JP2008184502A - Hydrogel-forming material, hydrogel composition, and ground-reinforcing method - Google Patents

Hydrogel-forming material, hydrogel composition, and ground-reinforcing method Download PDF

Info

Publication number
JP2008184502A
JP2008184502A JP2007017568A JP2007017568A JP2008184502A JP 2008184502 A JP2008184502 A JP 2008184502A JP 2007017568 A JP2007017568 A JP 2007017568A JP 2007017568 A JP2007017568 A JP 2007017568A JP 2008184502 A JP2008184502 A JP 2008184502A
Authority
JP
Japan
Prior art keywords
hydrogel
forming material
concentration
aqueous solution
hydrogel composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007017568A
Other languages
Japanese (ja)
Other versions
JP5143434B2 (en
Inventor
Takayuki Higuchi
隆行 樋口
Ryoetsu Yoshino
亮悦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007017568A priority Critical patent/JP5143434B2/en
Publication of JP2008184502A publication Critical patent/JP2008184502A/en
Application granted granted Critical
Publication of JP5143434B2 publication Critical patent/JP5143434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogel-forming material in the form of an aqueous solution of high stability, to provide a hydrogel composition using the hydrogel-forming material, having resilience, physical strength and water resistance enough to enable ground reinforcement, and to provide a ground-reinforcing method using the hydrogel composition. <P>SOLUTION: The hydrogel-forming material is in the form of an aqueous solution containing a non-ammonium type titanium peroxo compound and polyvinyl alcohol. In the hydrogel-forming material, it is preferable that the non-ammonium type titanium peroxo compound be an alkali metal salt, the alkali metal concentration be 0.1-1.2 mass%, the polyvinyl alcohol concentration be 4-10 mass% on a solid basis, and the titanium concentration be 0.4-1.0 mass%. The hydrogel composition is such as to be obtained by incorporating the above hydrogel-forming material with a calcium aluminate compound. The ground-reinforcing method using the hydrogel composition is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に土木・建築分野において使用されるヒドロゲル形成材料、ヒドロゲル組成物及び地盤強化方法に関するものである。   The present invention relates to a hydrogel-forming material, a hydrogel composition, and a ground reinforcement method mainly used in the civil engineering and construction fields.

地下構造物の周囲を弾性組成物で改質することで、地震による地下構造物の被害を軽減する技術が検討されている。また、弾性組成物としてポリビニルアルコールを用いたヒドロゲル組成物が検討されている(特許文献1、2、3)。
また、水溶性チタン化合物の有機チタンペルオキソ化合物やその製法が開示されている(特許文献4、5)。
特開平06−207071号公報 特開平05−117003号公報 特開2005−162984号公報 特開2000−159786号公報 特開2004−43353号公報
Techniques to reduce the damage of underground structures due to earthquakes by modifying the surroundings of underground structures with elastic compositions are being studied. Further, hydrogel compositions using polyvinyl alcohol as an elastic composition have been studied (Patent Documents 1, 2, and 3).
Moreover, the organic titanium peroxo compound of a water-soluble titanium compound and its manufacturing method are disclosed (patent documents 4 and 5).
Japanese Patent Laid-Open No. 06-207071 JP 05-117033 A JP 2005-162984 A JP 2000-159786 A JP 2004-43353 A

これらの材料は、ゲル化前は液状であるため任意の形状に充填できることから、ゴムのような弾性組成物にはない特徴を有している。しかしながら、水溶液の安定性が低く、さらに、ゲル化後の物理的強度が小さいため、大きな地下水圧や土圧がかかる場所ではゲル組成物が壊れてしまう恐れがある。
本発明は、水溶液の安定性が高いヒドロゲル形成材料を提供する。さらに、地盤強化が可能な弾力性、物理的強度、耐水性を有するヒドロゲル形成材料を用いたヒドロゲル組成物及びそれを使用した地盤強化方法を提供する。
Since these materials are in a liquid state before gelation and can be filled into an arbitrary shape, they have characteristics not found in elastic compositions such as rubber. However, since the stability of the aqueous solution is low and the physical strength after gelation is small, the gel composition may be broken at places where a large groundwater pressure or earth pressure is applied.
The present invention provides a hydrogel-forming material with high aqueous solution stability. Furthermore, the present invention provides a hydrogel composition using a hydrogel-forming material having elasticity, physical strength and water resistance capable of ground strengthening, and a ground strengthening method using the same.

すなわち、本発明は、(1)非アンモニウム型チタンペルオキソ化合物とポリビニルアルコールを含有する水溶液であることを特徴とするヒドロゲル形成材料、(2)非アンモニウム型チタンペルオキソ化合物がアルカリ金属塩である(1)のヒドロゲル形成材料、(3)アルカリ金属濃度が0.1〜1.2質量%、ポリビニルアルコールの固形分濃度が4〜10質量%である(2)のヒドロゲル形成材料、(4)チタン濃度が0.4〜1.0質量%である(1)〜(3)のいずれかのヒドロゲル形成材料、(5)(1)〜(4)のいずれかのヒドロゲル形成材料にカルシウムアルミネート化合物を含有させたヒドロゲル組成物、(6)(5)のヒドロゲル組成物を使用した地盤強化方法、である。   That is, the present invention provides (1) a hydrogel-forming material, which is an aqueous solution containing a non-ammonium type titanium peroxo compound and polyvinyl alcohol, and (2) the non-ammonium type titanium peroxo compound is an alkali metal salt (1 ) Hydrogel-forming material, (3) alkali metal concentration of 0.1-1.2% by mass, polyvinyl alcohol solid content concentration of 4-10% by mass (2) hydrogel-forming material, (4) titanium concentration A calcium aluminate compound is added to the hydrogel-forming material of any one of (1) to (3), and (5) any of (1) to (4). And (6) a ground strengthening method using the hydrogel composition of (5).

本発明によれば、水溶液の安定性が高いヒドロゲル形成材料を提供できる。さらに、ヒドロゲル形成材料を用いたヒドロゲル組成物を地下構造物の周囲に充填することで地盤を強化し、地震による地下構造物の被害を軽減することができる。すなわち、水圧や土圧に対する耐久性が大幅に向上し、かつアンモニア臭のしない地盤強化方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogel formation material with high stability of aqueous solution can be provided. Furthermore, by filling the hydrogel composition using the hydrogel-forming material around the underground structure, the ground can be strengthened and damage to the underground structure due to the earthquake can be reduced. That is, it is possible to provide a ground strengthening method in which durability against water pressure and earth pressure is greatly improved and ammonia odor is not generated.

なお、本発明で使用する部、%は、特に規定しない限り質量基準である。   The parts and% used in the present invention are based on mass unless otherwise specified.

本発明で使用するポリビニルアルコール(以下、PVAと略記)は、完全ケン化型PVA、部分ケン化型PVAをはじめとして、水酸基を有し実質的に水溶性を保持しているものであればアクリル酸、クロトン酸、マレイン酸、アクリルアミドなどを付加した各種変性PVAを用いることもできる。本発明に使用するPVAの平均重合度は、500〜3000が好ましく、1000〜2000がより好ましい。また、PVAの鹸化度は80mol%以上のものが好ましく、90mol%以上がより好ましい。PVAの重合度や鹸化度が前記範囲外の場合には、ヒドロゲル組成物がゲル化した後の物理的強度、弾力性、耐水性に影響する場合がある。   Polyvinyl alcohol (hereinafter abbreviated as PVA) used in the present invention is acrylic as long as it has a hydroxyl group and is substantially water-soluble, including fully saponified PVA and partially saponified PVA. Various modified PVA added with acid, crotonic acid, maleic acid, acrylamide, etc. can also be used. 500-3000 are preferable and, as for the average degree of polymerization of PVA used for this invention, 1000-2000 are more preferable. The saponification degree of PVA is preferably 80 mol% or more, more preferably 90 mol% or more. When the degree of polymerization or saponification of PVA is outside the above range, the physical strength, elasticity, and water resistance after the hydrogel composition is gelled may be affected.

本発明で使用する非アンモニウム型チタンペルオキソ化合物は、特開2000-159786号公報や特開2004-43353号公報に示されているチタンペルオキソ化合物の合成方法を改良することで合成できる。チタンペルオキソ化合物には、チタンの配位子としてクエン酸、リンゴ酸、グリコール酸など種々のタイプが知られており、塩類としてはアンモニウム塩、カリウム塩、ナトリウム塩、セシウム塩、ルビジウム塩があることが示されている。   The non-ammonium type titanium peroxo compound used in the present invention can be synthesized by improving the method for synthesizing the titanium peroxo compound disclosed in JP-A Nos. 2000-159786 and 2004-43353. Various types of titanium peroxo compounds such as citric acid, malic acid, and glycolic acid are known as titanium ligands, and salts include ammonium salts, potassium salts, sodium salts, cesium salts, and rubidium salts. It is shown.

本発明の非アンモニウム型チタンペルオキソ化合物とポリビニルアルコールを含有してなる水溶液(ヒドロゲル形成材料)に含まれるPVAの固形分濃度は、用途によって適宜決定されるものであり、特に限定されるものではないが、通常、4〜10%程度とすることが好ましい。4%未満では硬化体の弾性が不足する場合があり、10%を超えると水溶液の粘性が高くなり、沈殿が生じる場合がある。   The solid content concentration of PVA contained in the aqueous solution (hydrogel-forming material) containing the non-ammonium type titanium peroxo compound of the present invention and polyvinyl alcohol is appropriately determined depending on the application and is not particularly limited. However, it is usually preferable to be about 4 to 10%. If it is less than 4%, the elasticity of the cured product may be insufficient, and if it exceeds 10%, the viscosity of the aqueous solution may increase and precipitation may occur.

本発明の非アンモニウム型のチタンペルオキソ化合物とポリビニルアルコールを含有してなる水溶液(ヒドロゲル形成材料)に含まれるアルカリ金属の濃度は0.1〜1.2%が好ましく、0.3〜1.0%がより好ましい。1.2%を超えるとポリビニルアルコールとの相互作用によって沈殿が生じる場合がある。0.1%を下回るとカルシウムアルミネート化合物を添加してからゲル化するまでの時間が著しく長くなる場合がある。また、チタン濃度は0.4〜1.0%が好ましい。0.4%未満ではゲル化後のヒドロゲル組成物の弾力性、物理的強度、耐水性が不十分になる場合があり、1.0%を超えると不経済になる場合がある。   The concentration of the alkali metal contained in the aqueous solution (hydrogel forming material) containing the non-ammonium type titanium peroxo compound of the present invention and polyvinyl alcohol is preferably 0.1 to 1.2%, and preferably 0.3 to 1.0. % Is more preferable. If it exceeds 1.2%, precipitation may occur due to the interaction with polyvinyl alcohol. If it is less than 0.1%, the time from the addition of the calcium aluminate compound to gelation may be significantly increased. The titanium concentration is preferably 0.4 to 1.0%. If it is less than 0.4%, the elasticity, physical strength and water resistance of the hydrogel composition after gelation may be insufficient, and if it exceeds 1.0%, it may be uneconomical.

本発明で使用するカルシウムアルミネート化合物は、石灰石や石灰や消石灰などのカルシウム原料、ボーキサイトやアルミ残灰などのアルミニウム原料を所定の割合で配合し、熱処理した後、粉砕したものである。
熱処理温度は、1200〜2000℃が好ましく、1400〜1600℃の範囲がより好ましい。1200℃未満では、所定の化合物が得られない場合があり、2000℃を超えると不経済になる場合がある。焼成中の雰囲気は酸化雰囲気でも還元雰囲気でも構わない。また、焼成設備はロータリーキルンや電気炉などが使用可能である。
原料としては、主成分であるCaO、Alの他にSiO、Fe、MgO、TiO、P、NaO、KO、フッ素、塩素、重金属類などの不純物を含む場合があるが、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。
The calcium aluminate compound used in the present invention is obtained by blending calcium raw materials such as limestone, lime and slaked lime, and aluminum raw materials such as bauxite and aluminum residual ash at a predetermined ratio, heat-treating, and then pulverizing.
The heat treatment temperature is preferably 1200 to 2000 ° C, and more preferably 1400 to 1600 ° C. If it is less than 1200 degreeC, a predetermined compound may not be obtained, and if it exceeds 2000 degreeC, it may become uneconomical. The atmosphere during firing may be an oxidizing atmosphere or a reducing atmosphere. Moreover, a rotary kiln, an electric furnace, etc. can be used for baking facilities.
As raw materials, in addition to CaO and Al 2 O 3 as main components, SiO 2 , Fe 2 O 3 , MgO, TiO 2 , P 2 O 5 , Na 2 O, K 2 O, fluorine, chlorine, heavy metals, etc. However, it is not a problem as long as the object of the present invention is not substantially hindered.

カルシウムアルミネート化合物のCaO/Alモル比は、特に限定されるものではないが、0.4〜2.5であることが好ましい。0.4未満ではゲル化後のヒドロゲル組成物の圧縮強度が低くなる場合があり、2.5を超えるとゲル化時間が短くなるため、水溶液とカルシウムアルミネート化合物を均一に混合できない場合がある。なお、本発明のヒドロゲル形成材料は、カルシウムアルミネートを添加してゲル化させるとアルカリ性を呈する。 The CaO / Al 2 O 3 molar ratio of the calcium aluminate compound is not particularly limited, but is preferably 0.4 to 2.5. If it is less than 0.4, the compressive strength of the hydrogel composition after gelation may be low, and if it exceeds 2.5, the gelation time is shortened, so the aqueous solution and the calcium aluminate compound may not be mixed uniformly. . In addition, the hydrogel formation material of this invention exhibits alkalinity, when calcium aluminate is added and gelatinized.

カルシウムアルミネート化合物の粉末度は、ブレーン比表面積で1500〜8000cm/gが好ましく3000〜6000cm/gがより好ましい。1500cm/g未満の粗粒では充分な強度が得られない場合があり、8000cm/gを超える微粉末では反応性が高くなるため充分な可使時間を確保できない場合がある。ただし、有機酸などを併用して可使時間を調整する場合はこの限りではない。 The fineness of the calcium aluminate compound is preferably 1500 to 8000 cm 2 / g, more preferably 3000 to 6000 cm 2 / g, in terms of the specific surface area of Blaine. If the coarse particles are less than 1500 cm 2 / g, sufficient strength may not be obtained, and if the fine powder exceeds 8000 cm 2 / g, the reactivity may be high and sufficient pot life may not be ensured. However, this does not apply when the pot life is adjusted using an organic acid or the like.

カルシウムアルミネート化合物のガラス化率は、特に限定されるものではなく、結晶質でも非晶質でも本発明には使用可能である。結晶質のカルシウムアルミネート化合物としては、3CaO・Al、12CaO・7Al、CaO・Al、3CaO・5Al、CaO・2Al、CaO・6Alなどが挙げられる。これらのうち2種以上を併用することも可能である。
なお、本発明では、次に示すX線回折リートベルト法によってガラス化率の測定を行った。粉砕した試料に酸化アルミニウムや酸化マグネシウムなどの内部標準物質を所定量添加し、めのう乳鉢で充分混合した後、粉末X線回折測定を実施する。測定結果を定量ソフトで解析し、ガラス化率を求める。定量ソフトには、Sietronics社の「SIROQUANT」を用いた。
The vitrification rate of the calcium aluminate compound is not particularly limited, and it can be used in the present invention whether crystalline or amorphous. Calcium aluminate compounds of the crystalline, 3CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, CaO · Al 2 O 3, 3CaO · 5Al 2 O 3, CaO · 2Al 2 O 3, CaO · 6Al 2 O 3 etc. are mentioned. Two or more of these can be used in combination.
In the present invention, the vitrification rate was measured by the following X-ray diffraction Rietveld method. A predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide is added to the pulverized sample, and after sufficient mixing in an agate mortar, powder X-ray diffraction measurement is performed. Analyze the measurement results with quantitative software to determine the vitrification rate. “SIROQUANT” manufactured by Sitronics was used as the quantitative software.

本発明のヒドロゲル組成物は、非アンモニウム型チタンペルオキソ化合物とポリビニルアルコールを含有してなる水溶液(ヒドロゲル形成材料)にカルシウムアルミネート化合物を含有させて調製する。ヒドロゲル組成物100部中、カルシウムアルミネート化合物は10〜20部が好ましい。10部未満では耐水性や強度が低下する恐れがあり、20部以上では強度が高くなりすぎて弾力性が損なわれる恐れがある。   The hydrogel composition of the present invention is prepared by containing a calcium aluminate compound in an aqueous solution (hydrogel-forming material) containing a non-ammonium type titanium peroxo compound and polyvinyl alcohol. In 100 parts of the hydrogel composition, the calcium aluminate compound is preferably 10 to 20 parts. If it is less than 10 parts, the water resistance and strength may be lowered, and if it is 20 parts or more, the strength becomes too high and the elasticity may be impaired.

本発明のヒドロゲル組成物は、水酸基やカルボキシル基の架橋剤として従来から使用されているものを、本発明の効果を損なわない範囲で併用することができる。従来の架橋剤としては、脂肪族アルデヒド類、芳香族アルデヒド類、トリメチロールメラミンなどのメチロール基を有する化合物、ホウ砂やホウ酸などのホウ素化合物、Zr、Alなどが有機物質と結合した金属アルコキシド類、イソシアネート基を有する化合物などが挙げられる。   In the hydrogel composition of the present invention, those conventionally used as a crosslinking agent for a hydroxyl group or a carboxyl group can be used in combination as long as the effects of the present invention are not impaired. Conventional cross-linking agents include aliphatic aldehydes, aromatic aldehydes, compounds having a methylol group such as trimethylol melamine, boron compounds such as borax and boric acid, metal alkoxides in which Zr, Al, etc. are bonded to an organic substance. And compounds having an isocyanate group.

本発明のヒドロゲル組成物の硬化速度を制御する目的で、クエン酸、酢酸、グルコン酸、シュウ酸、ギ酸、乳酸などの有機酸を用いることもできる。施工条件によって最適な硬化速度が異なるため有機酸の使用量は、特に限定されるものではないが、ヒドロゲル組成物の100部に対して0.25〜2部が好ましく、0.5〜1部がより好ましい。2部を超えると弾性体が得られない場合がある。   Organic acids such as citric acid, acetic acid, gluconic acid, oxalic acid, formic acid, and lactic acid can also be used for the purpose of controlling the curing rate of the hydrogel composition of the present invention. Since the optimal curing rate varies depending on the construction conditions, the amount of the organic acid used is not particularly limited, but is preferably 0.25 to 2 parts, preferably 0.5 to 1 part with respect to 100 parts of the hydrogel composition. Is more preferable. If it exceeds 2 parts, an elastic body may not be obtained.

本発明のヒドロゲル組成物は、硬化体の強度や弾性率、密度をコントロールする目的でフィラーを併用することができる。フィラーは、特に限定されることはなく、無機系や有機系のものが使用可能である。無機系としては、珪石、石灰石などの骨材、ベントナイトなどの粘土鉱物、ゼオライトなどのイオン交換体などが挙げられ、有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維などの繊維状物質、イオン交換樹脂、吸水性ポリマーなどが挙げられる。これらを本発明の目的を阻害しない範囲で使用することができる。   The hydrogel composition of the present invention can be used in combination with a filler for the purpose of controlling the strength, elastic modulus and density of the cured product. The filler is not particularly limited, and an inorganic or organic filler can be used. Examples of inorganic materials include aggregates such as silica and limestone, clay minerals such as bentonite, ion exchangers such as zeolite, and organic materials include fibrous substances such as vinylon fiber, acrylic fiber, and carbon fiber, Examples thereof include ion exchange resins and water-absorbing polymers. These can be used as long as the object of the present invention is not impaired.

本発明のヒドロゲル組成物の混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、ナウタミキサなどが挙げられる。   As the mixing apparatus for the hydrogel composition of the present invention, any existing apparatus can be used, and examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.

本発明のカルシウムアルミネート化合物を含有したヒドロゲル組成物は、カルシウムアルミネート化合物の水和反応に伴って酸性領域からアルカリ性領域へと変化しゲル化する。非アンモニウム型チタンペルオキソ化合物は、カルシウムアルミネート化合物の水和遅延剤として働き、混合からしばらくの間pH8未満に保つことができる。カルシウムアルミネート化合物を含有したヒドロゲル組成物は、その粘度および作業の安全性の観点から、酸性〜中性領域、具体的にはpHで5〜8程度であることが好ましい。pHが8以上では皮膚に付着した際アルカリ薬傷を起す場合がある。カルシウムアルミネート化合物の代わりに普通セメントを使用した場合は、pHは混合直後に9を超えてしまう。   The hydrogel composition containing the calcium aluminate compound of the present invention changes from an acidic region to an alkaline region and gels with the hydration reaction of the calcium aluminate compound. The non-ammonium type titanium peroxo compound acts as a hydration retarder for the calcium aluminate compound and can be kept below pH 8 for a while after mixing. The hydrogel composition containing a calcium aluminate compound is preferably in the acidic to neutral range, specifically about pH 5 to 8, from the viewpoints of viscosity and work safety. When the pH is 8 or more, alkaline chemical damage may occur when it adheres to the skin. If ordinary cement is used instead of the calcium aluminate compound, the pH will exceed 9 immediately after mixing.

本発明のヒドロゲル組成物を使用した地盤強化方法としては、トンネルおよび下水管などの地下構造物周囲の空洞や土壌中に注入するものであり、特に限定されるものではない。例えば、空洞や漏水が見られるコンクリート壁にドリルで穴を開け、注入プラグをセットした後、本発明のヒドロゲル組成物を各種ポンプで注入し、空洞部を充填しコンクリート背面に遮水層を形成する。また、地上から空洞部や構造物周囲に注入管を挿入して、各種注入ポンプを用いて注入することも可能である。   The ground strengthening method using the hydrogel composition of the present invention is not particularly limited because it is injected into a cavity or soil around an underground structure such as a tunnel and a sewer pipe. For example, drill a hole in a concrete wall where cavities and water leakage are seen, set an injection plug, inject the hydrogel composition of the present invention with various pumps, fill the cavity, and form a water-blocking layer on the back of the concrete To do. Moreover, it is also possible to inject using various injection pumps by inserting an injection tube from the ground around the cavity or around the structure.

以下、実施例で詳細に説明する。   Examples will be described in detail below.

「実験例1」
金属チタン粉末(350メッシュ)約0.25g、30%過酸化水素水20ml、30%アンモニア水5mlをビーカーの中で混合し、ウォーターバスで冷却しながら溶かし、黄色い透明なチタンペルオキソ溶液を得た。次に、得られた溶液に、チタンに対して1倍モル以上のクエン酸を加えた。加えたクエン酸が完全に溶けきった後、ホットプレート上80℃で加熱乾燥し、得られた化合物を蒸留水に再溶解させ、チタン濃度0.125M/Lに調整した。この溶液をNaClでNa型にしたハイポーラス型陽イオン交換樹脂に滴下し、チタン水溶液(ア)を調製した。またチタン水溶液(ア)を濃縮してチタン水溶液(イ)を調製した。チタン水溶液の性状を表1に示す。
"Experiment 1"
About 0.25 g of titanium metal powder (350 mesh), 20 ml of 30% hydrogen peroxide water, 5 ml of 30% ammonia water were mixed in a beaker and dissolved while cooling in a water bath to obtain a yellow transparent titanium peroxo solution. . Next, citric acid of 1 mol or more with respect to titanium was added to the obtained solution. After the added citric acid was completely dissolved, it was dried by heating on a hot plate at 80 ° C., and the resulting compound was redissolved in distilled water to adjust the titanium concentration to 0.125 M / L. This solution was added dropwise to a high-porous cation exchange resin made Na-type with NaCl to prepare an aqueous titanium solution (A). Further, the aqueous titanium solution (a) was concentrated to prepare an aqueous titanium solution (a). Table 1 shows the properties of the aqueous titanium solution.

〈評価・測定方法〉
液の安定性:加水分解せず長期間安定である場合は○、加水分解して沈殿を生じる場合は×とした。
外観:目視判定
Ti濃度:ICP発光分光分析装置(エスアイアイナノテクノロジー社製)を用いて測定した。
Na濃度:原子吸光光度計(島津製作所社製)を用いて測定した。
N濃度:有機微量元素分析装置(ヤナコ分析工業社製)を用いて測定した。
pH:pHメーター(HORIBA社製、F−50シリーズ)を用いて測定した。
化合物の同定:X線回折法、ラマン分光法、炭素13NMR分光法により確認した。
<Evaluation and measurement method>
Stability of the liquid: ○ when the product was stable for a long time without hydrolysis, and × when it was hydrolyzed to cause precipitation.
Appearance: Visual determination Ti concentration: Measured using an ICP emission spectroscopic analyzer (manufactured by SII Nano Technology).
Na concentration: Measured using an atomic absorption photometer (manufactured by Shimadzu Corporation).
N concentration: Measured using an organic trace element analyzer (manufactured by Yanaco Analytical Industries).
pH: Measured using a pH meter (HORIBA, F-50 series).
Compound identification: confirmed by X-ray diffraction, Raman spectroscopy, carbon 13 NMR spectroscopy.

Figure 2008184502
Figure 2008184502

表1に示すように、イオン交換法によって非アンモニウム型チタンペルオキソ化合物を合成した。   As shown in Table 1, non-ammonium type titanium peroxo compounds were synthesized by an ion exchange method.

「実験例2」
水道水に重合度1700、鹸化度98.7mol%のPVAを加えて80℃に加温し、固形分濃度10%のPVA水溶液を調製した。このPVA水溶液と実験例1で合成したチタン水溶液(ア)とチタン水溶液(ウ)を混合したものについて、実験例1と同様に、Ti濃度、Na濃度を測定し、さらに、PVA濃度を測定した。また、ヒドロゲル形成材料の液の状態と安定性(外観)を評価した。結果を表2に示す。
"Experimental example 2"
PVA having a polymerization degree of 1700 and a saponification degree of 98.7 mol% was added to tap water and heated to 80 ° C. to prepare a PVA aqueous solution having a solid content concentration of 10%. About what mixed this PVA aqueous solution, the titanium aqueous solution (a) synthesize | combined in Experimental Example 1, and titanium aqueous solution (U), it measured Ti density | concentration and Na density | concentration similarly to Experimental Example 1, and also measured PVA density | concentration. . Moreover, the liquid state and stability (appearance) of the hydrogel-forming material were evaluated. The results are shown in Table 2.

(使用材料)
PVA:電気化学工業社製、商品名「K17」、重合度1700、鹸化度98.7mol%
チタン水溶液(ア):表1の(ア)
チタン水溶液(ウ):ジイソプロポキシチタンビス(トリエタノールアミネート)、松本製薬工業社製、商品名「TC−400」、チタン濃度8.3%の3倍希釈品。
(Materials used)
PVA: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “K17”, polymerization degree 1700, saponification degree 98.7 mol%
Titanium aqueous solution (A): (A) in Table 1
Titanium aqueous solution (U): diisopropoxytitanium bis (triethanolaminate), manufactured by Matsumoto Pharmaceutical Co., Ltd., trade name “TC-400”, a 3-fold diluted product having a titanium concentration of 8.3%.

〈測定方法〉
PVA濃度:ヨウ素を用いてヒドロゲル形成材料を発色させた後、分光光度計(日本分光社製)を用いて紫外可視吸収スペクトル法によって測定した。
<Measuring method>
PVA concentration: The hydrogel-forming material was colored using iodine, and then measured by a UV-visible absorption spectrum method using a spectrophotometer (manufactured by JASCO Corporation).

Figure 2008184502
Figure 2008184502

表2に示すように、本発明の水溶液のヒドロゲル形成材料は、従来からあるPVA水溶液+チタン水溶液の混合物に比べて安定であり、長期間にわたって貯蔵することができる(実験No.2-1の混合水溶液は長期間安定であったが、実験No.2-2の混合水溶液は10分後にゲル化した)。   As shown in Table 2, the hydrogel-forming material of the aqueous solution of the present invention is more stable than a conventional mixture of PVA aqueous solution + titanium aqueous solution and can be stored for a long period of time (Experiment No. 2-1 The mixed aqueous solution was stable for a long time, but the mixed aqueous solution of Experiment No. 2-2 gelled after 10 minutes).

「実験例3」
水道水に重合度1700、鹸化度98.7mol%のPVAを加えて80℃に加温し、固形分濃度10%のPVA水溶液を調製した。このPVA水溶液と実験例1で合成したチタン水溶液(ア)、(イ)と水を混合して、表3に示すPVA濃度、チタン濃度、ナトリウム濃度のヒドロゲル形成材料を調製した。得られた水溶液の性状を表3に示す。さらに、各ヒドロゲル形成材料にカルシウムアルミネート化合物を表3に示す割合で添加して混合してヒドロゲル組成物を得た。
ヒドロゲル形成材料について、実験例2と同様に、Ti濃度、Na濃度、PVA濃度を測定した。さらに、ゲル化後のヒドロゲル組成物の弾力性、耐水性、圧縮強度、アンモニア臭の有無を測定した。比較のため、カルシウムアルミネートの代わりに普通セメントを用いた場合についても評価した。
"Experiment 3"
PVA having a polymerization degree of 1700 and a saponification degree of 98.7 mol% was added to tap water and heated to 80 ° C. to prepare a PVA aqueous solution having a solid content concentration of 10%. This PVA aqueous solution was mixed with the aqueous titanium solutions (A), (I) and water synthesized in Experimental Example 1 to prepare hydrogel-forming materials having the PVA concentration, titanium concentration, and sodium concentration shown in Table 3. Table 3 shows the properties of the obtained aqueous solution. Furthermore, a calcium aluminate compound was added to each hydrogel-forming material at a ratio shown in Table 3 and mixed to obtain a hydrogel composition.
For the hydrogel-forming material, the Ti concentration, Na concentration, and PVA concentration were measured in the same manner as in Experimental Example 2. Furthermore, the elasticity, water resistance, compressive strength, and presence of ammonia odor of the hydrogel composition after gelation were measured. For comparison, the case where ordinary cement was used instead of calcium aluminate was also evaluated.

(使用材料)
チタン水溶液(ア):表1の(ア)
チタン水溶液(イ):表1の(イ)
カルシウムアルミネート化合物(CA):試作品、CaO29%、Al65%、SiO3%、TiO3%、CaO/Alモル比0.8、ガラス化率30%、ブレーン比表面積5000cm/g、密度3.05g/cm
普通ポルトランドセメント:市販品
(Materials used)
Titanium aqueous solution (A): (A) in Table 1
Titanium aqueous solution (I): (I) in Table 1
Calcium aluminate compound (CA): prototype, CaO 29%, Al 2 O 3 65%, SiO 2 3%, TiO 2 3%, CaO / Al 2 O 3 molar ratio 0.8, vitrification rate 30%, brane Specific surface area 5000 cm 2 / g, density 3.05 g / cm 3
Ordinary Portland cement: Commercial products

(測定方法)
弾力性(復元率):ヒドロゲル組成物を5×5×5cmの型枠に流し込み、材齢1日で脱型し、市販の耐圧試験機を用いて上部から1cm裁荷した後除荷した。除荷後の供試体の高さ(xcm)を測定して復元率を測定した。復元率は[1−(5−x)]×100(%)で算出し、弾力性の指標とした。
耐水性(質量増加):ヒドロゲル組成物100gを純水に浸漬し、吸水に伴う質量増加を1週間後に測定した。質量増加が少ないものほど水分の移動がなく耐水性に優れると言える。
圧縮強度:ヒドロゲル組成物を4×4×4cmの型枠に流し込み、材齢1日で脱型後,JIS R 5201に準拠して測定を行った。荷重をかけても供試体が降伏しない場合には、供試体が50%変位した時の荷重から圧縮強度を算出した。
(Measuring method)
Elasticity (restoration rate): The hydrogel composition was poured into a 5 × 5 × 5 cm mold, demolded at a material age of 1 day, unloaded after 1 cm was unloaded from the top using a commercially available pressure tester. The restoration rate was measured by measuring the height (xcm) of the specimen after unloading. The restoration rate was calculated by [1- (5-x)] × 100 (%) and used as an elasticity index.
Water resistance (mass increase): 100 g of the hydrogel composition was immersed in pure water, and the mass increase accompanying water absorption was measured after one week. It can be said that the smaller the increase in mass, the better the water resistance without the movement of moisture.
Compressive strength: The hydrogel composition was poured into a 4 × 4 × 4 cm mold, demolded at a material age of 1 day, and measured according to JIS R 5201. If the specimen did not yield even when a load was applied, the compressive strength was calculated from the load when the specimen was displaced by 50%.

Figure 2008184502
Figure 2008184502

表3に示すように、本発明のヒドロゲル形成材料は、透明で安定な水溶液が得られることが分かる。また、カルシウムアルミネート化合物を含有した本発明のヒドロゲル組成物は、弾性体に変化し、水中養生しても吸水膨潤による質量増加が少ないことから、耐水性に優れることが分かる。さらに、圧縮強度が高いことが分かる。また、アンモニア臭がしないという特徴を有する。   As shown in Table 3, it can be seen that the hydrogel-forming material of the present invention provides a transparent and stable aqueous solution. Moreover, it turns out that the hydrogel composition of this invention containing a calcium aluminate compound changes to an elastic body, and even if it cures in water, since the mass increase by water absorption swelling is small, it is excellent in water resistance. Furthermore, it turns out that compressive strength is high. Moreover, it has the characteristic that there is no ammonia smell.

本発明の水溶液のヒドロゲル形成材料は安定性が高い。さらに、地下構造物の周囲を本発明のヒドロゲル組成物で改質することで、地震による地下構造物の被害を軽減することができる。特に、ゲル化前は液状であるため任意の形状に充填できることから、ゴムのような弾性組成物にはない特徴を有している。   The aqueous gel hydrogel-forming material of the present invention is highly stable. Furthermore, by modifying the periphery of the underground structure with the hydrogel composition of the present invention, damage to the underground structure due to an earthquake can be reduced. In particular, since it is liquid before gelation and can be filled into an arbitrary shape, it has characteristics not found in elastic compositions such as rubber.

Claims (6)

非アンモニウム型チタンペルオキソ化合物とポリビニルアルコールを含有する水溶液であることを特徴とするヒドロゲル形成材料。 A hydrogel-forming material, which is an aqueous solution containing a non-ammonium type titanium peroxo compound and polyvinyl alcohol. 非アンモニウム型チタンペルオキソ化合物がアルカリ金属塩である請求項1記載のヒドロゲル形成材料。 The hydrogel-forming material according to claim 1, wherein the non-ammonium type titanium peroxo compound is an alkali metal salt. アルカリ金属濃度が0.1〜1.2質量%、ポリビニルアルコールの固形分濃度が4〜10質量%である請求項2記載のヒドロゲル形成材料。 The hydrogel-forming material according to claim 2, wherein the alkali metal concentration is 0.1 to 1.2% by mass, and the solid content concentration of polyvinyl alcohol is 4 to 10% by mass. チタン濃度が0.4〜1.0質量%である請求項1〜3のいずれか1項のヒドロゲル形成材料。 The hydrogel-forming material according to any one of claims 1 to 3, wherein the titanium concentration is 0.4 to 1.0 mass%. 請求項1〜4のいずれか1項のヒドロゲル形成材料にカルシウムアルミネート化合物を含有させたヒドロゲル組成物。 The hydrogel composition which made the hydrogel formation material of any one of Claims 1-4 contain the calcium aluminate compound. 請求項5のヒドロゲル組成物を使用した地盤強化方法。 A ground reinforcement method using the hydrogel composition of claim 5.
JP2007017568A 2007-01-29 2007-01-29 Hydrogel-forming material, hydrogel composition, and ground reinforcement method Active JP5143434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017568A JP5143434B2 (en) 2007-01-29 2007-01-29 Hydrogel-forming material, hydrogel composition, and ground reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017568A JP5143434B2 (en) 2007-01-29 2007-01-29 Hydrogel-forming material, hydrogel composition, and ground reinforcement method

Publications (2)

Publication Number Publication Date
JP2008184502A true JP2008184502A (en) 2008-08-14
JP5143434B2 JP5143434B2 (en) 2013-02-13

Family

ID=39727756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017568A Active JP5143434B2 (en) 2007-01-29 2007-01-29 Hydrogel-forming material, hydrogel composition, and ground reinforcement method

Country Status (1)

Country Link
JP (1) JP5143434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247811A (en) * 2007-03-30 2008-10-16 Denki Kagaku Kogyo Kk Method for synthesizing low-ammonium type titanium peroxo compound

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159786A (en) * 1998-11-26 2000-06-13 Furuuchi Kagaku Kk Organotitanium peroxide compound, its production and formation of complex oxide containing titanium
JP2001139750A (en) * 1999-08-30 2001-05-22 Kuraray Co Ltd Water-resistant composition
JP2001139751A (en) * 1999-08-30 2001-05-22 Kuraray Co Ltd Composition
JP2003171165A (en) * 2001-12-05 2003-06-17 Denki Kagaku Kogyo Kk Impregnating agent
JP2004043353A (en) * 2002-07-11 2004-02-12 Japan Science & Technology Corp Method for continuously producing organic titanium peroxo compound and device therefor
JP2005087990A (en) * 2003-08-11 2005-04-07 Kajima Corp Water impervious material injection type water impervious work, system, and polyvinyl alcohol-system injection type water impervious material
JP2006022145A (en) * 2004-07-06 2006-01-26 Kuraray Co Ltd Polyvinyl alcohol-based hydrogel-forming composition and hydrogel
JP2006169491A (en) * 2004-12-16 2006-06-29 Matsumoto Seiyaku Kogyo Kk Cross-linking agent of water soluble resin
JP2007177212A (en) * 2005-11-29 2007-07-12 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2007297435A (en) * 2006-04-28 2007-11-15 Denki Kagaku Kogyo Kk Composition, grouting material and repairing method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159786A (en) * 1998-11-26 2000-06-13 Furuuchi Kagaku Kk Organotitanium peroxide compound, its production and formation of complex oxide containing titanium
JP2001139750A (en) * 1999-08-30 2001-05-22 Kuraray Co Ltd Water-resistant composition
JP2001139751A (en) * 1999-08-30 2001-05-22 Kuraray Co Ltd Composition
JP2003171165A (en) * 2001-12-05 2003-06-17 Denki Kagaku Kogyo Kk Impregnating agent
JP2004043353A (en) * 2002-07-11 2004-02-12 Japan Science & Technology Corp Method for continuously producing organic titanium peroxo compound and device therefor
JP2005087990A (en) * 2003-08-11 2005-04-07 Kajima Corp Water impervious material injection type water impervious work, system, and polyvinyl alcohol-system injection type water impervious material
JP2006022145A (en) * 2004-07-06 2006-01-26 Kuraray Co Ltd Polyvinyl alcohol-based hydrogel-forming composition and hydrogel
JP2006169491A (en) * 2004-12-16 2006-06-29 Matsumoto Seiyaku Kogyo Kk Cross-linking agent of water soluble resin
JP2007177212A (en) * 2005-11-29 2007-07-12 Denki Kagaku Kogyo Kk Elastic composition and repairing method using the same
JP2007297435A (en) * 2006-04-28 2007-11-15 Denki Kagaku Kogyo Kk Composition, grouting material and repairing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247811A (en) * 2007-03-30 2008-10-16 Denki Kagaku Kogyo Kk Method for synthesizing low-ammonium type titanium peroxo compound

Also Published As

Publication number Publication date
JP5143434B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
CN102603217B (en) Alkali-activated carbonate composite cementing material and preparation method thereof
CN1419523A (en) Reactive magnesium oxide cements
JP2009537433A5 (en)
EP3245171B1 (en) Method for making concrete compositions
JP4554462B2 (en) Elastic composition and repair method using the same
KR102597908B1 (en) Long workability calcium aluminate cements with setting properties promoted by elevated temperature and related applications
JP5545698B2 (en) Composition and injection method
JP5068958B2 (en) Hydrogel composition and ground improvement method using the same
KR102435537B1 (en) Eco-friendly grout manufacturing method forming silica-sol phase and grouting method using the same
JP5052861B2 (en) Elastic composition and repair method using the same
JP5143434B2 (en) Hydrogel-forming material, hydrogel composition, and ground reinforcement method
JP5143782B2 (en) Elastic composition-forming material and elastic composition
JP2024074595A (en) Ground consolidation material and ground injection method using same
JP5468209B2 (en) Composition and injection method
JP2008308612A (en) Slag-based grouting material and grouting method using the same
KR20140042751A (en) Fluoroaluminosilicate glass powder and production method thereof
JP4090982B2 (en) Ground injection agent and ground injection method
JP5121491B2 (en) Composition, underwater non-separable hydrogel composition, and ground strengthening method using the same
JP5972079B2 (en) Capsule for fixing an element containing a rapid hardening component
JP3403303B2 (en) Ground injection method
KR20170044402A (en) High sulfate resistant inorganic binders, cement paste, mortar and concrete composite with crack self-healing function
KR102619095B1 (en) Eco-friendly Grout revealing early high-strength
JP6437269B2 (en) Elastic body composition
JP5196990B2 (en) Chemical solution for soil stabilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5143434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250