JP2005087990A - Water impervious material injection type water impervious work, system, and polyvinyl alcohol-system injection type water impervious material - Google Patents

Water impervious material injection type water impervious work, system, and polyvinyl alcohol-system injection type water impervious material Download PDF

Info

Publication number
JP2005087990A
JP2005087990A JP2004231509A JP2004231509A JP2005087990A JP 2005087990 A JP2005087990 A JP 2005087990A JP 2004231509 A JP2004231509 A JP 2004231509A JP 2004231509 A JP2004231509 A JP 2004231509A JP 2005087990 A JP2005087990 A JP 2005087990A
Authority
JP
Japan
Prior art keywords
water
aqueous solution
polymer
impervious
water shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004231509A
Other languages
Japanese (ja)
Other versions
JP4671639B2 (en
Inventor
Kazuyoshi Ozawa
一喜 小澤
Junichi Kawabata
淳一 川端
Toshiaki Kobayashi
利章 小林
Yasuhiro Shirotani
泰弘 城谷
Tomokazu Ise
智一 伊勢
Kazumasa Kusudo
一正 楠戸
Masaru Tateyama
勝 舘山
Naoyuki Yaguchi
直幸 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Railway Technical Research Institute
Kuraray Co Ltd
Original Assignee
Kajima Corp
Railway Technical Research Institute
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Railway Technical Research Institute, Kuraray Co Ltd filed Critical Kajima Corp
Priority to JP2004231509A priority Critical patent/JP4671639B2/en
Publication of JP2005087990A publication Critical patent/JP2005087990A/en
Application granted granted Critical
Publication of JP4671639B2 publication Critical patent/JP4671639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water impervious material injection type water impervious work causing little uneven solidification, and a polyvinyl alcohol-system injection type water impervious material. <P>SOLUTION: A plurality of layers of water impervious sheets 6a, 6b are laid with circumferential edges closely brought into contact with the ground face 1 where a load is set, a space d is secured between the adjacent water impervious sheets 6a, 6b against the load by using a porous spacer 7, and a polyvinyl alcohol-based impervious material aqueous solution 10 with adjustable gelation time t by pH is injected into the gap d. Preferably, the aqueous solution 10 has a pH value making the gelation time t equal to or longer than a solution charging time t<SB>0</SB>into the gap d, and the gap d is evacuated when the aqueous solution 10 is injected. One of examples of the water impervious material is an aqueous solution 10 in which a polyvinyl alcohol-based polymer of the degree of polymerization of 500 or more, a water soluble crosslinking agent having in its molecules two or more methylol groups, and a pH adjusting agent are dissolved. The degree of polymerization, polymer concentration and the mole ratio of the methylol groups to the vinyl alcohol unit in the polymer impart given water impervious properties to the water impervious gel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は遮水材注入型遮水工及びシステム並びにポリビニルアルコール系注入遮水材に関し、とくに荷重を支える地盤面を遮水する遮水工及びシステムとそれらに使用するポリビニルアルコール系注入遮水材に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-impervious material injection type water-impervious material and system and a polyvinyl alcohol-based injected water-impervious material, and in particular, a water-impervious material and system for impermeable to a ground surface supporting a load, and a polyvinyl alcohol-based injected water-impervious material used therefor About.

産業廃棄物や一般廃棄物を投棄する埋立形の廃棄物処分場は、自然の地形を利用し又は地盤を掘削して造成した凹状の地盤の内部に廃棄物を埋め立てる。環境汚染の原因となり得る埋め立て廃棄物からの浸出水の地下への浸透を防止するため、処分場の底地盤面上には遮水工を施す。合成樹脂製又はゴム製シートを用いる遮水工は施工が簡単で遮水性が良好という利点があり、広く採用されている。また廃棄物処分場だけでなく、ゴルフ場のウォーターハザード、簡易貯水池、溜池、プール等の水を貯留する底地盤面等にも同様の遮水シート工を施すことがある。   A landfill-type waste disposal site that dumps industrial waste and general waste uses landforms of natural land or excavates the ground to bury the waste in a concave ground. In order to prevent seepage of leachate from landfill waste, which may cause environmental pollution, to the bottom of the disposal site will be impermeable. A water shielding work using a synthetic resin or rubber sheet has the advantages of easy construction and good water shielding, and is widely adopted. In addition to the waste disposal site, the same water-impervious sheet construction may be applied to the bottom ground surface for storing water such as water hazards, simple reservoirs, reservoirs, and pools of golf courses.

遮水シート工は、載置する廃棄物等によって破損するおそれがあるため、定期的に破損の有無を点検する必要がある。遮水シート工における破損を検知する方法として、例えば特許文献1は、二層遮水シート工の上側シートと下側シートとの間隔をシール材によって複数の区画に分割し、分割した各区画の間隔に漏水感知センサを設置した二重遮水シートを開示する。前記間隔において遮水シートからの漏水を比抵抗・導電度・電流の位相検波等を利用して電気的に検出するシステム、前記間隔内の圧力変動によって漏水を検出するシステム、漏水を集水する配管等により漏水を検出するシステム等も提案されている。   Since the water shielding sheet works may be damaged by the waste to be placed, it is necessary to periodically check for damage. As a method for detecting breakage in the water-impervious sheet work, for example, Patent Document 1 divides the interval between the upper sheet and the lower sheet of the two-layer water-impervious sheet work into a plurality of sections by a sealing material, Disclosed is a double water-impervious sheet with a water leakage sensor installed at intervals. A system for electrically detecting water leakage from the water shielding sheet at the interval using phase detection of specific resistance, conductivity, current, etc., a system for detecting water leakage by pressure fluctuation within the interval, and collecting water leakage A system for detecting water leakage by piping or the like has also been proposed.

また、遮水シートの破損を発見した場合は、迅速に漏水部位を補修する必要がある。この場合、遮水シート上の載置物を取り除いてシートを張り替えることも不可能ではないが、廃棄物処分場等では遮水シート上に廃棄物や土砂等が数十mも埋め立てられることがあり、載置物の除去には多大な労力と手間を要する。これに対し特許文献2は、二層遮水シートの間隔に予め湿潤性繊維層(高吸水性ポリマーとアクリル繊維との複合素材等)と芯材層(ベントナイト含浸不織布等)とを設け、破損箇所から浸出した水を湿潤性繊維層に吸収させ、湿潤性繊維層の膨張によりシートの破損箇所を自動的に封鎖する遮水シート構造を開示する。また特許文献3は、前記両シートの間の間隔に水膨潤性の遮水材(ウレタン樹脂等)からなる補修層を予め設けた遮水構造物を開示する。   Moreover, when the breakage of the water shielding sheet is found, it is necessary to repair the leaked portion quickly. In this case, it is not impossible to remove the objects placed on the water shielding sheet and replace the sheet. However, in waste disposal sites, wastes, earth and sand, etc. may be buried several tens of meters on the water shielding sheet. There is a great deal of labor and labor to remove the object. On the other hand, Patent Document 2 is provided with a wettable fiber layer (a composite material of a superabsorbent polymer and an acrylic fiber) and a core layer (a bentonite-impregnated non-woven fabric, etc.) in the space between the two-layer impermeable sheets. Disclosed is a water shielding sheet structure that absorbs water leached from a location into a wettable fiber layer and automatically blocks the damaged portion of the sheet by the expansion of the wettable fiber layer. Patent Document 3 discloses a water-blocking structure in which a repair layer made of a water-swellable water-blocking material (urethane resin or the like) is provided in advance between the two sheets.

更に特許文献4〜6は、遮水シートの破損修復方法として、二層遮水シートの漏水を検知したのち、両遮水シートの間の漏水が検知された区画に止水材又は固化材(以下、これらを纏めて遮水材ということがある。)を注入する遮水構造を開示する。特許文献4は、遮水シート間の区画に充満させるに充分なゲル化時間(以下、ゲルタイムということがある。)を有する遮水材、たとえば親水性ウレタンプレポリマーを主成分としゲルタイム45〜90分の遮水材を提案している。また特許文献5及び6は、遮水材として、固化後に強弾性を有するウレタン樹脂や高吸水性樹脂、接着剤として働くエポキシ樹脂やポリエステル樹脂を提案している。樹脂等の有機系遮水材に代えてセメント−ベントナイト(CB)等の無機系遮水材の使用も提案されている。   Further, Patent Documents 4 to 6 disclose, as a method for repairing the breakage of the water-impervious sheet, after detecting water leakage of the two-layer water-impervious sheet, a water-stopping material or a solidifying material ( Hereinafter, these are collectively referred to as a water shielding material). In Patent Document 4, a water shielding material having a gelation time (hereinafter, sometimes referred to as gel time) sufficient to fill the compartments between the water shielding sheets, for example, a hydrophilic urethane prepolymer as a main component and a gel time of 45 to 90. Proposal of water shielding material for minutes. Patent Documents 5 and 6 propose a urethane resin or a highly water-absorbent resin having strong elasticity after solidification, an epoxy resin or a polyester resin acting as an adhesive as a water shielding material. The use of an inorganic water shielding material such as cement-bentonite (CB) instead of an organic water shielding material such as resin has been proposed.

特開平7−151631号公報Japanese Patent Laid-Open No. 7-151631 特開平6−218345号公報JP-A-6-218345 特開平2−176012号公報Japanese Patent Laid-Open No. 2-176012 特許第3076521号公報Japanese Patent No. 3076521 特許第2981343号公報Japanese Patent No. 2981343 特許第2960821号公報Japanese Patent No. 2960621 特開2002−294014号公報JP 2002-294014 A

しかし、遮水シートの間隙に予め水膨潤性の遮水材等を設けて破損を自動的に修復する従来方法は、修復部位に固化むらが生じやすい問題点がある。修復部位に固化むらが生じると、固化した遮水材とシートとの界面等に水道が形成され、何らかの原因で修復部位付近の遮水シートが再び破損した場合に地下への漏水を確実に防止することが難しくなる。また、固化した遮水材が硬化して可とう性が低下する場合は、地盤の変形に追従できなくなり、地盤の変形その他の物理的外因によって硬化した遮水材にクラック(ひび割れ)が発生して遮水機能が損なわれ、クラック面が遮水シートを傷つける可能性もある。遮水シートの間隙に遮水材を注入する従来方法においても、セメント−ベントナイト等の無機系遮水材を使用した場合は、懸濁液であるため注入の際に材料が分離してシート内での濃度が不均一となって固化むらが発生し、また固化後に遮水材が硬化するのでクラック等が発生する危険性がある。   However, the conventional method of automatically repairing the damage by providing a water-swellable water shielding material or the like in the gap between the water shielding sheets in advance has a problem that uneven solidification is likely to occur at the repaired portion. If solidification unevenness occurs at the repair site, water is formed at the interface between the solidified water shielding material and the sheet, and if the water shield sheet near the repair site is damaged again for some reason, water leakage to the basement is surely prevented. It becomes difficult to do. Also, if the solidified water barrier material hardens and the flexibility decreases, it will not be able to follow the deformation of the ground, and cracks will occur in the hardened water barrier material due to ground deformation or other physical external factors. Thus, the water shielding function is impaired, and the crack surface may damage the water shielding sheet. Even in the conventional method of injecting a water shielding material into the gap between the water shielding sheets, when an inorganic water shielding material such as cement-bentonite is used, it is a suspension and the material is separated during injection. There is a risk that cracking or the like may occur because the concentration of the water becomes uneven and uneven solidification occurs, and the water shielding material hardens after solidification.

これに対しウレタン樹脂等の有機系遮水材を注入する方法は、固化後にある程度弾性を有するため、地盤の変形等に追従できる利点がある。しかし、従来の有機系遮水材は一般に固化前の溶液の粘性が高くしかも数種類の薬剤を混合しているため、均一な注入が難しい問題点がある。また従来の有機系遮水材は、固化時間の調整が難しく気象条件等によって固化時間が変動するため、遮水シートの敷地面積が広大であって注入時間が長時間に及ぶような場合に、充分な充填が完了する前に遮水材の一部に固化が始まるおそれがある。充填完了前に遮水材の一部分の固化が始まると均一な充填が難しくなり、固化むらの原因となり得る。廃棄物処分場等のように広大な面積の地盤面を遮水材の注入によって遮水するためには、地盤の変形等に追従できる可とう性を有し且つ固化むらのない遮水工が必要である。   On the other hand, the method of injecting an organic water shielding material such as urethane resin has an advantage that it can follow the deformation of the ground because it has some elasticity after solidification. However, conventional organic water barrier materials generally have a problem that uniform injection is difficult because the viscosity of the solution before solidification is high and several kinds of chemicals are mixed. In addition, the conventional organic water shielding material is difficult to adjust the solidification time, and the solidification time varies depending on weather conditions, etc., so when the site area of the water shielding sheet is vast and the injection time is long, There is a risk that solidification will begin on some of the water barrier material before sufficient filling is complete. If solidification of a part of the water shielding material starts before filling is completed, uniform filling becomes difficult, which may cause uneven solidification. In order to insulate the ground surface of a large area such as a waste disposal site by injecting a water shielding material, a water impermeable construction that has flexibility to follow the deformation of the ground etc. and has no solidification unevenness is required. is necessary.

そこで本発明の目的は、固化むらが生じ難い遮水材注入型遮水工及びシステム並びにポリビニルアルコール系注入遮水材を提供することにある。   Therefore, an object of the present invention is to provide a water-impervious material injection type water-impervious construction and system that hardly causes uneven solidification, and a polyvinyl alcohol-based injected water-impervious material.

本発明者は、特許文献7が開示するポリビニルアルコール系ゲル形成用組成物に注目した。この組成物は、(A)ポリビニルアルコール系ポリマー(以下、PVAポリマーということがある。)と(B)分子中に2個以上のメチロール基を有する水溶性架橋剤と(C)水とを主構成成分とし、(A)〜(C)の合計に占める(A)の割合を0.5〜10重量%とし、(A)中のビニルアルコール・ユニット(以下、ビニルアルコール単位という。)と(B)成分中のメチロール基とのモル比を1.0:0.01〜1.0:0.5とし、(A)のPVAポリマーの重合度を500以上としたものである。この組成物は常温下で数時間〜数日間放置すると経時的にゲル化し、良好な強度及び弾性を有する水不溶性ゲルとなるので、可とう性のある遮水材として利用できる。また、ゲル化前は比較的低濃度で均一な水溶液であり、注入用の遮水材として使用した場合に材料が分離するおそれがなく、注入に適した遮水材といえる。   This inventor paid attention to the composition for forming a polyvinyl alcohol gel disclosed in Patent Document 7. This composition mainly comprises (A) a polyvinyl alcohol-based polymer (hereinafter sometimes referred to as PVA polymer), (B) a water-soluble crosslinking agent having two or more methylol groups in the molecule, and (C) water. As a constituent component, the proportion of (A) in the total of (A) to (C) is 0.5 to 10% by weight, and vinyl alcohol units (hereinafter referred to as vinyl alcohol units) in (A) and (B). The molar ratio with the methylol group in the component is 1.0: 0.01 to 1.0: 0.5, and the polymerization degree of the PVA polymer (A) is 500 or more. When this composition is allowed to stand at room temperature for several hours to several days, it gels with time and becomes a water-insoluble gel having good strength and elasticity, so that it can be used as a flexible water shielding material. Moreover, it is a relatively low concentration and uniform aqueous solution before gelation, and there is no possibility of separation of the material when used as a water shielding material for injection, and it can be said that it is a water shielding material suitable for injection.

更に本発明者らは上記(B)分子中に2個以上のメチロール基を有する水溶性架橋剤の代わりに、(B´)水溶性遷移金属化合物からなる架橋剤を用いても同様の効果が得られることを見出した。その際、(A)中のビニルアルコール単位に対する(B´)成分中の遷移金属化合物のモル比を0.01〜1.0とする必要がある。   Furthermore, the present inventors have the same effect even when a crosslinking agent comprising (B ′) a water-soluble transition metal compound is used in place of the (B) water-soluble crosslinking agent having two or more methylol groups in the molecule. It was found that it can be obtained. At that time, the molar ratio of the transition metal compound in the component (B ′) to the vinyl alcohol unit in (A) needs to be 0.01 to 1.0.

更にまた本発明者は、(A)PVAポリマーと、(B)分子中に2個以上のメチロール基を有する水溶性架橋剤又は(B´)水溶性遷移金属化合物からなる架橋剤とを溶解した水溶液は、pHによってゲルタイムが調整できることを実験的に見出した。図3〜6は、PVAポリマー濃度を3〜5重量%とした前記水溶液のゲルタイムとpHと温度との関係を示す実験結果グラフである。これらのグラフから、前記水溶液のゲルタイムはPVAポリマー濃度と温度とpHとに依存することが分かる。また、PVAポリマー濃度や温度によって相違するが、pHによりゲルタイムを10時間程度から100時間以上にいたる範囲で調整できることが分かる。広大な面積の地盤面を遮水材の注入によって遮水する場合に、pHを適当に調整した前記水溶液を遮水材として用いれば、注入途中でのゲル化を防ぎ、均一でむらのない遮水工の実現が期待できる。本発明はこの知見に基づく更なる研究開発の結果、完成に至ったものである。   Furthermore, the present inventors dissolved (A) a PVA polymer and (B) a water-soluble crosslinking agent having two or more methylol groups in the molecule or (B ′) a crosslinking agent comprising a water-soluble transition metal compound. It was experimentally found that the gel time of the aqueous solution can be adjusted by the pH. 3 to 6 are graphs showing experimental results showing the relationship between the gel time, pH and temperature of the aqueous solution having a PVA polymer concentration of 3 to 5% by weight. From these graphs, it can be seen that the gel time of the aqueous solution depends on the PVA polymer concentration, temperature and pH. Moreover, although it changes with PVA polymer concentration and temperature, it turns out that gel time can be adjusted in the range from about 10 hours to 100 hours or more by pH. When the ground surface of a large area is shielded by injecting a water shielding material, if the aqueous solution with the pH adjusted appropriately is used as the water shielding material, gelation during the injection is prevented and uniform and non-uniform shielding is achieved. Realization of waterworks can be expected. The present invention has been completed as a result of further research and development based on this finding.

図1の実施例及びその拡大図である図2を参照するに、本発明の遮水材注入型遮水工5は、荷重が設置される地盤面1上に周縁を密着させて敷設した複数層の遮水シート6a、6b、隣接する遮水シート6a、6bの間に前記荷重に抗して間隔dを保持する多孔質離隔材7、及び当該間隔d内に注入されゲル化時間tがpHにより調整可能なポリビニルアルコール系遮水材水溶液10を備えてなるものである。好ましくは、水溶液10をゲル化時間tが前記間隔dへの充填時間t0以上となるpHとする。更に好ましくは、水溶液10の注入時に前記間隔dを脱気する。 Referring to the embodiment of FIG. 1 and FIG. 2 which is an enlarged view thereof, the water-impervious material injection type water-impervious work 5 of the present invention is a plurality of laid with a peripheral edge in close contact with a ground surface 1 on which a load is installed. A porous separation material 7 that maintains the distance d against the load between the adjacent water-impervious sheets 6a and 6b, and the adjacent water-impervious sheets 6a and 6b, and a gel time t injected into the gap d. It comprises a polyvinyl alcohol-based water shielding material aqueous solution 10 that can be adjusted by pH. Preferably, the aqueous solution 10 has a pH at which the gelation time t is equal to or longer than the filling time t 0 for the interval d. More preferably, the interval d is degassed when the aqueous solution 10 is injected.

また図1の実施例及び図2を参照するに、本発明の遮水材注入型遮水システムは、荷重が設置される地盤面1上に周縁を密着させて敷設した複数層の遮水シート6a、6b、隣接する遮水シート6a、6bの間に前記荷重に抗して間隔dを保持する多孔質離隔材7、前記間隔dに連通する注入路8と脱気路9、及び注入路8を介してゲル化時間tがpHにより調整可能なポリビニルアルコール系遮水材水溶液10を注入する注入装置12を備えてなるものである。好ましくは、前記間隔dの容積と注入装置12の流量とに応じ水溶液10のpHをゲル化時間tが前記間隔dへの充填時間t0以上となるpHに調整するpH調整手段14を設ける。 Further, referring to the embodiment of FIG. 1 and FIG. 2, the water-impervious material injection type water-impervious system of the present invention is a multi-layer water-impervious sheet laid on the ground surface 1 on which a load is placed with its peripheral edge closely attached. 6a, 6b, a porous separator 7 that holds the distance d against the load between the adjacent water-impervious sheets 6a, 6b, an injection path 8 and a deaeration path 9 that communicate with the distance d, and an injection path 8 is provided with an injection device 12 for injecting a polyvinyl alcohol-based water shielding material aqueous solution 10 whose gelation time t can be adjusted by pH. Preferably, pH adjusting means 14 is provided for adjusting the pH of the aqueous solution 10 to a pH at which the gelation time t becomes equal to or longer than the filling time t 0 for the interval d according to the volume of the interval d and the flow rate of the injection device 12.

更に、本発明のポリビニルアルコール系注入遮水材は、重合度500以上のポリビニルアルコール系ポリマーと2以上のメチロール基を分子中に有する水溶性架橋剤とpH調整剤とを水に溶解した水溶液10であって、水溶液10中のポリマー濃度を2.0〜7.0重量%とし、ポリマー中のビニルアルコール単位に対する架橋剤中のメチロール基のモル比を0.01〜0.5としたもの;または、重合度500以上のポリビニルアルコール系ポリマーと水溶性遷移金属化合物からなる架橋剤とpH調整剤とを溶解した水溶液10であって、水溶液中のポリマー濃度を2.0〜7.0重量%とし、ポリマー中のポリビニルアルコール単位に対する架橋剤中の金属原子のモル比を0.01〜1.0としたものである。いずれの水溶液10も、所要ゲル化時間となる範囲内にpHを調整することができる。   In addition, the polyvinyl alcohol-based water-impermeable material of the present invention is an aqueous solution 10 in which a polyvinyl alcohol-based polymer having a polymerization degree of 500 or more, a water-soluble crosslinking agent having two or more methylol groups in the molecule, and a pH adjuster are dissolved in water. The polymer concentration in the aqueous solution 10 is 2.0 to 7.0% by weight, and the molar ratio of the methylol group in the crosslinking agent to the vinyl alcohol unit in the polymer is 0.01 to 0.5; or polyvinyl with a polymerization degree of 500 or more An aqueous solution 10 in which a crosslinking agent composed of an alcohol-based polymer and a water-soluble transition metal compound and a pH adjuster are dissolved, wherein the polymer concentration in the aqueous solution is 2.0 to 7.0% by weight, and in the crosslinking agent for the polyvinyl alcohol unit in the polymer The molar ratio of the metal atoms is set to 0.01 to 1.0. In any of the aqueous solutions 10, the pH can be adjusted within the range of the required gelation time.

本発明の遮水材注入型遮水工及びシステムは、荷重を設置する地盤面上に周縁が密着した複数層の遮水シートを敷設し、隣接する遮水シートの間に前記荷重に抗して間隔を保持し、その間隔内にゲル化時間がpHにより調整可能なPVA遮水材水溶液を注入するので、次の顕著な効果を奏する。   The water-impervious material injection type water-impervious construction and system according to the present invention lays a plurality of layers of water-impervious sheets with the peripheral edges closely adhered to the ground surface on which the load is to be installed, and resists the load between adjacent water-impervious sheets. Since the PVA water shielding material aqueous solution whose gelation time can be adjusted by the pH is injected within the interval, the following remarkable effects are exhibited.

(イ)PVA遮水材水溶液のゲル化時間をpHにより調整できるので、注入途中における遮水材の固化を防ぎ、固化むらのない均質な充填が可能となる。
(ロ)PVA遮水材水溶液は粘性が比較的低く均一性が高いので、遮水シートの間隔にむらのない均質な注入が可能である。
(ハ)注入した水溶液は弾性に富んだPVA遮水材ゲルとなるので、遮水シートとの密着性に優れ、地盤の変形や歪み等にも追随し得る遮水工が得られる。
(ニ)PVA遮水材ゲルは粘土ライナーと同等以上の高い遮水性を有し、生分解性も低いため、長期間安定的な遮水工とすることができる。
(ホ)廃棄物処分場や貯水池等の地盤面に適用することにより、遮水シートの破損時の修復システムとして利用できる。
(ヘ)また、遮水シートを施工する際にPVA遮水材水溶液を注入することにより、従来の遮水工より安全性の高い遮水工の構築に利用できる。
(A) Since the gelation time of the PVA water shielding material aqueous solution can be adjusted by pH, solidification of the water shielding material during injection is prevented, and uniform filling without solidification is possible.
(B) Since the aqueous solution of PVA water shielding material has a relatively low viscosity and high uniformity, it is possible to perform uniform injection without unevenness in the interval between the water shielding sheets.
(C) Since the injected aqueous solution becomes a PVA water-insulating material gel rich in elasticity, a water-impervious work that has excellent adhesion to the water-impervious sheet and can follow deformation and distortion of the ground is obtained.
(D) PVA water-insulating material gel has a high water-impervious property equal to or higher than that of a clay liner and has a low biodegradability, so that it can be a long-term stable impermeable material.
(E) By applying it to the ground surface of waste disposal sites and reservoirs, it can be used as a repair system in the event of breakage of the water shielding sheet.
(F) In addition, when constructing a water shielding sheet, by injecting a PVA water shielding material aqueous solution, it can be used for construction of a water shielding work that is safer than conventional water shielding works.

図1は廃棄物処分場2の底地盤面1に本発明の遮水工5を適用した実施例の垂直断面図を示し、図2(A)はその遮水工5の一部拡大断面図を示す。以下、図1及び図2を参照して本発明を説明するが、本発明は処分場底面への適用に限らず、処分場の側面や簡易貯水池の底面等の荷重が載置される地盤面1に広く適用可能である。図示例の遮水工5は、荷重を設置する地盤面1上に層状に敷設した複数の遮水シート6a、6bと、前記荷重に抗して遮水シート6a、6bを相互に離隔する多孔質離隔材7とを有する。   FIG. 1 shows a vertical sectional view of an embodiment in which a water barrier 5 of the present invention is applied to the bottom ground surface 1 of a waste disposal site 2, and FIG. 2A is a partially enlarged sectional view of the water barrier 5. Indicates. Hereinafter, the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to application to the bottom of the disposal site, but the ground surface on which loads such as the side of the disposal site and the bottom of the simple reservoir are placed. 1 is widely applicable. The water-impervious work 5 in the illustrated example includes a plurality of water-impervious sheets 6a and 6b laid in layers on the ground surface 1 on which a load is installed, and a porous hole that separates the water-impervious sheets 6a and 6b from each other against the load. And a material separating material 7.

遮水シート6は、従来の遮水シート工と同様のものとすることができ、材質等にとくに制限はない。遮水シート6の一例は、高密度ポリエチレン・低密度ポリエチレン・ポリプロピレン・塩素化ポリエチレン・エチレン−酢酸ビニル共重合体・エチレン−アクリル酸共重合体・ポリ塩化ビニル等の熱可塑性樹脂製シート、又はエチレンプロピレンゴム(EPDM)・ブチルゴム(IIR)・クロロプレンゴム(CR)・クロロスルホン化ポリエチレン(CSM)・塩素化ポリエチレン(CPE)等のゴム系シートである。遮水シート6a、6bの周縁は相互に又は適当な部材を介して密着し、遮水シート6a、6bの間に遮水材水溶液10を封入可能とする。施工や漏水検知の容易化のため、特許文献4〜6と同様に遮水シート6a、6bを適当な大きさの区画に分割することができ、その場合は各区画の複数の遮水シートの周縁を適当なシール材等により相互に又は適当な部材を介して密着する。   The water-impervious sheet 6 can be the same as the conventional water-impervious sheet work, and the material is not particularly limited. An example of the water shielding sheet 6 is a sheet made of thermoplastic resin such as high density polyethylene, low density polyethylene, polypropylene, chlorinated polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, polyvinyl chloride, or the like. Rubber-based sheets such as ethylene propylene rubber (EPDM), butyl rubber (IIR), chloroprene rubber (CR), chlorosulfonated polyethylene (CSM), and chlorinated polyethylene (CPE). The peripheral edges of the water-impervious sheets 6a and 6b are in close contact with each other or via an appropriate member, so that the water-impervious material aqueous solution 10 can be enclosed between the water-impervious sheets 6a and 6b. In order to facilitate construction and detection of water leakage, the water shielding sheets 6a and 6b can be divided into sections of appropriate sizes in the same manner as in Patent Documents 4 to 6, and in that case, a plurality of water shielding sheets in each section The peripheral edges are brought into close contact with each other or with an appropriate member using an appropriate sealing material or the like.

多孔質離隔材7は、遮水シート6bの上載荷重に抗して、隣接する遮水シート6a、6bの間に後述する遮水材水溶液10を注入するための間隔dを保持するものである。離隔材7の一例はポリエチレン・ポリプロピレン・ポリアミド・ポリエステル・アクリル等の合成樹脂製の不織布、織布又は編物シートであるが、上載荷重に抗する強度と遮水材水溶液10を通す孔(空隙)とを有するものであれば材質や形状にとくに制限はない。例えば、離隔材7を凹凸付き又はハニカム構造のマット形状とし、必要に応じて補強材を含めることができ、上述した不織布シートやマットと補強材との複合積層材としてもよい。図示例は二層遮水シート6a、6bの間に離隔材7を設けた例であるが、遮水シート6を三層以上とした場合は隣接する遮水シート6の間にそれぞれ離隔材7を設けて間隔dを確保する。   The porous separating material 7 maintains a distance d for injecting a water shielding material aqueous solution 10 to be described later between the adjacent water shielding sheets 6a and 6b against the load on the water shielding sheet 6b. . An example of the separating material 7 is a non-woven fabric, woven fabric, or knitted sheet made of synthetic resin such as polyethylene, polypropylene, polyamide, polyester, and acrylic. There are no particular restrictions on the material and shape of the material. For example, the separating material 7 may have a mat shape with unevenness or a honeycomb structure, and a reinforcing material may be included as necessary. The nonwoven fabric sheet or the composite laminated material of the mat and the reinforcing material may be used. The illustrated example is an example in which the separating material 7 is provided between the two-layer impermeable sheets 6a and 6b, but when the impermeable sheet 6 has three or more layers, the separating material 7 is provided between the adjacent impermeable sheets 6 respectively. To secure the distance d.

好ましくは、遮水シート7を大きな荷重に対しても厚さ変化率が小さいものとし、遮水シート7の厚さ変化による間隔dの閉塞を防止する。例えば廃棄物処分場等の遮水工1の上載荷重は50kPaを超える場合も充分想定され、遮水シート7の厚さ変化率が50%を超えると間隔dに閉塞が発生し、間隔dへの遮水材水溶液10の均一な注入が難しくなり、ゲル化後の遮水材(以下、遮水材ゲルということがある。)に厚さむらが生じ得る。廃棄物処分場等において間隔dの閉塞を防ぐためには遮水シート7の厚さ変化率を上載荷重500kPaに対して50%以下とすることが好ましく、望ましくは30%以下とし、確実に防止するには20%以下とするのがよい。   Preferably, the thickness of the water-impervious sheet 7 is small even when a large load is applied to prevent the gap d from being blocked due to the thickness change of the water-impervious sheet 7. For example, it is assumed that the load on the impervious work 1 such as a waste disposal site exceeds 50 kPa. If the rate of change of the thickness of the impermeable sheet 7 exceeds 50%, the interval d is clogged, and the interval d is increased. Uniform injection of the water shielding material aqueous solution 10 becomes difficult, and unevenness in thickness may occur in the water shielding material after gelation (hereinafter sometimes referred to as a water shielding material gel). In order to prevent clogging of the interval d in a waste disposal site, the thickness change rate of the water shielding sheet 7 is preferably 50% or less with respect to the upper load of 500 kPa, desirably 30% or less, which is reliably prevented. It is good to make it 20% or less.

遮水工5の遮水シート6a、6bの間隔dには、ポリビニルアルコール系遮水材(以下、PVA遮水材ということがある。)の水溶液10を充填する。図示例では、加圧ポンプ式等の注入装置12と間隔dに連通する注入路8とを設け、注入装置12と注入路8とを介して間隔dにPVA遮水材水溶液10を注入する。例えば廃棄物処分場等において二層遮水シート6a、6bを500m2程度の区画に分割して敷設した場合を想定し、両遮水シート6a、6bの間隔dが上載荷重により10〜100mm程度であると仮定すると、各区画に注入すべき遮水材の量は5〜50m3となる。10〜100mm程度の間隔dへ注入できる流量は限られており、仮に遮水材の注入流量を間隔dに応じて2〜20リットル/分と想定すると、各区画に遮水材が充填するまでの時間t0(以下、充填時間t0という。)は2500分間(≒42時間)程度となる。気象条件(温度)等によって充填時間t0が更に長くなる場合もあり得る。PVA遮水材水溶液10は、遮水シート6a、6bの間隔dへの充填時間t0(上述した例では42時間)までは比較的高い流動性を保持し、充填が完了したのち経時的に高粘度・高強度で所要遮水性のゲルになるものが好ましい。 A space d between the water shielding sheets 6a and 6b of the water shielding work 5 is filled with an aqueous solution 10 of a polyvinyl alcohol-based water shielding material (hereinafter also referred to as PVA water shielding material). In the illustrated example, a pressure pump type injection device 12 and an injection path 8 communicating with the interval d are provided, and the PVA water shielding material aqueous solution 10 is injected into the interval d through the injection device 12 and the injection path 8. For example, assuming that the two-layer impermeable sheets 6a and 6b are divided into about 500m 2 sections at a waste disposal site, the distance d between the impermeable sheets 6a and 6b is about 10 to 100mm depending on the overload. Assuming that the amount of the water shielding material to be injected into each section is 5 to 50 m 3 . The flow rate that can be injected into the interval d of about 10 to 100 mm is limited. Assuming that the injection flow rate of the water shielding material is 2 to 20 liters / minute depending on the interval d, until each wall is filled with the water shielding material This time t 0 (hereinafter referred to as filling time t 0 ) is about 2500 minutes (≈42 hours). Depending on the weather conditions (temperature) and the like, the filling time t 0 may be longer. The PVA water shielding material aqueous solution 10 maintains a relatively high fluidity until the filling time t 0 (42 hours in the above example) to the interval d between the water shielding sheets 6a and 6b, and after the filling is completed, A gel having a high viscosity, a high strength, and a required water shielding property is preferable.

PVA遮水材水溶液10の一例は、PVAポリマーと分子中に2以上のメチロール基を有する水溶性架橋剤とpH調整剤とが溶解した水溶液である。この水溶液10は、PVAポリマーの重合度と、水溶液中のPVAポリマー濃度と、PVAポリマー中のビニルアルコール単位に対する架橋剤中のメチロール基のモル比(以下、簡単に架橋剤のモル比ということがある。)とにより、遮水材ゲルの強度や遮水性(透水係数)を調整できる。また、主に水溶液中のPVAポリマー濃度によって、ゲル化前の遮水材水溶液10の粘性を調整できる。更に、上述したようにpH調整剤により所要ゲル化時間tが得られるようなpHに調整できる。   An example of the PVA water shielding material aqueous solution 10 is an aqueous solution in which a PVA polymer, a water-soluble crosslinking agent having two or more methylol groups in the molecule, and a pH adjuster are dissolved. This aqueous solution 10 has a polymerization degree of the PVA polymer, a PVA polymer concentration in the aqueous solution, and a molar ratio of the methylol group in the crosslinking agent to the vinyl alcohol unit in the PVA polymer (hereinafter simply referred to as the molar ratio of the crosslinking agent). The strength and water shielding (water permeability coefficient) of the water shielding material gel can be adjusted. Further, the viscosity of the water shielding material aqueous solution 10 before gelation can be adjusted mainly by the concentration of the PVA polymer in the aqueous solution. Furthermore, as described above, the pH can be adjusted with the pH adjusting agent so that the required gelation time t can be obtained.

また、PVA遮水材水溶液10の別例は、PVAポリマーと水溶性遷移金属化合物からなる架橋剤とpH調整剤とが溶解した水溶液である。この水溶液10は、PVAポリマーの重合度と、水溶液中のPVAポリマー濃度と、PVAポリマー中のビニルアルコール単位に対する架橋剤中の金属原子のモル比(架橋剤のモル比)とにより遮水材ゲルの強度や遮水性を調整できる。このPVA遮水材水溶液10も、主に水溶液中のPVAポリマー濃度によってゲル化前の遮水材水溶液10の粘性を調整し、pH調整剤によって所要ゲル化時間tが得られるようなpHに調整できる。   Another example of the PVA water shielding material aqueous solution 10 is an aqueous solution in which a PVA polymer, a crosslinking agent composed of a water-soluble transition metal compound, and a pH adjuster are dissolved. This aqueous solution 10 is a water shielding material gel based on the degree of polymerization of the PVA polymer, the concentration of the PVA polymer in the aqueous solution, and the molar ratio of the metal atom in the crosslinking agent to the vinyl alcohol unit in the PVA polymer (molar ratio of the crosslinking agent). The strength and water impermeability can be adjusted. This PVA water shielding material aqueous solution 10 is also adjusted to a pH so that the required gelation time t can be obtained by adjusting the viscosity of the water shielding material aqueous solution 10 before gelation mainly by the PVA polymer concentration in the aqueous solution. it can.

PVA遮水材水溶液10の粘性は、遮水材ゲルに必要な強度と遮水性が確保できる範囲内で、できるだけ低い方が望ましい。上載荷重によって遮水シート6の間隔dが10mm以下、例えば4〜5mm程度になる場合を想定すると、水溶液10の粘性が高過ぎると注入時に遮水シート6が破損するおそれがあり、注入装置12(図1参照)の負荷が大きくなる。一般的な注入装置12の能力や遮水シート6の耐圧性能を考慮した場合、水溶液10の粘性は15〜2000mPa・sの範囲とすることが好ましく、更に間隔dが小さい場合等を考慮して15〜500mPa・sの範囲とすることが望ましい。PVAポリマーの重合度等にもよるが、水溶液10中のPVAポリマー濃度を2.0〜7.0重量%の範囲内とすれば、水溶液10の粘性を前記範囲とすることができる。PVAポリマー濃度が2.0重量%以下になると、水溶液10の粘性は低くなるが、遮水材ゲルが完全にはゲル化しなくなる(後述する実験例の比較例1参照)。   The viscosity of the PVA water shielding material aqueous solution 10 is desirably as low as possible within a range where the strength and water shielding necessary for the water shielding material gel can be secured. Assuming that the distance d between the water-impervious sheets 6 is 10 mm or less, for example, about 4 to 5 mm due to the overload, the water-impervious sheet 6 may be damaged at the time of injection if the viscosity of the aqueous solution 10 is too high. The load (see FIG. 1) increases. Considering the capacity of the general injection device 12 and the pressure resistance performance of the water-impervious sheet 6, the viscosity of the aqueous solution 10 is preferably in the range of 15 to 2000 mPa · s, and further considering the case where the distance d is small. A range of 15 to 500 mPa · s is desirable. Although depending on the degree of polymerization of the PVA polymer, etc., the viscosity of the aqueous solution 10 can be in the above range if the concentration of the PVA polymer in the aqueous solution 10 is in the range of 2.0 to 7.0% by weight. When the PVA polymer concentration is 2.0% by weight or less, the viscosity of the aqueous solution 10 is lowered, but the water shielding material gel is not completely gelled (see Comparative Example 1 of the experimental example described later).

またPVA遮水材ゲルの遮水性は、透水係数K(cm/sec)を指標とした場合、透水性が非常に低いとされる透水係数K=10-5以下とすることが望ましい。一般に透水性が非常に低いとされる微細砂、シルト、砂−シルト−粘土混合土の透水係数Kは10-7〜10-5であり、実用上不透水性とされる粘性土の透水係数Kは10-7以下である。本発明者はPVAポリマーの重合度を500以上とし、水溶液中のPVAポリマー濃度を2.0〜7.0重量%とし、メチロール系水溶性架橋剤のモル比を0.01〜0.5とし又は水溶性遷移金属化合物架橋剤のモル比を0.01〜1.0とすれば、遮水材ゲルの透水係数Kを砂−シルト−粘土混合土等と同程度の10-5以下とすることができることを実験的に確認した(後述する実験例参照)。好ましくは、遮水材ゲルの透水係数Kが従来のセメント−ベントナイト系や水膨潤性ベントナイト等の遮水材と同程度の10-6以下となるように、PVAポリマーの重合度及び濃度と架橋剤のモル比とを前記範囲内で選択する。更に好ましくは、遮水材ゲルの透水係数Kを実用上不透水性とされる10-7以下とする。 Further, the water permeability of the PVA water shielding material gel is desirably a water permeability coefficient K = 10 −5 or less, which is considered to be very low, when the water permeability coefficient K (cm / sec) is used as an index. The permeability coefficient K of fine sand, silt, sand-silt-clay mixed soil, which is generally considered to be very low in permeability, is 10 -7 to 10 -5. K is 10 -7 or less. The inventor sets the polymerization degree of the PVA polymer to 500 or more, sets the PVA polymer concentration in the aqueous solution to 2.0 to 7.0% by weight, sets the molar ratio of the methylol-based water-soluble crosslinking agent to 0.01 to 0.5, or the water-soluble transition metal compound crosslinking agent. It was experimentally confirmed that the water permeability coefficient K of the water shielding material gel can be made 10 −5 or less, which is the same as that of sand-silt-clay mixed soil, etc. See experimental example). Preferably, the degree of polymerization and the concentration of the PVA polymer are cross-linked so that the water permeability coefficient K of the water shielding material gel is 10 −6 or less, which is the same as that of a conventional water shielding material such as cement-bentonite system or water-swellable bentonite. The molar ratio of the agent is selected within the above range. More preferably, the water permeability coefficient K of the water shielding material gel is set to 10 −7 or less which is practically impermeable.

PVA遮水材水溶液10に溶解するPVAポリマーの種類は特に限定されず、他の成分により変成又は共重合されていてもよく、例えばPVAの水酸基がカルボン酸変性やシリカ変性されていたり、酢酸ビニル・エチレンに代表される成分と共重合していてもよい。遮水材ゲルに充分な遮水性及び強度を確保するためにはPVAポリマーの重合度は500以上とすることが好ましく、より好ましくは重合度1000以上とし、更に好ましくは重合度1500以上とする。また、PVA分子中の水酸基が少な過ぎると遮水材ゲルに充分な遮水性及び強度が得られないので、PVAポリマー中のビニルアルコール単位は85モル%以上とすることが好ましく、より好ましくは90モル%以上、更に好ましくは95モル%以上とする。   The type of PVA polymer dissolved in the PVA water shielding material aqueous solution 10 is not particularly limited, and may be modified or copolymerized with other components. For example, the hydroxyl group of PVA is modified with carboxylic acid or silica, or vinyl acetate -You may copolymerize with the component represented by ethylene. In order to ensure sufficient water shielding and strength for the water shielding material gel, the polymerization degree of the PVA polymer is preferably 500 or more, more preferably 1000 or more, and still more preferably 1500 or more. Further, if the hydroxyl group in the PVA molecule is too small, sufficient water shielding and strength cannot be obtained for the water shielding material gel. Therefore, the vinyl alcohol unit in the PVA polymer is preferably 85 mol% or more, more preferably 90%. The mol% or more, more preferably 95 mol% or more.

PVA遮水材水溶液10に溶解するメチロール系水溶性架橋剤の一例は、ジメチロール尿素、トリメチロールメラミン、ジメチロールエチレン尿素、ジメチロールアルキルトリアゾン、メチル化ジメチロールウロン、ヘキサメチロールメラミン、ジメチロールプロピレン尿素、ジメチロールヒドロキシエチレン尿素、テトラメチロールアセチレンジ尿素、4−メトキシ−5−ジメチルプロピレン尿素、ジメチロールアルキルカーバメート、又はそれらのメチロール基がエーテル化されたものである。これらの中で、メチロール基を分子中に3個有するトリメチロールメラミンやメトキシ化トリメチロールメラミンは、高いゲル強度を発揮し得る点から好ましい。また、これらの化合物は自己縮合特性を有するので、水溶液10の長期ポットライフを確保するため、メチル基で代表されるアルキル基でメチロール基を封鎖する方法や使用段階で水溶液10のpHを若干酸性側に調整する方法によってメチロール基の反応性を変化させることも実用上好ましい。これらの架橋剤はそれぞれ単独で用いてもよく、二種以上を組み合わせて用いてもよい。   Examples of methylol-based water-soluble crosslinking agents that dissolve in the PVA water shielding solution 10 are dimethylol urea, trimethylol melamine, dimethylol ethylene urea, dimethylol alkyltriazone, methylated dimethylol uron, hexamethylol melamine, dimethylol propylene. Urea, dimethylol hydroxyethylene urea, tetramethylol acetylenediurea, 4-methoxy-5-dimethylpropylene urea, dimethylol alkyl carbamate, or those methylol groups are etherified. Among these, trimethylol melamine and methoxylated trimethylol melamine having three methylol groups in the molecule are preferable from the viewpoint that high gel strength can be exhibited. In addition, since these compounds have self-condensation properties, the pH of the aqueous solution 10 is slightly acidic in a method of blocking the methylol group with an alkyl group typified by a methyl group or the use stage in order to ensure the long-term pot life of the aqueous solution 10. It is also practically preferable to change the reactivity of the methylol group by a method of adjusting to the side. These crosslinking agents may be used alone or in combination of two or more.

PVA遮水材水溶液10中のPVAポリマーとメチロール系水溶性架橋剤との割合は、上述した架橋剤のモル比が0.01〜0.5となる範囲内で使用することが好ましい。架橋剤のモル比が0.01より小さいと、PVA分子間を主とする化学結合密度が低くなり過ぎて遮水材ゲルの強度や遮水性が不充分となるおそれがある。また、架橋剤のモル比を0.5より大きくしても強度や遮水性の性能向上は余り認められず、むしろ架橋剤の添加量が増えることによる不経済性が大きくなる。なお、架橋剤中のメチロール基(-CH2-OH)のモル数は、-CH3等のアルキル基で変性・封鎖されている場合も含めて算出する。好ましくは、遮水材ゲルの遮水性及び強度の向上を図るため、架橋剤のモル比を0.1〜0.3の範囲内とする。 The ratio of the PVA polymer to the methylol-based water-soluble crosslinking agent in the PVA water shielding material aqueous solution 10 is preferably used within the range in which the above-described molar ratio of the crosslinking agent is 0.01 to 0.5. If the molar ratio of the cross-linking agent is less than 0.01, the chemical bond density mainly between PVA molecules becomes too low, and the strength and water shielding property of the water shielding material gel may be insufficient. Further, even if the molar ratio of the cross-linking agent is larger than 0.5, the improvement in strength and water-impervious performance is not recognized so much, but rather the uneconomical due to the increase of the amount of the cross-linking agent increases. The number of moles of methylol group (—CH 2 —OH) in the crosslinking agent is calculated including the case where it is modified and blocked with an alkyl group such as —CH 3 . Preferably, the molar ratio of the cross-linking agent is set in the range of 0.1 to 0.3 in order to improve the water shielding property and strength of the water shielding material gel.

PVA遮水材水溶液10に溶解する水溶性遷移金属化合物架橋剤は水中でPVAと反応してPVAに架橋構造を取らしめる化合物であればよく、チタン化合物、ジルコニウム化合物、バナジウム化合物、亜鉛化合物、クロム化合物、ニッケル化合物、パラジウム化合物等が挙げられ、中でもチタン化合物及びジルコニウム化合物が好適に用いられる。これらの遷移金属化合物は1つの金属原子に対して、共有結合や水素結合等により2座又はそれ以上の多座で配位することが可能なキレート型配位子を有していることが好ましい。遷移金属化合物がキレート型配位子を有することでPVAの架橋反応速度が適度に調節されるので、施工に適した数時間から数日間のゲル化速度が得られると考えられる。そのキレート型配位子としては、ヒドロキシカルボン酸又はその塩、アミノアルコール、β−ジケトンが代表的なものとして挙げられるが、これらに限定されるものではない。   The water-soluble transition metal compound cross-linking agent that dissolves in the PVA water shielding material aqueous solution 10 may be any compound that reacts with PVA in water to cause PVA to have a cross-linked structure. Titanium compound, zirconium compound, vanadium compound, zinc compound, chromium Examples thereof include compounds, nickel compounds, palladium compounds, etc. Among them, titanium compounds and zirconium compounds are preferably used. These transition metal compounds preferably have a chelate-type ligand capable of coordinating with one or more bidentate by a covalent bond, hydrogen bond, or the like with respect to one metal atom. . Since the transition metal compound has a chelate-type ligand, the crosslinking reaction rate of PVA is moderately adjusted. Therefore, it is considered that a gelation rate of several hours to several days suitable for construction can be obtained. Examples of the chelate-type ligand include hydroxycarboxylic acid or a salt thereof, amino alcohol, and β-diketone, but are not limited thereto.

架橋剤として用いることができるチタン化合物の一例はチタンラクテート、チタンラクテートアンモニウム塩、ジイソプロポキシチタン(トリエタノールアミネート)、ジ−n−ブトキシチタンビス(トリエタノールアミネート)、ジイソプロポキシチタンビス(トリエタノールアミネート)、チタンテトラキス(アセチルアセトナート)等であり、ジルコニウム化合物の一例はモノヒドロキシトリス(ラクテート)ジルコニウムアンモニウム、テトラキス(ラクテート)ジルコニウムアンモニウム、モニヒドロキシトリス(スレート)ジルコニウムアンモニウム等であるが、これらに限定されるものではない。その中ではチタン化合物が好ましく、中でもチタンラクテート(乳酸チタン)、チタンアミネートが好ましい。これらの遷移金属化合物は必ずしも単独で使用する必要はなく、必要に応じて2種類以上を混合して用いることもできる。   Examples of titanium compounds that can be used as crosslinking agents include titanium lactate, titanium lactate ammonium salt, diisopropoxy titanium (triethanolaminate), di-n-butoxytitanium bis (triethanolaminate), diisopropoxytitanium bis (tri Ethanolaminate), titanium tetrakis (acetylacetonate) and the like, and examples of zirconium compounds are monohydroxytris (lactate) zirconium ammonium, tetrakis (lactate) zirconium ammonium, monihydroxytris (slate) zirconium ammonium, It is not limited to these. Among them, titanium compounds are preferable, and titanium lactate (titanium lactate) and titanium aminate are particularly preferable. These transition metal compounds are not necessarily used alone, and two or more kinds of them can be mixed and used as necessary.

PVAのビニルアルコール単位に対する遷移金属化合物中の金属原子のモル比は、ビニルアルコール単位1に対して金属原子を0.01〜1.0の範囲とすることができる。ビニルアルコール単位1モルに対して金属原子量が0.01モルより少ない場合には、PVAと金属原子との架橋密度が低くなり過ぎるために圧縮強度、透水性、耐水性に問題が生じる、また逆に金属原子量が1.0モルを上回る場合には、得られたゲルが柔軟性を失い変形時に亀裂を生じる等の不具合が生じる。より好ましくは、ビニルアルコール単位1モルに対する金属原子のモル比を0.015〜0.5の範囲とする。   The molar ratio of the metal atom in the transition metal compound to the vinyl alcohol unit of PVA can be in the range of 0.01 to 1.0 for the metal atom with respect to the vinyl alcohol unit 1. When the amount of metal atoms is less than 0.01 mol per mol of vinyl alcohol unit, the crosslink density between PVA and metal atoms becomes too low, causing problems in compressive strength, water permeability, and water resistance. When the atomic weight exceeds 1.0 mol, the obtained gel loses its flexibility and causes defects such as cracking during deformation. More preferably, the molar ratio of metal atoms to 1 mol of vinyl alcohol units is in the range of 0.015 to 0.5.

PVA遮水材水溶液10のpHは、遮水工5に必要な遮水材ゲルの強度及び遮水性が得られるようにPVAポリマーの重合度及び濃度と架橋剤のモル比とを定めた上で、所要のゲル化時間となるようにpH調整剤によって調整できる。例えば、PVA遮水材水溶液10の粘性と加圧ポンプ等の注入装置12の能力とに応じて注入流量を求め、遮水シート6a、6bの間隔dの容積と注入流量とから充填時間t0を算出し、水溶液10の重合度・濃度・架橋剤モル比に基づいてゲル化時間tが充填時間t0以上となるように水溶液10のpHを調整する。好ましくは、遮水工の現場の気候条件(気温)や地盤面1の周囲温度を温度計等で計測し、水溶液10の重合度・濃度・架橋剤モル比と地盤面1の周囲温度とに基づいてpHを調整する。 The pH of the PVA water shielding material aqueous solution 10 is determined based on the polymerization degree and concentration of the PVA polymer and the molar ratio of the crosslinking agent so as to obtain the water shielding material gel strength and water shielding necessary for the water shielding work 5. The pH can be adjusted with a pH adjusting agent so that the required gelation time is obtained. For example, the injection flow rate is determined according to the viscosity of the PVA water shielding material aqueous solution 10 and the ability of the injection device 12 such as a pressure pump, and the filling time t 0 is determined from the volume of the interval d between the water shielding sheets 6a and 6b and the injection flow rate. Is calculated, and the pH of the aqueous solution 10 is adjusted so that the gelation time t is equal to or greater than the filling time t 0 based on the degree of polymerization, concentration, and cross-linking agent molar ratio of the aqueous solution 10. Preferably, the climatic conditions (air temperature) at the site of the impervious work and the ambient temperature of the ground surface 1 are measured with a thermometer, etc., and the degree of polymerization of the aqueous solution 10, the concentration, the cross-linking agent molar ratio and the ambient temperature of the ground surface 1 are determined. Adjust the pH based on this.

PVA遮水材水溶液10のpHとゲル化時間tとの関係は、PVAポリマーの重合度及び濃度と架橋剤モル比とに応じて、予め実験的に求めることができる。図3及び図4は、重合度1700のPVAポリマーを使用し、メチロール系水溶性架橋剤のモル比をビニルアルコール単位/メチロール基=1/0.31(5%PVA遮水材水溶液1kgに対し架橋剤の量を25g)とし、PVAポリマーの濃度を3重量%及び4重量%とした水溶液10のゲル化時間tとpHと温度との関係グラフを示す。   The relationship between the pH of the PVA water shielding material aqueous solution 10 and the gelation time t can be experimentally determined in advance according to the polymerization degree and concentration of the PVA polymer and the crosslinker molar ratio. 3 and 4 show that a PVA polymer having a polymerization degree of 1700 is used, and the molar ratio of the methylol-based water-soluble crosslinking agent is vinyl alcohol unit / methylol group = 1 / 0.31 (crosslinking agent with respect to 1 kg of 5% PVA water shielding material aqueous solution). Is a graph showing the relationship between the gelation time t, pH and temperature of the aqueous solution 10 with a PVA polymer concentration of 3% by weight and 4% by weight.

図5は、重合度1700のPVAポリマーを使用し、水溶性遷移金属化合物架橋剤のモル比をビニルアルコール単位/遷移金属原子=1/0.13(5%PVA遮水材水溶液1kgに対し架橋剤の量を80g)とし、PVAポリマーの濃度を5重量%とした水溶液10のゲル化時間tとpHと温度との関係グラフを示したものである。また図6は、重合度1700のPVAポリマーを使用し、水溶性遷移金属化合物架橋剤のモル比をビニルアルコール単位/遷移金属原子=1/0.16(5%PVA遮水材水溶液1kgに対し架橋剤の量を100g)とし、PVAポリマーの濃度を5重量%とした水溶液10のゲル化時間tと温度との関係グラフを示したものである。   Fig. 5 shows the use of a PVA polymer with a polymerization degree of 1700, and the molar ratio of the water-soluble transition metal compound cross-linking agent is vinyl alcohol units / transition metal atoms = 1 / 0.13 (1 kg of 5% PVA water shielding material aqueous solution The graph shows the relationship between the gelation time t, pH and temperature of the aqueous solution 10 with an amount of 80 g) and a PVA polymer concentration of 5% by weight. Also, FIG. 6 shows that a PVA polymer having a polymerization degree of 1700 is used, and the molar ratio of the water-soluble transition metal compound crosslinking agent is vinyl alcohol unit / transition metal atom = 1 / 0.16 (crosslinking agent for 1 kg of 5% PVA water shielding material aqueous solution). Is a graph showing the relationship between the gelation time t and the temperature of the aqueous solution 10 in which the amount of PVA polymer is 100 g) and the concentration of the PVA polymer is 5% by weight.

水溶液10の他の重合度・濃度・架橋剤モル比についても同様の関係グラフを実験的に求めることができ、そのグラフに基づき所要ゲル化時間となる水溶液10のpHを定めることができる。メチロール系水溶性架橋剤を使用する場合は、pH調整剤の種類は特に限定されるものではなく、pH調整可能な酸であればよい。好ましいゲルの弾性又は強度を与えるpH調整剤の一例は酢酸又は乳酸であり、臭気が問題となる場合は乳酸とする。pHを4〜6程度に調整すればゲル化時間を数時間〜数百時間の範囲内に調節できるが、pHの調節範囲はこの例に限定されるものではなく、例えばpH=7であってもPVA遮水材水溶液10のゲル化は可能である。遷移金属化合物系架橋剤を使用する場合は、pH調整剤にはアミン系化合物を用いることが好ましく、5%程度の濃度のアンモニア水が好適に用いられる。pHは6〜10の範囲に調整することが好ましく、6以下では架橋反応が進行しないおそれがあり、10以上では架橋・ゲル化が早くなり過ぎて液注入に要する時間よりも短くなるおそれがある。   Similar relationship graphs can be obtained experimentally for other polymerization degrees / concentrations / crosslinking agent molar ratios of the aqueous solution 10, and the pH of the aqueous solution 10 that provides the required gelation time can be determined based on the graph. When a methylol-based water-soluble crosslinking agent is used, the type of pH adjuster is not particularly limited, and any acid that can adjust pH may be used. An example of a pH adjusting agent that gives the elasticity or strength of a preferred gel is acetic acid or lactic acid, and lactic acid when odor is a problem. If the pH is adjusted to about 4 to 6, the gelation time can be adjusted within the range of several hours to several hundred hours. However, the pH adjustment range is not limited to this example. In addition, gelation of the PVA water shielding material aqueous solution 10 is possible. When a transition metal compound-based crosslinking agent is used, an amine-based compound is preferably used as the pH adjuster, and ammonia water having a concentration of about 5% is preferably used. The pH is preferably adjusted in the range of 6 to 10. If the pH is 6 or less, the crosslinking reaction may not proceed. If the pH is 10 or more, the crosslinking / gelation may be too fast and the time required for liquid injection may be shortened. .

更にPVA遮水材水溶液10には必要に応じて、遮水材ゲルの強度及び遮水性と水溶液10のゲル化時間tとを損なわない範囲内で、アミノメチルプロパノールに代表されるメチロール/PVA間の反応促進剤、アルキル基によるメチロール基の封鎖の解除を目的とする有機及び無機酸、アクリル酸エステル・セルロース系等に代表される液粘度調整剤としての各種ポリマー、又は顔料・グリコール類に代表されるPVAの可塑剤、安定剤、無機フィラー、澱粉、セルロース類等の各種薬剤を配合することができる。   Further, the PVA water shielding material aqueous solution 10 may have a methylol / PVA typified by aminomethylpropanol as long as the strength and water shielding properties of the water shielding material gel and the gelation time t of the aqueous solution 10 are not impaired. Representative of various polymers or pigments / glycols as liquid viscosity modifiers typified by organic and inorganic acids, acrylic esters / celluloses, etc. for the purpose of releasing the blocking of methylol groups by alkyl groups Various agents such as PVA plasticizers, stabilizers, inorganic fillers, starches, and celluloses can be blended.

なお図1の遮水工5には、PVA遮水材水溶液10の充填漏れが発生しないように、遮水シート6a、6bの間隔dに連通する脱気路9が設けられている。水溶液10を間隔dへ注入する際に、脱気路9を介して間隔d中の空気を排出することにより、間隔d内のエア溜りや浸出水溜りの発生を抑えて漏れのない充填を可能とする。例えば脱気路9に負圧を加えて空気や浸出水の排出を促すことにより、間隔d内の隅々にまで水溶液10を充填することができる。   1 is provided with a deaeration path 9 communicating with the interval d between the water shielding sheets 6a and 6b so that the filling leakage of the PVA water shielding material aqueous solution 10 does not occur. When the aqueous solution 10 is injected into the interval d, the air in the interval d is discharged through the deaeration channel 9, thereby suppressing the occurrence of air accumulation or leachate accumulation in the interval d and filling without leakage is possible. And For example, by applying a negative pressure to the deaeration path 9 to promote the discharge of air or leachate, the aqueous solution 10 can be filled to every corner in the interval d.

[実験例1]
本発明の遮水工5の性能を確認するため、PVAポリマー濃度と架橋剤モル比とが異なる複数のPVA遮水材水溶液10を用いて実験を行った。本実験では、ビニルアルコール単位が99.85モル%のPVA樹脂(株式会社クラレ製、PVA-HC、重合度1700)に水を添加して10重量%水溶液とし、約95℃に加温・攪拌してPVA樹脂を完全に溶解したのち、更に水を添加して表1に示す2.5重量%、5.0重量%、1.5重量%のPVA水溶液10を調製した。PVA重合度はJISK6726に準拠して測定した。
[Experimental Example 1]
In order to confirm the performance of the water barrier 5 of the present invention, an experiment was conducted using a plurality of PVA water barrier material aqueous solutions 10 having different PVA polymer concentrations and crosslinker molar ratios. In this experiment, water was added to a PVA resin with 99.85 mol% vinyl alcohol units (Kuraray Co., Ltd., PVA-HC, polymerization degree 1700) to make a 10 wt% aqueous solution, and the mixture was heated to about 95 ° C and stirred. After completely dissolving the PVA resin, water was further added to prepare 2.5 wt%, 5.0 wt% and 1.5 wt% PVA aqueous solution 10 shown in Table 1. PVA polymerization degree was measured based on JISK6726.

このPVA水溶液10を20℃まで冷却したのち、架橋剤としてエーテル化トリメチロールメラミン(住友化学株式会社製、sumitex resin M-3)を所定量ずつ添加し、更にpH調整剤として乳酸を加えて水溶液のpHを調整し、表1の試料1〜3及び比較例1に示す4種類のPVA遮水材水溶液10を調製した。試料1〜3はPVAポリマー濃度を2.0〜7.0重量%の範囲内とした水溶液、比較例1はPVAポリマー濃度を2.0重量%以下とした水溶液である。   After cooling this PVA aqueous solution 10 to 20 ° C., etherified trimethylol melamine (Sumitomo Chemical Co., Ltd., sumitex resin M-3) as a crosslinking agent is added in a predetermined amount, and lactic acid is added as a pH adjuster to form an aqueous solution. Were adjusted to prepare four types of PVA water shielding material aqueous solutions 10 shown in Samples 1 to 3 of Table 1 and Comparative Example 1. Samples 1 to 3 are aqueous solutions having a PVA polymer concentration in the range of 2.0 to 7.0% by weight, and Comparative Example 1 is an aqueous solution having a PVA polymer concentration of 2.0% by weight or less.

また、20℃に冷却した5.0重量%のPVA水溶液10に、架橋剤としてチタンラクテート(松本製薬工業株式会社製、オルガチックスTC-315)を所定量ずつ添加し、更にpH調整剤として5%アンモニア水を加えて水溶液のpHを調整し、表1の試料4〜7に示す4種類のPVA遮水材水溶液10を調整した。試料4〜6は薬液pHを7.8〜8.2の範囲としたもの、試料7は架橋剤濃度を10%としたものである。   In addition, titanium lactate (manufactured by Matsumoto Pharmaceutical Co., Ltd., ORGATICS TC-315) as a cross-linking agent is added to a 5.0 wt% PVA aqueous solution 10 cooled to 20 ° C., and 5% ammonia as a pH adjuster. Water was added to adjust the pH of the aqueous solution, and four types of PVA water shielding material aqueous solutions 10 shown in Samples 4 to 7 in Table 1 were prepared. Samples 4 to 6 have a chemical pH in the range of 7.8 to 8.2, and Sample 7 has a crosslinker concentration of 10%.

更に、本発明の遮水性能を従来のセメント−ベントナイト系遮水工の遮水性能と比較するため、水100部に対し分散材(電気化学工業株式会社製、デンカFT-500)1.0部を混合撹拌して分散させ、ベントナイト(クニミネ工業株式会社製、クニゲルV1)3部と超微粒子セメント(電気化学工業株式会社製、デンカコロイダルスーパー)40部とを撹拌しながら徐々に添加し、表1の比較例2に示すセメント−ベントナイト混合懸濁液を調製した。   Furthermore, in order to compare the water-insulating performance of the present invention with the water-insulating performance of conventional cement-bentonite-based water-insulating works, 1.0 part of a dispersing material (Denka FT-500, manufactured by Denki Kagaku Kogyo Co., Ltd.) is added to 100 parts of water. After mixing and dispersing, 3 parts of bentonite (Kunimine Kogyo Co., Ltd., Kunigel V1) and 40 parts of ultrafine cement (Electrochemical Industry Co., Ltd., Denka Colloidal Super) are gradually added with stirring. A cement-bentonite mixed suspension shown in Comparative Example 2 was prepared.

試料1〜7及び比較例1の各水溶液と比較例2の懸濁液の各々(以下、これらを薬液という。)について、以下の方法によりゲル化前の薬液粘度、ゲル化時間、及び遮水材ゲルの透水係数を測定した。
(1)薬液粘度の測定方法
ブルックフィールド回転粘度計(B型粘度計)で測定した。
(2)ゲル化時間の測定方法
薬液100ccを密栓のできるガラス製容器に入れ、水分が蒸散しないよう栓をして所定温度の恒温槽内に入れた。その後30分毎に液の粘度を測定し、温度と粘度をプロットしたグラフから、液粘度が10,000mPa・sに到達した時間を読み取って、これを薬液のゲル化時間とした。
(3)遮水材ゲルの透水係数の測定方法
各薬液が固化したものをJISA1210に準じて湿潤法で締固めたのちに、JISA1218の変水位法で透水係数を測定した。
For each of the aqueous solutions of Samples 1 to 7 and Comparative Example 1 and each of the suspensions of Comparative Example 2 (hereinafter referred to as “chemical solutions”), the chemical solution viscosity before gelation, gelation time, and water shielding by the following methods The water permeability of the material gel was measured.
(1) Measuring method of chemical viscosity It measured with the Brookfield rotational viscometer (B type viscometer).
(2) Method for measuring gelation time 100 cc of a chemical solution was placed in a glass container that could be sealed and sealed to prevent moisture from evaporating and placed in a constant temperature bath at a predetermined temperature. Thereafter, the viscosity of the liquid was measured every 30 minutes, and the time when the liquid viscosity reached 10,000 mPa · s was read from the graph plotting the temperature and the viscosity, and this was taken as the gel time of the chemical liquid.
(3) Measuring method of water permeability coefficient of water shielding material gel After solidifying each chemical solution by wet method according to JISA1210, water permeability coefficient was measured by JISA1218 water level method.

また各薬液で作成した遮水材ゲルについて、以下の方法で水漏れテストを行った。
(a)先ず、厚さ2mmの2枚の高密度ポリエチレン(HDPE)製遮水シート(1m×1m)6a、6bを重ね合わせ、その間に多孔質離隔材7として厚さ5mm目付けの450g/m2のポリプロピレン(PP)長繊維不織布(透水係数3.5×10-1)を挟むと共にコック付き薬液注入管8及びコック付き脱気管9のそれぞれ一端を挿入し、両遮水シート6a、6bの4辺を熱融着して遮水シート構造体を作成した。
(b)次に図7(A)に示すように、注入管8及び脱気管9のコックを開放し、遮水シート構造体を注入管8が下流端で脱気管9が上流端となるように傾斜させつつ薬液を注入管8から2リットル/分の流量で注入し、上流端の脱気管9からの薬液流出を確認したのち注入管8及び脱気管9のコックを閉鎖し、間隔に薬液が充填された遮水シート構造体を20℃雰囲気下で10日間放置して遮水材注入シート構造体を作成した。
(c)更に同図(B)に示すように、水平に置いた遮水材注入シート構造体の上側及び下側シートの中央部にφ10cmの穴21を開け、上側シートの穴21の周縁にφ50cmの円柱パイプ22の下端縁を密着させ、円柱パイプ22内に水23を50cm注入して1週間後の水位の変化(水漏れの有無)を測定した。
(d)併せて、注入管8から注入する薬液と脱気管9から流出した薬液とを比較することにより、薬液毎の注入性の良否を判断した。
(e)更に、遮水材注入シート構造体の内部を穴21から目視で観察し、薬液毎の充填性の良否を判断した。
Moreover, about the water shielding material gel created with each chemical | medical solution, the water leak test was done with the following method.
(A) First, two high-density polyethylene (HDPE) water-impervious sheets (1 m × 1 m) 6a and 6b having a thickness of 2 mm are overlapped and 450 g / m as a porous separation material 7 having a thickness of 5 mm. 2 polypropylene (PP) long fiber nonwoven fabric (water permeability 3.5 × 10 -1 ) is inserted and one end of each of the chemical injection pipe 8 with a cock and the deaeration pipe 9 with a cock is inserted, and the four sides of both water shielding sheets 6a and 6b are inserted. Was heat-sealed to prepare a water shielding sheet structure.
(B) Next, as shown in FIG. 7A, the cock of the injection tube 8 and the deaeration tube 9 is opened so that the water-impervious sheet structure is the downstream end and the deaeration tube 9 is the upstream end. The chemical solution is injected at a flow rate of 2 liters / minute from the injection tube 8 while being inclined, and after confirming the outflow of the chemical solution from the deaeration tube 9 at the upstream end, the cock of the injection tube 8 and the deaeration tube 9 is closed, and the chemical solution is spaced at intervals. The water shielding sheet structure filled with was left to stand in a 20 ° C. atmosphere for 10 days to prepare a water shielding material injecting sheet structure.
(C) Further, as shown in FIG. 4B, a hole 21 having a diameter of 10 cm is formed in the center of the upper and lower sheets of the water-impervious material injection sheet structure placed horizontally. The bottom edge of a cylindrical pipe 22 with a diameter of 50 cm was brought into close contact, 50 cm of water 23 was injected into the cylindrical pipe 22, and the change in the water level after one week (presence of water leakage) was measured.
(D) At the same time, by comparing the chemical solution injected from the injection tube 8 with the chemical solution flowing out from the deaeration tube 9, the quality of injection for each chemical solution was judged.
(E) Further, the inside of the water shielding material injecting sheet structure was visually observed from the hole 21 to determine whether the filling property for each chemical solution was good or bad.

Figure 2005087990
Figure 2005087990

表1は試料1〜7、比較例1及び2毎の実験結果を示す。同表の試料1と2の比較から、PVAポリマー濃度及び架橋剤モル比が同一条件であっても、pHによりPVA遮水材水溶液10のゲル化時間を13〜210時間の範囲で調整できることを確認できた。また同表の試料1と3の比較から、PVAポリマー濃度と架橋剤モル比の調整により、PVA遮水材水溶液10の粘性を17〜23mPa・s程度に低く抑えつつ、PVA遮水材ゲルの遮水性(透水係数)を10-8〜8×10-9の範囲で調整できることを確認できた。更に、同表の試料1又は3と比較例2との比較により、本発明の遮水工5は従来のセメント−ベントナイト系遮水工よりもゲル化前の粘性が小さく、ゲル化後の遮水性が良好であり、更に注入性及び充填性が優れていることを確認できた。また試料4〜6の比較から、チタンラクテートを架橋剤に用いた場合でも薬液pHの調整によりゲル化時間を調整できることが確認できた。更に試料5と試料7との比較から、同一PVAポリマー濃度、同一薬液pHでも架橋剤濃度を変更することでゲル化時間を調整できることを確認した。 Table 1 shows the experimental results for each of Samples 1 to 7 and Comparative Examples 1 and 2. From the comparison of Samples 1 and 2 in the same table, even when the PVA polymer concentration and the crosslinker molar ratio are the same, the gelation time of the PVA water shielding material aqueous solution 10 can be adjusted in the range of 13 to 210 hours depending on the pH. It could be confirmed. In addition, from the comparison of Samples 1 and 3 in the same table, the viscosity of the PVA water shielding material aqueous solution 10 was suppressed to about 17 to 23 mPa · s by adjusting the PVA polymer concentration and the cross-linking agent molar ratio. It was confirmed that the water impermeability (water permeability coefficient) could be adjusted in the range of 10 −8 to 8 × 10 −9 . Furthermore, according to the comparison between Sample 1 or 3 and Comparative Example 2 in the same table, the water barrier 5 of the present invention has a lower viscosity before gelation than the conventional cement-bentonite water barrier, and the barrier after the gelation. It was confirmed that the aqueous property was good, and the injectability and filling properties were excellent. Moreover, it was confirmed from the comparison of Samples 4 to 6 that the gelation time can be adjusted by adjusting the chemical solution pH even when titanium lactate is used as the crosslinking agent. Furthermore, from comparison between Sample 5 and Sample 7, it was confirmed that the gelation time could be adjusted by changing the crosslinker concentration even at the same PVA polymer concentration and the same chemical solution pH.

本発明は、粘性が比較的低く均一性が高いPVA遮水材水溶液10を遮水シート6a、6bの間隔に注入するので、従来のセメント−ベントナイト系遮水材等に比し材料が分離するおそれがなく、むらのない均質な注入が可能である。また、PVA遮水材水溶液10のゲル化時間tをpHにより調整できるので、所要のゲル化時間tとなるように適切なpHを選択することにより、注入途中における遮水材の固化を防ぎ固化むらのない均質な充填が可能となる。更に、PVA遮水材ゲルは弾性に富み、地盤の不同沈下等に対して遮水シート6a、6bと共に変形するので、遮水シート6a、6bを傷つけるおそれがない。しかも、PVA遮水材ゲルは一般的な遮水用粘土ライナーと同等又はそれ以上の遮水性を有するので、本発明は様々な用途の地盤面の遮水工に利用できる。   In the present invention, since the PVA water shielding material aqueous solution 10 having relatively low viscosity and high uniformity is injected into the space between the water shielding sheets 6a and 6b, the material is separated as compared with the conventional cement-bentonite water shielding material and the like. There is no fear and uniform injection without unevenness is possible. In addition, since the gelation time t of the PVA water shielding material aqueous solution 10 can be adjusted by the pH, by selecting an appropriate pH so that the required gelation time t is obtained, the water shielding material can be prevented from solidifying during the injection. Uniform filling without unevenness is possible. Furthermore, since the PVA water shielding material gel is rich in elasticity and deforms together with the water shielding sheets 6a and 6b with respect to the uneven settlement of the ground, there is no possibility of damaging the water shielding sheets 6a and 6b. In addition, since the PVA water shielding material gel has a water shielding property equal to or higher than that of a general water shielding clay liner, the present invention can be used for water shielding work on the ground surface for various uses.

こうして本発明の目的である「固化むらが生じ難い遮水材注入型遮水工及びシステム並びにポリビニルアルコール系注入遮水材」の提供を達成することができる。   Thus, it is possible to achieve the object of the present invention, “a water-insulating material injection type water-impervious structure and system that hardly causes solidification unevenness and a polyvinyl alcohol-based injected water-insulating material”.

図1は、予め勾配をつけた廃棄物処分場2の底地盤面1に敷設した複数層の遮水シート6a、6bと、隣接する遮水シート6a、6bの間に設けた多孔質離隔材7と、遮水シート6a、6bの間隔dに連通する注入路8及び脱気路9と、注入路8を介してPVA遮水材水溶液10を注入する注入装置12と、脱気路9に連通する脱気装置15とを有する本発明の遮水材注入型遮水システムの実施例を示す。注入装置12の一例は加圧ポンプであり、脱気装置15の一例は吸気ポンプである。図示例では、遮水シート6a、6bの間隔dの最下流端に二重管構造の耐圧管を接続し、耐圧管の外管を注入路8とし、耐圧管の内管を脱気路9としている(図2(B)参照)。注入管9の先端を間隔dの下流端に固定し、脱気路8の先端を注入路9の内側から間隔dの内側へ伸長させて間隔dの最上流端に固定する。すなわち図示例のシステムは、注入路8及び脱気路9をそれぞれ間隔dの下流端及び上流端に連通させたものである。但し、注入路8及び脱気路9の構造は二重管構造に限定されず、その配置位置も図示例に限定されない。   FIG. 1 shows a porous separation material provided between a plurality of layers of water shielding sheets 6a and 6b laid on the bottom ground surface 1 of a pre-graded waste disposal site 2 and adjacent water shielding sheets 6a and 6b. 7, an injection path 8 and a deaeration path 9 communicating with the distance d between the water shielding sheets 6 a and 6 b, an injection device 12 for injecting the PVA water shielding material aqueous solution 10 through the injection path 8, and the deaeration path 9 An embodiment of a water shielding material injection type water shielding system of the present invention having a deaeration device 15 in communication is shown. An example of the injection device 12 is a pressurizing pump, and an example of the deaeration device 15 is an intake pump. In the illustrated example, a pressure tube having a double-pipe structure is connected to the most downstream end of the interval d between the water shielding sheets 6a and 6b, the outer tube of the pressure tube is used as the injection path 8, and the inner tube of the pressure tube is used as the deaeration path 9 (See FIG. 2B). The tip of the injection tube 9 is fixed to the downstream end of the interval d, and the tip of the deaeration channel 8 is extended from the inside of the injection channel 9 to the inside of the interval d to be fixed to the most upstream end of the interval d. That is, in the illustrated system, the injection path 8 and the deaeration path 9 are communicated with the downstream end and the upstream end of the interval d, respectively. However, the structure of the injection path 8 and the deaeration path 9 is not limited to the double pipe structure, and the arrangement position thereof is not limited to the illustrated example.

また図示例のシステムは、遮水シート6a、6bの破損を検知する破損検知手段16と、その破損の検知に応じて注入装置12を駆動する制御装置17と、PVA遮水材水溶液10による間隔dの充填を検知する充填検知手段18とを有する。図示例の破損検知手段16は間隔dの下流端に設けられ、遮水シート6a、6bの破損部からの浸出水(漏水)が注入管8へ流入したことを遮水シート6a、6bの破損として検知し、制御装置17に破損検知信号を出力する。また図示例の充填検知手段18は間隔dの上流端に設けられ、PVA遮水材水溶液10が脱気管9へ流入したことを水溶液10による間隔d内の充填として検知し、制御装置17に充填検知信号を出力する。但し、破損検知手段16及び充填検知手段18は図示例に限定されず、例えば特許文献1の開示する漏水検知センサ等を用いることができる。   The system of the illustrated example includes a breakage detection means 16 that detects breakage of the water shielding sheets 6a and 6b, a control device 17 that drives the injection device 12 in response to the breakage detection, and an interval between the PVA water shielding material aqueous solution 10. and a filling detection means 18 for detecting the filling of d. The breakage detecting means 16 in the illustrated example is provided at the downstream end of the interval d, and the breakage of the water shielding sheets 6a and 6b is caused by the fact that leachate (leakage) from the broken portion of the water shielding sheets 6a and 6b flows into the injection pipe 8. And a damage detection signal is output to the control device 17. Further, the filling detection means 18 in the illustrated example is provided at the upstream end of the interval d, and detects that the PVA water shielding material aqueous solution 10 has flowed into the deaeration pipe 9 as filling in the interval d by the aqueous solution 10 and fills the control device 17. A detection signal is output. However, the breakage detection means 16 and the filling detection means 18 are not limited to the illustrated examples, and for example, a water leak detection sensor disclosed in Patent Document 1 can be used.

更に図示例のシステムは、注入装置12に接続された貯液槽11とpH調整手段14とを有する。貯液槽11には、廃棄物処分場2の遮水工5に必要な強度及び遮水性の遮水材ゲルが得られるPVA遮水材水溶液10を蓄える。このような水溶液10は、上述したように水溶液10中のPVAポリマーの重合度及び濃度と架橋剤のモル比とを選択することにより調製できる。pH調整手段14は、水溶液10のゲル化時間tが水溶液10による間隔dの充填時間t0以上となるように、貯液槽11又は注入装置12の水溶液10のpHを調製する。このような充填時間t0は、上述したように注入装置12の注入流量と間隔dの容積とから算出できる。好ましくは、pH調整手段14に地盤1の周囲温度を測定する温度計を含め、水溶液10のpHを地盤1の周囲温度に応じて調整する。 Further, the illustrated system includes a liquid storage tank 11 and a pH adjusting means 14 connected to the injection device 12. The liquid storage tank 11 stores a PVA water shielding material aqueous solution 10 that provides a water shielding material gel having strength and water shielding properties necessary for the water shielding work 5 of the waste disposal site 2. Such an aqueous solution 10 can be prepared by selecting the polymerization degree and concentration of the PVA polymer in the aqueous solution 10 and the molar ratio of the crosslinking agent as described above. The pH adjusting means 14 adjusts the pH of the aqueous solution 10 in the liquid storage tank 11 or the injection device 12 so that the gelation time t of the aqueous solution 10 is not less than the filling time t 0 of the interval d by the aqueous solution 10. Such a filling time t 0 can be calculated from the injection flow rate of the injection device 12 and the volume of the interval d as described above. Preferably, the pH adjusting means 14 includes a thermometer that measures the ambient temperature of the ground 1, and the pH of the aqueous solution 10 is adjusted according to the ambient temperature of the ground 1.

廃棄物処分場2の使用中又は維持管理中に遮水シート6a、6bの破損が発生すると、破損検知手段16がその破損を検知して破損検知信号を出力し、制御装置17が注入装置12及び脱気装置15を駆動する。注入装置12は、貯液槽11に蓄えたPVA遮水材水溶液10を遮水シート6a、6bの間隔dの下流端へ注入する。必要に応じて、注入前に水溶液10のpHをpH調整手段14で調整する。また、脱気装置15は脱気路8を間隔dに対して負圧とし、間隔d内の空気や浸出水を間隔dの外へ吸引する。注入装置12による水溶液10の注入と脱気装置15による脱気とを、充填検知手段18による充填検知まで継続する。充填検知手段18が水溶液10による間隔dの充填を検知して充填検知信号を出力し、制御装置17が注入装置12及び脱気装置15を停止する。   When the water shielding sheets 6a and 6b are broken during use or maintenance of the waste disposal site 2, the breakage detection means 16 detects the breakage and outputs a breakage detection signal. And the deaerator 15 is driven. The injection device 12 injects the PVA water shielding material aqueous solution 10 stored in the liquid storage tank 11 to the downstream end of the interval d between the water shielding sheets 6a and 6b. If necessary, the pH of the aqueous solution 10 is adjusted by the pH adjusting means 14 before injection. Further, the deaeration device 15 sets the deaeration path 8 to a negative pressure with respect to the interval d, and sucks air and leachate in the interval d out of the interval d. The injection of the aqueous solution 10 by the injection device 12 and the deaeration by the deaeration device 15 are continued until the filling detection by the filling detection means 18. The filling detection means 18 detects the filling of the interval d by the aqueous solution 10 and outputs a filling detection signal, and the control device 17 stops the injection device 12 and the deaeration device 15.

遮水シート6a、6bに充填されたPVA遮水材水溶液10は、そのpHに応じたゲル化時間tの経過後に所要強度で所要遮水性のPVA遮水材ゲルとなり、遮水シート6a、6bの破損部を修復する。上述したように、PVA遮水材ゲルは粘土ライナーと同等以上の高い遮水性を持ち、生分解性も低いため、長期的に非常に安定である。また、PVA遮水材ゲルはコンニャク状の弾性に富んだ物質であるため、地盤の局所的な沈下が生じてもその地盤変形に追従し、破損したり遮水シート6a、6bを傷付けるおそれがない。   The PVA water shielding material aqueous solution 10 filled in the water shielding sheets 6a and 6b becomes a PVA water shielding material gel having the required strength and the required water shielding properties after the elapse of the gelation time t according to the pH, and the water shielding sheets 6a and 6b. Repair damaged parts. As described above, the PVA water shielding material gel has a high water shielding property equal to or higher than that of a clay liner, and has a low biodegradability, so it is very stable in the long term. In addition, since PVA water shielding material gel is a konjac-like elastic material, even if local subsidence of the ground occurs, it may follow the ground deformation and may break or damage the water shielding sheets 6a and 6b. Absent.

なお、図示例では脱気管8をPVA遮水材ゲル中にそのまま埋め込んでいるが、脱気管8は必ずしもPVA遮水材ゲル中に埋め込む必要はない。PVA遮水材ゲル中に脱気管8を埋め込む場合は、遮水性上の問題を避けるため、例えば脱気管8中にもPVA遮水材水溶液10を充填してゲル化させ、必要に応じて脱気管8の外周縁とPVA遮水材ゲルとの界面での水みち発生を防止することが望ましい。   In the illustrated example, the deaeration tube 8 is embedded as it is in the PVA water shielding material gel, but the deaeration tube 8 is not necessarily embedded in the PVA water shielding material gel. When embedding the degassing pipe 8 in the PVA water shielding material gel, in order to avoid problems with water shielding, for example, the degassing pipe 8 is also filled with the PVA water shielding material aqueous solution 10 to be gelled, and degassed as necessary. It is desirable to prevent generation of water at the interface between the outer peripheral edge of the trachea 8 and the PVA water shielding material gel.

また、図示例では本発明を遮水シート6a、6bの破損検知後の修復に利用しているが、本発明は遮水シート6a、6bを施工する際にPVA遮水材水溶液10を注入して従来の遮水工より安全性の高い遮水工を構築する際にも利用することが可能である。すなわち本発明は、先注入方法にも後注入方法にも適用又は利用できるものである。   In the illustrated example, the present invention is used for repairing after the detection of breakage of the water shielding sheets 6a and 6b, but the present invention injects the PVA water shielding material aqueous solution 10 when constructing the water shielding sheets 6a and 6b. Therefore, it can also be used to construct a water barrier that is safer than conventional water barriers. That is, the present invention can be applied or used for both the pre-injection method and the post-injection method.

本発明に一実施例の説明図である。It is explanatory drawing of one Example in this invention. 図1における(A)遮水工と、(B)注入路及び脱気路の拡大説明図である。FIG. 2 is an enlarged explanatory view of (A) a water shielding work and (B) an injection path and a deaeration path in FIG. 1. メチロールメラミン系架橋剤を使用したPVAポリマー濃度3%のPVA注入遮水材のゲル化時間とpHと温度との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the gelation time, pH, and temperature of the PVA injection | pouring water-insulating material of 3% of PVA polymers using a methylol melamine type crosslinking agent. メチロールメラミン系架橋剤を使用したPVAポリマー濃度4%のPVA注入遮水材のゲル化時間とpHと温度との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the gelation time of a PVA injection | pouring water-insulating material with a PVA polymer concentration of 4% using a methylol melamine type crosslinking agent, pH, and temperature. 乳酸チタン系架橋剤を使用したPVAポリマー濃度5%のPVA注入遮水材のゲル化時間とpHと温度との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the gelation time, pH, and temperature of the PVA injection | pouring water shielding material of PVA polymer concentration 5% using a titanium lactate type crosslinking agent. 乳酸チタン系架橋剤を使用したPVAポリマー濃度5%のPVA注入遮水材のゲル化時間と温度との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the gelation time and temperature of a PVA injection | pouring water-insulating material with a PVA polymer density | concentration of 5% using a titanium lactate type crosslinking agent. 本発明で用いるPVA注入遮水材の遮水性能を確認する実験方法の説明図である。It is explanatory drawing of the experimental method which confirms the water shielding performance of the PVA injection | pouring water shielding material used by this invention.

符号の説明Explanation of symbols

1…地盤面 2…廃棄物処分場
3…廃棄物層
5…遮水工 6…遮水シート
7…多孔質離隔材 8…注入路
9…脱気路 10…遮水材水溶液
11…貯液槽 12…注入装置
14…pH調整手段 15…脱気装置
16…破損検知手段 17…制御装置
18…充填検知手段 21…穴
22…円柱パイプ 23…水
DESCRIPTION OF SYMBOLS 1 ... Ground surface 2 ... Waste disposal site 3 ... Waste layer 5 ... Water shielding work 6 ... Water shielding sheet 7 ... Porous separation material 8 ... Injection channel 9 ... Deaeration channel 10 ... Water shielding material aqueous solution
11 ... Storage tank 12 ... Injection device
14 ... pH adjustment means 15 ... Deaerator
16… Damage detection means 17… Control device
18 ... Filling detection means 21 ... Hole
22 ... Cylinder pipe 23 ... Water

Claims (27)

荷重が設置される地盤面上に周縁を密着させて敷設した複数層の遮水シート、隣接する遮水シート間に前記荷重に抗して間隔を保持する多孔質離隔材、及び当該間隔内に注入されゲル化時間がpHにより調整可能なポリビニルアルコール系遮水材水溶液を備えてなる遮水材注入型遮水工。 A plurality of layers of water shielding sheets laid on the ground surface on which the load is installed, with a peripheral edge closely adhered thereto, a porous separation material that keeps an interval between the adjacent water shielding sheets against the load, and within the interval A water-impervious material injection type water-impervious construction comprising a polyvinyl alcohol-based water-impervious material aqueous solution that is injected and whose gelation time can be adjusted by pH. 請求項1の遮水工において、前記注入時に前記間隔を脱気してなる遮水材注入型遮水工。 The water-impervious construction according to claim 1, wherein the gap is deaerated at the time of the injection. 請求項1又は2の遮水工において、前記水溶液をゲル化時間が前記間隔への充填時間以上となるpHとしてなる遮水材注入型遮水工。 3. The water shielding work according to claim 1, wherein the aqueous solution has a pH at which the gelation time becomes equal to or longer than the filling time for the interval. 請求項3の遮水工において、前記水溶液のpHを前記注入時の地盤周囲温度に応じて調整してなる遮水材注入型遮水工。 4. The water shielding work according to claim 3, wherein the pH of the aqueous solution is adjusted in accordance with the ground ambient temperature at the time of the filling. 請求項1から4の何れかの遮水工において、前記水溶液をポリビニルアルコール系ポリマーと分子中に2以上のメチロール基を有する水溶性架橋剤とpH調整剤とが溶解した水溶液とし、前記ポリマーの重合度と水溶液中のポリマー濃度とポリマー中のビニルアルコール単位に対する架橋剤中のメチロール基のモル比とにより前記ゲルに対し所要遮水性を与えてなる遮水材注入型遮水工。 5. The impermeable construction according to claim 1, wherein the aqueous solution is an aqueous solution in which a polyvinyl alcohol-based polymer, a water-soluble crosslinking agent having two or more methylol groups in the molecule, and a pH adjuster are dissolved. A water-impervious material injection type water-impervious construction which provides the required water-imperviousness to the gel by the degree of polymerization, the polymer concentration in the aqueous solution, and the molar ratio of methylol groups in the cross-linking agent to the vinyl alcohol units in the polymer. 請求項1から4の何れかの遮水工において、前記水溶液をポリビニルアルコール系ポリマーと水溶性遷移金属化合物からなる架橋剤とpH調整剤とが溶解した水溶液とし、前記ポリマーの重合度と水溶液中のポリマー濃度とポリマー中のビニルアルコール単位に対する架橋剤中の遷移金属化合物のモル比とにより前記ゲルに対し所要遮水性を与えてなる遮水材注入型遮水工。 5. The impermeable construction according to claim 1, wherein the aqueous solution is an aqueous solution in which a polyvinyl alcohol-based polymer, a crosslinking agent composed of a water-soluble transition metal compound and a pH adjuster are dissolved, and the degree of polymerization of the polymer and the aqueous solution A water-impervious material injection type water-impervious construction which provides the required water-impervious property to the gel by the polymer concentration of the polymer and the molar ratio of the transition metal compound in the cross-linking agent to the vinyl alcohol unit in the polymer. 請求項5又は6の遮水工において、前記水溶液の粘性を15〜2000mPa・sの範囲とし、前記ゲルの透水係数を1×10-5cm/sec以下としてなる遮水材注入型遮水工。 7. The water-impervious structure according to claim 5 or 6, wherein the viscosity of the aqueous solution is in the range of 15 to 2000 mPa · s, and the water permeability of the gel is 1 × 10 −5 cm / sec or less. . 荷重が設置される地盤面上に周縁を密着させて敷設した複数層の遮水シート、隣接する遮水シート間に前記荷重に抗して間隔を保持する多孔質離隔材、前記間隔に連通する注入路と脱気路、及び前記注入路を介してゲル化時間がpHにより調整可能なポリビニルアルコール系遮水材水溶液を注入する注入装置を備えてなる遮水材注入型遮水システム。 A plurality of layers of water-impervious sheets laid on the ground surface on which the load is installed, with a peripheral edge closely adhered thereto, a porous separating material that maintains an interval against the load between adjacent water-impervious sheets, and communicates with the interval A water-impervious material injection type water-impervious system comprising an injection channel, a deaeration channel, and an injection device for injecting a polyvinyl alcohol-based water-shielding material aqueous solution whose gelation time can be adjusted by pH through the injection channel. 請求項8のシステムにおいて、前記間隔の容積と前記注入装置の流量とに応じ前記水溶液のpHをゲル化時間が前記間隔への充填時間以上となるpHに調整するpH調整手段を設けてなる遮水材注入型遮水システム。 9. The system according to claim 8, wherein a pH adjusting means is provided for adjusting the pH of the aqueous solution to a pH at which the gelation time is equal to or longer than the filling time of the interval according to the volume of the interval and the flow rate of the injection device. Water injection type water shielding system. 請求項9のシステムにおいて、前記pH調整手段に地盤周囲温度を測定する温度計を含め、前記水溶液のpHを地盤周囲温度に応じて調整してなる遮水材注入型遮水システム。 The system according to claim 9, wherein the pH adjusting means includes a thermometer for measuring a ground ambient temperature, and the pH of the aqueous solution is adjusted according to the ground ambient temperature. 請求項8から10の何れかのシステムにおいて、前記注入路及び脱気路を前記間隔の下流端及び上流端に連通させ、前記脱気路に間隔の充填を検知する充填検知手段を設けてなる遮水材注入型遮水システム。 11. The system according to claim 8, wherein the injection path and the deaeration path are communicated with a downstream end and an upstream end of the interval, and a filling detection means for detecting the filling of the interval is provided in the deaeration path. Water shielding material injection type water shielding system. 請求項8から11の何れかのシステムにおいて、前記多孔質離隔材を不織布、織布若しくは編物シート、又は凹凸付き若しくはハニカム構造のマットとしてなる遮水材注入型遮水システム。 12. The water shielding material injection type water shielding system according to any one of claims 8 to 11, wherein the porous separating material is a nonwoven fabric, a woven fabric or a knitted sheet, or a mat with a rugged or honeycomb structure. 請求項8から12の何れかのシステムにおいて、前記遮水シートを前記荷重に対し厚さ変化率が小さいものとしてなる遮水材注入型遮水システム。 The system according to any one of claims 8 to 12, wherein the water shielding sheet has a small rate of change in thickness with respect to the load. 請求項8から13の何れかのシステムにおいて、前記遮水シートの破損を検知する破損検知手段と、当該破損の検知に応じて前記注入装置を駆動する制御装置とを設けてなる遮水材注入型遮水システム。 14. The system according to claim 8, further comprising: a breakage detecting means for detecting breakage of the water shielding sheet, and a water shielding material injection comprising a control device for driving the injection device in response to the breakage detection. Mold impermeable system. 請求項8から14の何れかのシステムにおいて、前記水溶液をポリビニルアルコール系ポリマーと分子中に2以上のメチロール基を有する水溶性架橋剤とpH調整剤とが溶解した水溶液とし、前記ポリマーの重合度と水溶液中のポリマー濃度とポリマー中のビニルアルコール単位に対する架橋剤中のメチロール基のモル比とにより前記ゲルに対し所要遮水性を与えてなる遮水材注入型遮水システム。 The system according to any one of claims 8 to 14, wherein the aqueous solution is an aqueous solution in which a polyvinyl alcohol polymer, a water-soluble crosslinking agent having two or more methylol groups in the molecule, and a pH adjuster are dissolved, and the degree of polymerization of the polymer. And a water-insulating material injection type water-insulating system in which a required water-insulating property is given to the gel by the polymer concentration in the aqueous solution and the molar ratio of the methylol group in the cross-linking agent to the vinyl alcohol unit in the polymer. 請求項8から14の何れかのシステムにおいて、前記水溶液をポリビニルアルコール系ポリマーと水溶性遷移金属化合物からなる架橋剤とpH調整剤とが溶解した水溶液とし、前記ポリマーの重合度と水溶液中のポリマー濃度とポリマー中のビニルアルコール単位に対する架橋剤中の遷移金属化合物のモル比とにより前記ゲルに対し所要遮水性を与えてなる遮水材注入型遮水システム。 15. The system according to claim 8, wherein the aqueous solution is an aqueous solution in which a polyvinyl alcohol-based polymer, a crosslinking agent comprising a water-soluble transition metal compound and a pH adjuster are dissolved, and the degree of polymerization of the polymer and the polymer in the aqueous solution. A water-impervious material injection type water-impervious system which provides the required water-imperviousness to the gel by the concentration and the molar ratio of the transition metal compound in the cross-linking agent to the vinyl alcohol unit in the polymer. 重合度500以上のポリビニルアルコール系ポリマーと分子中に2以上のメチロール基を有する水溶性架橋剤とpH調整剤とを溶解した水溶液であって、水溶液中のポリマー濃度を2.0〜7.0重量%とし、ポリマー中のビニルアルコール単位に対する架橋剤中のメチロール基のモル比を0.01〜0.5とし、水溶液のpHを所要ゲル化時間となる範囲に調整してなるポリビニルアルコール系注入遮水材。 An aqueous solution in which a polyvinyl alcohol polymer having a polymerization degree of 500 or more, a water-soluble crosslinking agent having two or more methylol groups in the molecule, and a pH adjuster are dissolved, and the polymer concentration in the aqueous solution is 2.0 to 7.0% by weight, A polyvinyl alcohol-based injection impermeable material obtained by adjusting the molar ratio of the methylol group in the crosslinking agent to the vinyl alcohol unit in the polymer to 0.01 to 0.5 and adjusting the pH of the aqueous solution to the required gelation time. 請求項17の遮水材において、前記水溶性架橋剤をトリメチロ−ルメラミン及び/又はメトキシ化トリメチロールメラミンとしてなるポリビニルアルコール系注入遮水材。 The water-insulating material according to claim 17, wherein the water-soluble crosslinking agent is a trimethylol melamine and / or a methoxylated trimethylol melamine. 請求項17又は18の遮水材において、前記水溶液の粘性を15〜2000mPa・sの範囲としてなるポリビニルアルコール系注入遮水材。 19. The water shielding material according to claim 17 or 18, wherein the aqueous solution has a viscosity of 15 to 2000 mPa · s. 請求項17から19の何れかの遮水材において、前記水溶液のゲル化後の透水係数を1×10-5cm/sec以下としてなるポリビニルアルコール系注入遮水材。 20. The water impermeable material according to any one of claims 17 to 19, wherein the water permeability coefficient after gelation of the aqueous solution is 1 × 10 −5 cm / sec or less. 請求項17から20の何れかの遮水材において、前記pH調整剤を酸とし、水溶液をpH4〜6の範囲に調整してなるポリビニルアルコール系注入遮水材。 21. The water barrier material according to claim 17, wherein the pH adjusting agent is an acid and the aqueous solution is adjusted to a pH of 4 to 6. 重合度500以上のポリビニルアルコール系ポリマーと水溶性遷移金属化合物からなる架橋剤とpH調整剤とを溶解した水溶液であって、水溶液中のポリマー濃度を2.0〜7.0重量%とし、ポリマー中のビニルアルコール単位に対する架橋剤中の金属原子のモル比を0.01〜1.0とし、水溶液のpHを所要ゲル化時間となる範囲に調整してなるポリビニルアルコール系注入遮水材。 An aqueous solution in which a polyvinyl alcohol polymer having a polymerization degree of 500 or more, a crosslinking agent comprising a water-soluble transition metal compound, and a pH adjuster are dissolved, and the polymer concentration in the aqueous solution is 2.0 to 7.0% by weight, and the vinyl alcohol in the polymer A polyvinyl alcohol-based water-impermeable material obtained by adjusting the molar ratio of metal atoms in the cross-linking agent to the unit to 0.01 to 1.0 and adjusting the pH of the aqueous solution to the required gelation time. 請求項22の遮水材において、前記水溶性遷移金属化合物からなる架橋剤をチタン化合物及び/又はジルコニウム化合物としてなるポリビニルアルコール系注入遮水材。 23. The water-impermeable material according to claim 22, wherein the water-soluble transition metal compound-containing cross-linking agent is a titanium compound and / or a zirconium compound. 請求項23の遮水材であって、前記水溶性遷移金属化合物をチタンラクテートとしてなるポリビニルアルコール系注入遮水材。 24. The water barrier material according to claim 23, wherein the water-soluble transition metal compound is titanium lactate. 請求項22から24の何れかの遮水材において、前記水溶液の粘性を15〜2000mPa・sの範囲としてなるポリビニルアルコール系注入遮水材。 25. The water shielding material according to claim 22, wherein the aqueous solution has a viscosity of 15 to 2000 mPa · s. 請求項22から25の何れかの遮水材において、前記水溶液のゲル化後の透水係数を1×10-5cm/sec以下としてなるポリビニルアルコール系注入遮水材。 26. The water impermeable material according to claim 22, wherein the water permeability coefficient after gelation of the aqueous solution is 1 × 10 −5 cm / sec or less. 請求項22から26の何れかの遮水材において、前記pH調整剤をアンモニア水とし、水溶液をpH6〜10の範囲に調整してなるポリビニルアルコール系注入遮水材。 27. The water-impermeable material according to claim 22, wherein the pH adjuster is ammonia water and the aqueous solution is adjusted to a pH of 6 to 10.
JP2004231509A 2003-08-11 2004-08-06 Water-impervious material injection type water-impervious construction and system Expired - Fee Related JP4671639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231509A JP4671639B2 (en) 2003-08-11 2004-08-06 Water-impervious material injection type water-impervious construction and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003291090 2003-08-11
JP2004231509A JP4671639B2 (en) 2003-08-11 2004-08-06 Water-impervious material injection type water-impervious construction and system

Publications (2)

Publication Number Publication Date
JP2005087990A true JP2005087990A (en) 2005-04-07
JP4671639B2 JP4671639B2 (en) 2011-04-20

Family

ID=34466806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231509A Expired - Fee Related JP4671639B2 (en) 2003-08-11 2004-08-06 Water-impervious material injection type water-impervious construction and system

Country Status (1)

Country Link
JP (1) JP4671639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184502A (en) * 2007-01-29 2008-08-14 Denki Kagaku Kogyo Kk Hydrogel-forming material, hydrogel composition, and ground-reinforcing method
CN103920700A (en) * 2013-01-11 2014-07-16 住友大阪水泥股份有限公司 Method for fixing pollutant in soil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234445A (en) * 1996-02-28 1997-09-09 Aichi Toso:Kk Method for maintaining waterproofness of underground bottom
JP2000167507A (en) * 1998-12-10 2000-06-20 Takiron Co Ltd Laying member, impervious structure using the member and its construction
JP2001062420A (en) * 1999-08-30 2001-03-13 Mitsuboshi Belting Ltd Fixing structure for protective mat
JP2001096250A (en) * 1999-07-27 2001-04-10 Kinjo Rubber Kk Water-shielding sheet useful for waste material processing place and method of shielding water
JP2002060641A (en) * 2000-08-16 2002-02-26 Shin Etsu Chem Co Ltd Composition for micropattern forming material
JP2002371278A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Polymer material for improving ground or earth and sand, and improved ground or improved earth and sand obtained by using the same
JP2003145086A (en) * 2001-11-09 2003-05-20 Kitz Corp Seepage control sheet management method and seepage control sheet management system
WO2003046103A1 (en) * 2001-11-30 2003-06-05 Matsumoto Chemical Industry Co, Ltd. Water-base composition and crosslinking agent for water-soluble polymers
JP2003200128A (en) * 2001-12-28 2003-07-15 Mitsuboshi Belting Ltd Method for bonding seepage control sheet and seepage control structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234445A (en) * 1996-02-28 1997-09-09 Aichi Toso:Kk Method for maintaining waterproofness of underground bottom
JP2000167507A (en) * 1998-12-10 2000-06-20 Takiron Co Ltd Laying member, impervious structure using the member and its construction
JP2001096250A (en) * 1999-07-27 2001-04-10 Kinjo Rubber Kk Water-shielding sheet useful for waste material processing place and method of shielding water
JP2001062420A (en) * 1999-08-30 2001-03-13 Mitsuboshi Belting Ltd Fixing structure for protective mat
JP2002060641A (en) * 2000-08-16 2002-02-26 Shin Etsu Chem Co Ltd Composition for micropattern forming material
JP2002371278A (en) * 2001-06-15 2002-12-26 Kuraray Co Ltd Polymer material for improving ground or earth and sand, and improved ground or improved earth and sand obtained by using the same
JP2003145086A (en) * 2001-11-09 2003-05-20 Kitz Corp Seepage control sheet management method and seepage control sheet management system
WO2003046103A1 (en) * 2001-11-30 2003-06-05 Matsumoto Chemical Industry Co, Ltd. Water-base composition and crosslinking agent for water-soluble polymers
JP2003200128A (en) * 2001-12-28 2003-07-15 Mitsuboshi Belting Ltd Method for bonding seepage control sheet and seepage control structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184502A (en) * 2007-01-29 2008-08-14 Denki Kagaku Kogyo Kk Hydrogel-forming material, hydrogel composition, and ground-reinforcing method
CN103920700A (en) * 2013-01-11 2014-07-16 住友大阪水泥股份有限公司 Method for fixing pollutant in soil
JP2014133217A (en) * 2013-01-11 2014-07-24 Sumitomo Osaka Cement Co Ltd Construction method for fixing contaminant in soil

Also Published As

Publication number Publication date
JP4671639B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
EP2059638B1 (en) Device for in situ barrier
US9200422B2 (en) Method and arrangement for supporting structure
JP5728747B1 (en) Liquefaction countermeasures for existing buried pipes
JP3781490B2 (en) Method for detecting damaged part of impermeable sheet and water stop method using impermeable sheet
KR101209008B1 (en) A Reinforcement method of weak stratum use of suction drainage
CN215254005U (en) Novel plant roof drainage collection system
JP4671639B2 (en) Water-impervious material injection type water-impervious construction and system
KR101958451B1 (en) Underground outside waterproofing method of concrete structure
CN113653078A (en) Steel pipe pile cofferdam structure of reservoir area before dam and construction method thereof
CN112523264A (en) High and steep slope seepage prevention system and laying method thereof
JP5728694B1 (en) Liquefaction countermeasures for existing buried pipes
JP5515190B1 (en) Liquefaction countermeasures for existing buried pipes
JP2012255250A (en) Rainwater disposal facility
JP3992887B2 (en) Self-healing waste disposal facility
JP2003320335A (en) Sea surface waste disposal yard and management method therefor
JP2001107692A (en) Cut-off sheet and cut-off method
JP5654961B2 (en) Method of backfilling dredged water collected in the reclaimed ground
JP3668410B2 (en) Water stop method
CN110644585A (en) Construction method of leachate adjusting system
JP4071401B2 (en) Impermeable structure of waste disposal site and its formation method
CN219794015U (en) Concrete structure for preventing basement leakage
CN217630129U (en) Basement waterproof structure
JP4536206B2 (en) Waste disposal facility
CN217399603U (en) Anti-seepage rigid pile composite foundation structure
CN215483147U (en) Drainage device for preventing water level under membrane of landfill from rising

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4671639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees