatment is required, and a hard agglomerate is formed by sintering, and energy is consumed to pulverize this.

本発明者らは、より安価な金属ドープ酸化チタンの製造方法を見出すべく種々検討したところ、Nb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有するペルオキソチタン酸溶液を20℃以下の温度に保持すると平均粒子径で0.1〜5μmの金属元素を含有する球状ペルオキソチタン水和物が生成すること、さらに得られた球状粒子を加熱処理すると金属元素を含有する二酸化チタンが得られることを見出し、本発明を完成した。   The inventors have made various studies to find a cheaper method for producing metal-doped titanium oxide. As a result, Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, When a peroxotitanic acid solution containing at least one metal element selected from W and Hf is kept at a temperature of 20 ° C. or less, spherical peroxotitanium hydrate containing a metal element having an average particle size of 0.1 to 5 μm is formed. In addition, the present inventors have found that titanium dioxide containing a metal element can be obtained by heat-treating the obtained spherical particles, and the present invention has been completed.

すなわち、本発明は、ペルオキソチタン酸溶液を20℃以下の温度に保持してNb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有する球状ペルオキソチタン水和物を生成させた後、固液分離することを特徴とする金属元素を含有する球状ペルオキソチタン水和物の製造方法である。また、前記球状ペルオキソチタン水和物を加熱処理することを特徴とする金属元素を含有する球状酸化チタンの製造方法である。
すなわち、本発明は、ペルオキソチタン酸溶液に金属元素化合物を添加し、塩基性物質を添加した後、溶液の凝固点以上で20℃以下の温度で保持して球状粒子を生成させ、得られた球状粒子を固液分離し、焼成することを特徴とする金属元素を含有する球状酸化チタンの製造方法である。
That is, the present invention maintains a peroxotitanic acid solution at a temperature of 20 ° C. or lower, from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W, and Hf. A method for producing a spherical peroxotitanium hydrate containing a metal element, comprising producing a spherical peroxotitanium hydrate containing at least one selected metal element and then performing solid-liquid separation. The spherical peroxotitanium hydrate is heat-treated, and is a method for producing spherical titanium oxide containing a metal element.
That is, the present invention adds a metal element compound to a peroxotitanic acid solution, adds a basic substance, and then holds the solution at a temperature not lower than the freezing point of the solution and not higher than 20 ° C. to produce spherical particles. A method for producing spherical titanium oxide containing a metal element, characterized in that particles are solid-liquid separated and fired.

本発明の球状酸化チタンの製造方法は、製造時のエネルギー消費量が少なく、工業的に有利に金属元素を含有する球状酸化チタンを製造することが可能である。   The method for producing spherical titanium oxide of the present invention can produce spherical titanium oxide containing a metal element advantageously industrially with little energy consumption during production.

本発明は、金属元素を含有する球状ペルオキソチタン水和物の製造方法であって、Nb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有するペルオキソチタン酸溶液を20℃以下の温度に保持して球状粒子を生成させた後、固液分離することを特徴とする。   The present invention relates to a method for producing a spherical peroxotitanium hydrate containing a metal element, comprising Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and A peroxotitanic acid solution containing at least one metal element selected from Hf is maintained at a temperature of 20 ° C. or lower to produce spherical particles, and then solid-liquid separation is performed.

原料として用いるNb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有するペルオキソチタン酸溶液は、例えば、金属チタン、酸化チタン等のチタン原料を過酸化水素に溶解させた後、該金属元素の溶液を添加した後、塩基性物質を添加することで得ることができる。本発明においては、金属元素を含有するペルオキソチタン酸溶液の濃度は、Tiのモル濃度で0.01〜1mol/lの範囲が好ましい。金属元素としてはTi原子に対して0.1から50atm%の範囲が望ましい。それより多いと球状粒子が生成し難くなる。添加する塩基性物質としては、アンモニア、モノエタンールアミン、水酸化ナトリウムなどのアルカリを用いることができるが、本発明においてはアンモニアが好ましい。塩基性物質の添加量は、0.1〜10mol/lの範囲が好ましく、より好ましくは0.5〜5mol/lの範囲である。塩基性物質の添加温度は、5〜30℃の範囲が好ましく、より好ましくは10〜25℃の範囲である。チタン原料を過酸化水素に溶解させた溶液に、金属元素の溶液を添加した後、塩基性物質を添加すると、溶液は透明溶液となり、この状態で、溶液の温度を20℃以下に保持することで、溶液中に金属元素を含有する球状ペルオキソチタン水和物が析出する。保持する時間は、少なくとも24時間は必要であり、好ましくは24〜60時間である。溶液を保持する温度が、上記範囲よりも高いと、粒子の析出が起こらず、ゲル化する。塩基性物質の添加量と析出温度を調整することにより、析出する金属元素を含有する球状ペルオキソチタン水和物の粒子径を制御することができるが、通常は0.2〜5μmの範囲の金属元素を含有する球状ペルオキソチタン水和物を得ることができる。得られた金属元素を含有する球状ペルオキソチタン水和物は、金属イオンと共にペルオキソ基やOH基を含む水和物で、X線回折測定からはアモルファス状態であり、示差熱−重量分析(TG−DTA)から300から350℃付近までOH基等が存在しているものである。
また、金属元素を含有する球状ペルオキソチタン水和物の固液分離は、炉過、水洗、乾燥により行うことができる。本発明の金属元素を含有する球状ペルオキソチタン水和物は、後記の球状酸化チタンを得るための前駆体としての用途のみならず、触媒、光触媒等の用途にも有用なものである。
A peroxotitanic acid solution containing at least one metal element selected from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and Hf used as a raw material is, for example, It can be obtained by dissolving a titanium raw material such as metal titanium or titanium oxide in hydrogen peroxide, adding a solution of the metal element, and then adding a basic substance. In the present invention, the concentration of the peroxotitanic acid solution containing a metal element is preferably in the range of 0.01 to 1 mol / l in terms of the molar concentration of Ti. The metal element is preferably in the range of 0.1 to 50 atm% with respect to Ti atoms. When it is more than that, it becomes difficult to produce spherical particles. As the basic substance to be added, alkali such as ammonia, monoethaneamine, sodium hydroxide or the like can be used, but ammonia is preferred in the present invention. The addition amount of the basic substance is preferably in the range of 0.1 to 10 mol / l, more preferably in the range of 0.5 to 5 mol / l. The addition temperature of the basic substance is preferably in the range of 5 to 30 ° C, more preferably in the range of 10 to 25 ° C. When a basic substance is added after adding a metal element solution to a solution in which titanium raw material is dissolved in hydrogen peroxide, the solution becomes a transparent solution, and in this state, the temperature of the solution is maintained at 20 ° C. or lower. Thus, spherical peroxotitanium hydrate containing a metal element is precipitated in the solution. The holding time needs to be at least 24 hours, preferably 24 to 60 hours. When the temperature at which the solution is held is higher than the above range, precipitation of particles does not occur and gelation occurs. The particle diameter of spherical peroxotitanium hydrate containing the metal element to be precipitated can be controlled by adjusting the amount of the basic substance added and the precipitation temperature, but usually a metal in the range of 0.2 to 5 μm. Spherical peroxotitanium hydrate containing elements can be obtained. The obtained spherical peroxotitanium hydrate containing a metal element is a hydrate containing a peroxo group and an OH group together with a metal ion, and is in an amorphous state from X-ray diffraction measurement. Differential thermal-gravimetric analysis (TG-) OH groups and the like exist from 300 to 350 ° C. from DTA).
Further, the solid-liquid separation of the spherical peroxotitanium hydrate containing the metal element can be performed by furnace heating, washing with water, and drying. The spherical peroxotitanium hydrate containing the metal element of the present invention is useful not only as a precursor for obtaining spherical titanium oxide described later, but also for applications such as catalysts and photocatalysts.

次の本発明はNb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有する球状酸化チタンの製造方法であって、前記の金属元素を含有する球状ペルオキソチタン水和物を加熱処理することを特徴とする。加熱の温度は、少なくとも150℃の温度があればよく、200〜1000℃の範囲が好ましい。金属元素を含有するペルオキソチタン水和物は非晶質の粒子であるが、このものを150〜400℃の範囲の温度で加熱処理することで該水和物に含まれる結晶水が一部残存したアナタース型の球状酸化チタンが得られる。また、400〜800℃の範囲の温度で加熱処理することでアナタース型の球状酸化チタン、800〜1000℃の範囲の温度で加熱処理することで、ルチル型、或いは、ルチル型とアナタース型の混在した金属元素を含有する球状酸化チタンが得られる。アナタース型の構造を含む球状酸化チタンは触媒、光触媒、導電材に特に有用である。また、ルチル型の構造を含む球状酸化チタンは、塗料、有色顔料、熱線反射材料に特に有用である。本発明においては、上記温度範囲で加熱しても、加熱の前後で粒子形状の変化はほとんどなく、加熱前の球状粒子の形状が維持された金属元素を含有する酸化チタンを得ることができる。   Next, the present invention produces spherical titanium oxide containing at least one metal element selected from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and Hf. A method is characterized in that the spherical peroxotitanium hydrate containing the metal element is heat-treated. The heating temperature may be at least 150 ° C., and is preferably in the range of 200 to 1000 ° C. Peroxotitanium hydrate containing a metal element is an amorphous particle, but by subjecting this to heat treatment at a temperature in the range of 150 to 400 ° C., part of the crystal water contained in the hydrate remains. Anatase type spherical titanium oxide is obtained. Also, anatase type spherical titanium oxide by heat treatment at a temperature in the range of 400 to 800 ° C., rutile type or a mixture of rutile type and anatase type by heat treatment at a temperature in the range of 800 to 1000 ° C. Spherical titanium oxide containing the obtained metal element is obtained. Spherical titanium oxide containing an anatase structure is particularly useful as a catalyst, a photocatalyst, and a conductive material. Spherical titanium oxide containing a rutile structure is particularly useful for paints, colored pigments, and heat ray reflective materials. In this invention, even if it heats in the said temperature range, there is almost no change of a particle shape before and behind heating, and the titanium oxide containing the metallic element with which the shape of the spherical particle before a heating was maintained can be obtained.

以下、本発明を実施例により説明するが、本発明はそれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

実施例1
(ペルオキソチタン酸溶液の作成)
酸化チタン4g(PT−301:石原産業株式会社製高純度酸化チタン)に30%の濃度のH水溶液100mlを添加し、金属元素NbとしてNbOCl3を0.20g含む水溶液を添加し、その後、25%の濃度のNH水溶液25mlを添加してpHを10.1に調整した後、15℃温度で保持して酸化チタンを溶解させることで、ペルオキソチタン酸溶液を得た。
(ペルオキソチタン酸溶液の作成)
Example 1
(Preparation of peroxotitanic acid solution)
To 4 g of titanium oxide (PT-301: high-purity titanium oxide manufactured by Ishihara Sangyo Co., Ltd.), 100 ml of 30% H 2 O 2 aqueous solution is added, and an aqueous solution containing 0.20 g of NbOCl 3 as the metal element Nb is added. Then, 25 ml of a 25% NH 3 aqueous solution was added to adjust the pH to 10.1, and the titanium oxide was dissolved at a temperature of 15 ° C. to obtain a peroxotitanic acid solution.
(Preparation of peroxotitanic acid solution)

(球状ペルオキソチタン水和物の生成)
得られたペルオキソチタン酸溶液を10℃の温度で36時間保持して球状ペルオキソチタン水和物を生成させた。次いで懸濁液をろ過、水洗、乾燥することで固液分離し本発明の金属元素(Nb)含有の球状ペルオキソチタン水和物(試料A)を得た。(Nb/Ti=0.02)
(Formation of spherical peroxotitanium hydrate)
The obtained peroxotitanic acid solution was kept at a temperature of 10 ° C. for 36 hours to produce spherical peroxotitanium hydrate. Subsequently, the suspension was filtered, washed with water, and dried to obtain a solid-liquid separation to obtain a spherical peroxotitanium hydrate (sample A) containing the metal element (Nb) of the present invention. (Nb / Ti = 0.02)

(加熱処理)
得られた球状ペルオキソチタン水和物(試料A)を大気中600℃の温度で2時間加熱処理して本発明の球状酸化チタン(試料B)を得た。
(Heat treatment)
The obtained spherical peroxotitanium hydrate (sample A) was heat-treated in the atmosphere at a temperature of 600 ° C. for 2 hours to obtain the spherical titanium oxide (sample B) of the present invention.

実施例2
実施例1のペルオキソチタン酸溶液の作成において、金属元素NbとしてNbOCl3を1.02g含む水溶液を添加すること以外は同様にして、ペルオキソチタン酸溶液を得た。(Nb/Tiの原子比=0.02)。球状粒子の生成と焼成も実施例1と同様にして本発明の球状酸化チタン(試料B)を得た。
Example 2
In the preparation of the peroxotitanate solution of Example 1, a peroxotitanate solution was obtained in the same manner except that an aqueous solution containing 1.02 g of NbOCl3 as the metal element Nb was added. (Nb / Ti atomic ratio = 0.02). Spherical titanium oxide (sample B) of the present invention was obtained in the same manner as in Example 1 for the production and firing of spherical particles.

実施例3
実施例1のペルオキソチタン酸溶液の作成において、金属元素NbとしてNbOCl3を1.53g含む水溶液を添加すること以外は同様にして、ペルオキソチタン酸溶液を得た。(Nb/Tiの原子比=0.15)。球状粒子の生成と焼成も実施例1と同様にして本発明の球状酸化チタン(試料C)を得た。
Example 3
A peroxotitanic acid solution was obtained in the same manner as in Example 1 except that an aqueous solution containing 1.53 g of NbOCl3 as the metal element Nb was added. (Nb / Ti atomic ratio = 0.15). Spherical titanium oxide (sample C) of the present invention was obtained in the same manner as in Example 1 for the production and firing of spherical particles.

実施例4
実施例1の焼成において、得られた球状粒子を管状炉内に装入し、N2(25容積%)−H2(75容積%)の混合ガスを2リットル/分で流して、600℃の温度で2時間焼成することで本発明の球状酸化チタン(試料D)を得た。
Example 4
In the firing of Example 1, the obtained spherical particles were charged into a tubular furnace, and a mixed gas of N2 (25% by volume) -H2 (75% by volume) was flowed at 2 liters / minute, and a temperature of 600 ° C. Was fired for 2 hours to obtain spherical titanium oxide (sample D) of the present invention.

実施例5
実施例3の焼成において、得られた球状粒子を、管状炉内に装入し、N2(25容積%)−H2(75容積%)の混合ガスを2リットル/分で流して、600℃の温度で2時間焼成することで本発明の球状酸化チタン(試料E)を得た。
Example 5
In the calcination of Example 3, the obtained spherical particles were charged into a tubular furnace, and a mixed gas of N 2 (25% by volume) -H 2 (75% by volume) was flowed at 2 liters / minute, Spherical titanium oxide (sample E) of the present invention was obtained by firing at a temperature for 2 hours.

比較例1
実施例1の球状粒子の生成において、保持する温度及び時間を60℃、8時間とした場合には、ゲル化して塊となることから、大気中600℃で焼成後、これを乳鉢で粉砕して比較試料の酸化チタン(試料F)を得た。
Comparative Example 1
In the production of the spherical particles of Example 1, when the temperature and time to be maintained are 60 ° C. and 8 hours, they are gelled and become lumps. Thus, a comparative sample of titanium oxide (sample F) was obtained.

実施例1〜5及び比較例1で得られた金属元素(Nb)を含有する酸化チタン(試料A、Bの走査型電子顕微鏡写真を撮影し、粒子形状及び平均粒子径を算出した。各試料の走査型電子顕微鏡写真をそれぞれ図1〜7に示した。図1及び2より、本発明の製造方法で得られる金属元素を含有する酸化チタンは、その粒子形状が球状であり、平均粒子径は試料Aは1.56μmであることがわかった。試料B〜Fの平均粒子径は表1に示した。一方、図7として、比較試料(試料F)の酸化チタンでは、ゲル化した塊となることから、焼成後、これを乳鉢で粉砕したものを示した。
なお、試料B〜FとGの結晶形を粉末X線回折により確認したところ、何れもアナターゼ型の構造を有していた。
Titanium oxide containing the metal element (Nb) obtained in Examples 1 to 5 and Comparative Example 1 (Scanning electron micrographs of samples A and B were taken, and the particle shape and average particle size were calculated. 1 to 7 show scanning electron micrographs of each of Fig. 1 and 2. From Figs.1 and 2, titanium oxide containing a metal element obtained by the production method of the present invention has a spherical particle shape and an average particle diameter. The sample A was found to be 1.56 μm, and the average particle diameters of the samples B to F are shown in Table 1. On the other hand, as shown in FIG. Therefore, after firing, this was crushed in a mortar.
When the crystal forms of Samples B to F and G were confirmed by powder X-ray diffraction, they all had an anatase type structure.

Figure 2008156167
Figure 2008156167

本発明は、塗料、化粧料、有色顔料、触媒、光触媒、熱線反射材料、電磁遮蔽、導電材等として有用なものである。   The present invention is useful as a paint, a cosmetic, a colored pigment, a catalyst, a photocatalyst, a heat ray reflective material, an electromagnetic shield, a conductive material, and the like.

試料Aの粒子形状を示す走査型電子顕微鏡写真である。2 is a scanning electron micrograph showing the particle shape of sample A. FIG. 試料Bの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of Sample B. FIG. 試料Cの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of Sample C. FIG. 試料Dの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of sample D. FIG. 試料Eの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of sample E. FIG. 試料Fの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of sample F. FIG. 試料Gの粒子形状を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing the particle shape of sample G. FIG.

Claims (8)

Nb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有し、0.2〜5μmの範囲の平均粒子径を有することを特徴とする球状ペルオキソチタン水和物。 Contains at least one metal element selected from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and Hf, and has an average in the range of 0.2 to 5 μm Spherical peroxotitanium hydrate characterized by having a particle size. 金属元素をチタンに対して0.1〜50atm%含むことを特徴とする請求項1に記載の球状ペルオキソチタン水和物。 The spherical peroxotitanium hydrate according to claim 1, wherein the metal element contains 0.1 to 50 atm% of titanium. Nb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有し、0.2〜5μmの範囲の平均粒子径を有することを特徴とする球状酸化チタン。 Contains at least one metal element selected from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and Hf, and has an average in the range of 0.2 to 5 μm A spherical titanium oxide characterized by having a particle size. 金属元素をチタンに対して0.1〜50atm%含むことを特徴とする請求項3に記載の球状酸化チタン。 The spherical titanium oxide according to claim 3, wherein the metal element contains 0.1 to 50 atm% of titanium. Nb、Zr、Ta、Fe、Co、Ni、Cu、Mn、Si、Al、Mo、V、Sb、W及びHfから選ばれる少なくとも一種の金属元素を含有するペルオキソチタン酸溶液を20℃以下の温度に保持して該金属元素を含有する球状ペルオキソチタン水和物を生成させた後、固液分離することを特徴とする球状ペルオキソチタン水和物の製造方法。 A peroxotitanic acid solution containing at least one metal element selected from Nb, Zr, Ta, Fe, Co, Ni, Cu, Mn, Si, Al, Mo, V, Sb, W and Hf is at a temperature of 20 ° C. or lower. And producing a spherical peroxotitanium hydrate containing the metal element, followed by solid-liquid separation. 少なくとも24時間保持することを特徴とする請求項5に記載の球状ペルオキソチタン水和物の製造方法。 6. The method for producing spherical peroxotitanium hydrate according to claim 5, wherein the method is maintained for at least 24 hours. 請求項5に記載の球状ペルオキソチタン水和物を加熱処理することを特徴とする球状酸化チタンの製造方法。 A method for producing spherical titanium oxide, comprising subjecting the spherical peroxotitanium hydrate according to claim 5 to heat treatment. 200〜1000℃の範囲の温度で加熱処理することを特徴とする請求項7に記載の球状酸化チタンの製造方法。 The method for producing spherical titanium oxide according to claim 7, wherein the heat treatment is performed at a temperature in a range of 200 to 1000 ° C.
JP2006347638A 2006-12-25 2006-12-25 Spherical peroxotitanium hydrate and method for producing spherical titanium oxide Expired - Fee Related JP4841421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347638A JP4841421B2 (en) 2006-12-25 2006-12-25 Spherical peroxotitanium hydrate and method for producing spherical titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347638A JP4841421B2 (en) 2006-12-25 2006-12-25 Spherical peroxotitanium hydrate and method for producing spherical titanium oxide

Publications (2)

Publication Number Publication Date
JP2008156167A true JP2008156167A (en) 2008-07-10
JP4841421B2 JP4841421B2 (en) 2011-12-21

Family

ID=39657520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347638A Expired - Fee Related JP4841421B2 (en) 2006-12-25 2006-12-25 Spherical peroxotitanium hydrate and method for producing spherical titanium oxide

Country Status (1)

Country Link
JP (1) JP4841421B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102407A1 (en) * 2010-02-17 2011-08-25 国立大学法人神戸大学 Radiation therapy agent
JP2011195420A (en) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology Method for producing metal oxide fine particle
JP2017059307A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335419A (en) * 1986-07-31 1988-02-16 Taiyo Yuden Co Ltd Production of spherical titanium oxide of hydrate type
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JP2000159786A (en) * 1998-11-26 2000-06-13 Furuuchi Kagaku Kk Organotitanium peroxide compound, its production and formation of complex oxide containing titanium
JP2000191325A (en) * 1998-12-25 2000-07-11 Tayca Corp Spherical titanium dioxide aggregate formed from fine spherical particles of titanium dioxide and its production
JP2000247639A (en) * 1999-02-26 2000-09-12 Saga Prefecture Production of solution for forming titanium dioxide
JP2000247638A (en) * 1999-02-26 2000-09-12 Saga Prefecture Production of liquid dispersion of crystalline titanium dioxide grains
JP2002145616A (en) * 2000-11-07 2002-05-22 Kenichi Yamanaka Powdery and solid titanium oxide and its production method
JP2004196641A (en) * 2002-12-16 2004-07-15 Masanori Hirano Anatase type crystal composition and method of manufacturing the same
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
JP2006021991A (en) * 2004-06-09 2006-01-26 Kansai Paint Co Ltd Method for producing metal doped titanium oxide particulate
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335419A (en) * 1986-07-31 1988-02-16 Taiyo Yuden Co Ltd Production of spherical titanium oxide of hydrate type
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JP2000159786A (en) * 1998-11-26 2000-06-13 Furuuchi Kagaku Kk Organotitanium peroxide compound, its production and formation of complex oxide containing titanium
JP2000191325A (en) * 1998-12-25 2000-07-11 Tayca Corp Spherical titanium dioxide aggregate formed from fine spherical particles of titanium dioxide and its production
JP2000247639A (en) * 1999-02-26 2000-09-12 Saga Prefecture Production of solution for forming titanium dioxide
JP2000247638A (en) * 1999-02-26 2000-09-12 Saga Prefecture Production of liquid dispersion of crystalline titanium dioxide grains
JP2002145616A (en) * 2000-11-07 2002-05-22 Kenichi Yamanaka Powdery and solid titanium oxide and its production method
JP2004196641A (en) * 2002-12-16 2004-07-15 Masanori Hirano Anatase type crystal composition and method of manufacturing the same
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same
JP2006021991A (en) * 2004-06-09 2006-01-26 Kansai Paint Co Ltd Method for producing metal doped titanium oxide particulate
JP2007320821A (en) * 2006-06-02 2007-12-13 Catalysts & Chem Ind Co Ltd Electroconductive titanium oxide and its manufacture method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102407A1 (en) * 2010-02-17 2011-08-25 国立大学法人神戸大学 Radiation therapy agent
US8580312B2 (en) 2010-02-17 2013-11-12 National University Corporation Kobe University Radiation therapy agent
JP2011195420A (en) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology Method for producing metal oxide fine particle
JP2017059307A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Method for producing negative electrode active material for secondary battery

Also Published As

Publication number Publication date
JP4841421B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5355095B2 (en) Production of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and alloys
AU2006329590B2 (en) Methods for production of titanium oxide particles, and particles and preparations produced thereby
US20080305025A1 (en) Methods for Production of Metal Oxide Nano Particles, and Nano Particles and Preparations Produced Thereby
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
Li et al. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO 3
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
CN109879311B (en) Method for preparing titanium suboxide by reducing titanium-containing complex at normal temperature
JP4841421B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JP7342227B2 (en) Tantalum acid dispersion and tantalate compound
Kolen'ko et al. Phase composition of nanocrystalline titania synthesized under hydrothermal conditions from different titanyl compounds
JP2012126645A (en) Valve metal-oxide powder and method for producing the same
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
JPH05163022A (en) Spherical anatase titanium oxide and its production
Leidich et al. Synthesis of single crystalline sub-micron rutile TiO 2 rods using hydrothermal treatment in acidic media
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
KR100558337B1 (en) A process for preparing an ultrafine particle of substantial brookite-type titanium oxide, using titanium tetrachloride and aqueous nitric acid
KR100840899B1 (en) Manufacturing methods of photo-catalytic titanium oxide with addition of polymer
KR102411275B1 (en) Method for producing anatase-type titanium dioxide using titanium-containing hydrochloric acid solution and titanium dioxide crystal control method using titanium-contained hydrochloric acid solution
KR20010025629A (en) Preparation of Titanium oxide Nanocrystalline Powder by HCl Treatment
KR100475551B1 (en) Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
JP5488199B2 (en) Method for producing composite oxide powder
KR100519039B1 (en) A process for preparing an ultrafine particle of brookite-type titanium oxide, using titanium tetrachloride and aqueous hydrochloric acid
JPH072598A (en) Production of acicular titanium oxide
CN116409810A (en) Preparation technology of large-particle cerium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R151 Written notification of patent or utility model registration

Ref document number: 4841421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees