JP2000144473A - Electrolytic refining method for copper - Google Patents

Electrolytic refining method for copper

Info

Publication number
JP2000144473A
JP2000144473A JP10327945A JP32794598A JP2000144473A JP 2000144473 A JP2000144473 A JP 2000144473A JP 10327945 A JP10327945 A JP 10327945A JP 32794598 A JP32794598 A JP 32794598A JP 2000144473 A JP2000144473 A JP 2000144473A
Authority
JP
Japan
Prior art keywords
current
time
copper
current density
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10327945A
Other languages
Japanese (ja)
Other versions
JP4031879B2 (en
Inventor
Kenji Haisei
憲治 拝生
Gunshi Ishii
軍志 石井
Tsuneo Maruyama
恒夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP32794598A priority Critical patent/JP4031879B2/en
Publication of JP2000144473A publication Critical patent/JP2000144473A/en
Application granted granted Critical
Publication of JP4031879B2 publication Critical patent/JP4031879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obviate the generation of wrinkles and blobs in electric copper, to eliminate the need for providing a power interruption time at the time of resetting to a positive pole and to improve productivity by specifying the energization time of the inversion current and the energization time of the positive current in electrolytic refining. SOLUTION: In electrolytic refining of copper using a periodic inversion current, the energization time of the inversion current is set at >=60 seconds/ times and the energization time of the positive current is regulated to 1,200 to 3,000 seconds/times. An electrolytic concentration gradient of an electrolyte nonuniformly formed near the electrode surface at the time of energization of the positive current is negated by keeping the inversion current supplied for >=60 seconds, by which the electrolyte concentration is made uniform and the preferential elution of the copper from the projecting parts of the cathode surface is progressed and the flat surface shape is reset. The inversion current density is preferably set at 0.5 to 1.0 times the positive current density. As a result, even if the electrolysis is operated at the high current density, the electric copper may be produced without degrading the appearance quality. The amount of the additive for smoothing cathode deposition may be decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅の電解精製方法
に関し、とくに、周期的反転電流(periodic-reverse c
urrent)を通電して銅を電解精製する方法に関する。な
お、以下では適宜、「周期的反転」を「PR」と略称す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically refining copper, and more particularly to a method for periodically reversing a current.
urrent) to electrolytically purify copper. In the following, “periodic inversion” is abbreviated as “PR” as appropriate.

【0002】[0002]

【従来の技術】銅などの非鉄金属の電解精製工程では、
生産性を向上させるために高電流密度操業が指向され
る。通常の直流電解法では、300A/m2 程度以上に電流密
度を上げるとアノード側で不働態化が生じて溶出が抑制
され、またカソードへの析出が不均一になって電気銅
(電析製品)表面に皺や瘤が発生し不純物がトラップさ
れて銅品位が低下するなどの不具合が顕著になるため、
工業的に使用可能な電流密度は300A/m2 程度までが限度
である。これに対し、PR電解法によれば、アノード側
の不働態化を防止でき、さらに一段と高い電流密度で電
解することができるといわれており、このPR電解法を
銅電解精製に適用して高電流密度操業を行うことが試み
られている。なお、一般にPR電解の電流反転時間は1
回当たり数分の1秒〜数秒であり、例えば東北大学選研
イ報第25巻第2号 155頁には4秒で行った例が示されて
いる。
2. Description of the Related Art In the process of electrorefining nonferrous metals such as copper,
High current density operation is aimed at improving productivity. In a normal DC electrolysis method, when the current density is increased to about 300 A / m 2 or more, passivation occurs on the anode side and elution is suppressed, and deposition on the cathode becomes uneven, resulting in electrolytic copper (electrodeposited product) Since defects such as wrinkles and bumps are generated on the surface and impurities are trapped and copper quality is reduced,
The current density that can be used industrially is limited to about 300 A / m 2 . On the other hand, according to the PR electrolysis method, it is said that passivation on the anode side can be prevented, and it is possible to perform electrolysis at a much higher current density. Attempts have been made to perform current density operations. In general, the current reversal time of PR electrolysis is 1
The time is from a fraction of a second to a few seconds. For example, in Tohoku University Senken Kenkyuho, Vol. 25, No. 2, page 155, an example in which the time is 4 seconds is shown.

【0003】しかし、漫然とPR電解を行うのでは、電
気銅の外観品質が直流電解の場合に比べて劣化する傾向
があり、これを防止するためのPR通電条件が近年提案
されている。例えば、特開平10−88381 号公報には、15
分〜1時間に1回の割合で電流を反転させ、逆方向の通
電電流密度(反転電流密度)を正方向の通電電流密度
(正電流密度)よりも高く(好適範囲:450 〜500 A/
m2)維持し、逆方向から正方向に切り替わる間に一定の
通電停止時間(好適範囲:30秒以上 100秒未満)を設け
ることを特徴とする銅電解精製方法が提案され、正電流
密度を 360A/m2に高めた実施例が開示されている。
However, if PR electrolysis is performed indiscriminately, the appearance quality of electrolytic copper tends to deteriorate as compared with the case of direct current electrolysis, and PR energizing conditions for preventing this have been proposed in recent years. For example, JP-A-10-88381 discloses that
The current is reversed once per minute to one hour, and the current density in the reverse direction (reverse current density) is higher than the current density in the positive direction (positive current density) (preferable range: 450 to 500 A /
m 2 ) A copper electrolytic purification method characterized by maintaining and providing a constant energization stop time (preferable range: 30 seconds or more and less than 100 seconds) during switching from the reverse direction to the forward direction has been proposed. An embodiment with an increase to 360 A / m 2 is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
開平10−88381 号公報の方法では、正電流密度を 360A/
m2よりもさらに高くすると電気銅表面の皺や瘤の発生を
抑制できなくなる。また、この方法では、正極復帰時に
長時間の停電期間を設ける必要があるため稼働率が低下
する。また、周期的にカソードからの溶出を促進する反
転電流密度を正電流密度よりも高くする必要があるため
電流の有効利用および設備コストの面で不利である。
However, according to the method disclosed in JP-A-10-88381, the positive current density is increased to 360 A /
If it is higher than m 2 , it becomes impossible to suppress the occurrence of wrinkles and bumps on the surface of the electrolytic copper. In addition, in this method, it is necessary to provide a long power outage period at the time of return to the positive electrode, so that the operation rate decreases. Further, it is necessary to make the reversal current density that promotes elution from the cathode periodically higher than the positive current density, which is disadvantageous in terms of effective use of current and equipment costs.

【0005】これらの問題点に鑑み、本発明は、PR電
解の正電流密度を360A/m2 超としても電気銅に皺や瘤を
発生させず、しかも正極復帰時に停電期間を設ける必要
がなく、また、反転電流密度を正電流密度以下として生
産性を向上させて操業できる銅の電解精製方法を提供す
ることを目的とする。
In view of these problems, the present invention does not generate wrinkles or bumps in electrolytic copper even when the positive current density of PR electrolysis exceeds 360 A / m 2 , and eliminates the need for providing a power outage period when returning to the positive electrode. It is another object of the present invention to provide a method for electrolytically refining copper which can be operated with a reversal current density equal to or lower than a positive current density to improve productivity.

【0006】[0006]

【課題を解決するための手段】本発明は、銅を周期的反
転電流により電解精製するにあたり、反転電流の通電時
間を60秒以上/回、正電流の通電時間を1200〜3000秒/
回とすることを特徴とする銅の電解精製方法である。本
発明では、反転電流密度を正電流密度の0.5 〜1.0 倍と
して通電することが好ましい。
SUMMARY OF THE INVENTION In the present invention, when copper is electrolytically refined with a periodic reversal current, the reversal current is passed for more than 60 seconds / time and the positive current is supplied for 1200 to 3000 seconds / time.
The method is a method for electrolytically refining copper. In the present invention, it is preferable that the current is supplied at a reversal current density of 0.5 to 1.0 times the positive current density.

【0007】なお、本発明では、アノードに正電圧、カ
ソードに負電圧を印加して通電する電流を正電流、その
逆を反転電流という。
In the present invention, a current applied by applying a positive voltage to the anode and a negative voltage to the cathode is referred to as a positive current, and the reverse current is referred to as an inverted current.

【0008】[0008]

【発明の実施の形態】本発明では、銅のPR電解におい
て、反転電流の通電時間を60秒以上/回、正電流の通電
時間を1200〜3000秒/回に規制する。反転電流を1回あ
たり60秒未満の時間通電しても皺や瘤の発生が十分抑制
されないが、60秒以上通電すれば皺や瘤さらには縁部の
粒の発生が顕著に抑制される。しかも極性切り替えの際
に停電時間を設ける必要はない。このため反転電流の通
電時間を60秒以上/回に制限した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in the PR electrolysis of copper, the energizing time of the reversing current is regulated to 60 seconds or more and the energizing time of the positive current is regulated to 1200 to 3000 seconds / times. Although the generation of wrinkles and bumps is not sufficiently suppressed even if the reversal current is supplied for a time of less than 60 seconds per time, the generation of wrinkles and bumps and the generation of grains at the edges are significantly suppressed when the current is supplied for 60 seconds or more. Moreover, there is no need to provide a power outage time when switching the polarity. For this reason, the time for applying the reversal current is limited to 60 seconds or more / time.

【0009】反転電流の通電時間を60秒以上/回とする
ことで電気銅の表面性状が改善される理由は、正電流通
電時に電極表面近傍で不均一に形成される電解液の電解
質濃度勾配(アノード近傍でのCuイオン過剰とカソード
近傍でのCuイオン欠乏)が、反転電流を60秒以上通電し
続けることにより打ち消され、電解質濃度が均一になる
ためと考えられる。また、この60秒以上という時間は、
電解槽中のアノード〜カソード間にある電解液の自然対
流(アノード側は下降流、カソード側は上昇流)を観察
してみると、この自然対流がほぼ停止する時間に対応す
る。したがって電解の操業条件を変えた場合には、この
自然対流の状況をみて反転電流の通電時間を決めてやれ
ばよい。
The reason why the surface property of electrolytic copper is improved by setting the conduction time of the reversal current to 60 seconds or more is that the electrolyte concentration gradient of the electrolyte formed unevenly near the electrode surface when a positive current is supplied. It is considered that (excessive Cu ions in the vicinity of the anode and Cu ion deficiency in the vicinity of the cathode) are canceled out by continuing the reversal current for 60 seconds or more, and the electrolyte concentration becomes uniform. Also, this time of more than 60 seconds,
Observation of the natural convection (downflow on the anode side, upward flow on the cathode side) of the electrolytic solution between the anode and the cathode in the electrolytic cell corresponds to the time when the natural convection almost stops. Therefore, when the operating conditions of the electrolysis are changed, the time for applying the reverse current may be determined in view of the situation of the natural convection.

【0010】また、本発明では1回当たりの反転電流の
通電時間が長いため、カソード表面の皺や瘤といった凸
部からの銅の優先的溶出が進むことで元の平坦な表面形
状に復帰し、電気銅表面の皺や瘤の生成を抑制している
と考えられる。とはいえ、反転電流の通電時間は、これ
を無制限に長くするのは生産性を低下させるので、120
秒程度以下/回とするのが好ましい。
Further, in the present invention, since the time for conducting the reversal current per operation is long, the copper is preferentially eluted from the projections such as wrinkles and bumps on the cathode surface, thereby returning to the original flat surface shape. It is considered that the formation of wrinkles and bumps on the surface of the electrolytic copper is suppressed. Nevertheless, the inversion time of the reversal current is 120
It is preferable to set the time to less than about seconds / time.

【0011】一方、正電流の通電時間を上記のように規
制する理由は、これが1回当たり1200秒未満ではカソー
ドへの電着量が不足して生産性が低下し、一方、3000秒
を超えるとカソードへの電着不均一傾向が増大して反転
電流通電によっても元の平坦な表面状態への復帰が困難
で、皺や瘤をなくすことが難しくなるとともに、とくに
縁部に粒が多発して電気銅の形状が悪化するためであ
る。
On the other hand, the reason for restricting the positive current conduction time as described above is that if the time is less than 1200 seconds per time, the amount of electrodeposition on the cathode is insufficient and the productivity is reduced, while the time exceeds 3000 seconds. In addition, the tendency of electrodeposition non-uniformity on the cathode increases and it is difficult to return to the original flat surface state even by the application of reversal current, making it difficult to eliminate wrinkles and bumps, especially with many grains at the edges This is because the shape of electrolytic copper deteriorates.

【0012】反転電流密度は、正電流密度の1.0 倍以下
で十分である。1.0 倍超えとしても皺や瘤の発生抑制効
果は飽和し、電力の浪費となるだけである。ただし、反
転電流密度が正電流密度の0.5 倍を下回る範囲では、反
転電流密度の低下に伴って前記効果が次第に弱まってく
る。このため、本発明では、反転電流密度を正電流密度
の0.5 〜1.0 倍とするのが好ましい。
It is sufficient that the reversal current density is not more than 1.0 times the positive current density. Even if it exceeds 1.0 times, the effect of suppressing the generation of wrinkles and bumps is saturated, and only power is wasted. However, in the range where the reversal current density is less than 0.5 times the positive current density, the above-described effect gradually weakens as the reversal current density decreases. Therefore, in the present invention, the reversal current density is preferably 0.5 to 1.0 times the positive current density.

【0013】[0013]

【実施例】精製鋳造アノード47枚と銅カソード46枚を電
解槽に装入し、PR通電条件を種々変更して1通電条件
につき合計210 時間のPR電解精製を行い、各PR通電
条件で得られた電気銅について、目視観察により、皺や
瘤の発生がなかった平滑部分の面積率と縁部での粒発生
状況(重度、中度、軽度の3段階評価)を調査した。
[Example] 47 electrolytically cast anodes and 46 copper cathodes were placed in an electrolytic cell, and the PR energizing conditions were variously changed, and a total of 210 hours of PR electrolytic refining were performed for each energizing condition. About the obtained electrolytic copper, the area ratio of the smooth part where no wrinkles and nodules were generated and the state of grain generation at the edges (three-level evaluation of heavy, medium and light) were examined by visual observation.

【0014】電極と電解槽のサイズ、各PR通電条件に
共通の電解条件を表1に示す。同表に示すように、この
PR電解精製では正電流密度(DK+ )450A/m2 の高電
流密度操業を行った。また、正電流通電時間(T+ )、
反転電流通電時間(T- )の組合せ、および反転電流密
度(DK- )は、表2に示すように各条件毎に変更し
た。また、停電期間は設けていない。
Table 1 shows the size of the electrode and the electrolytic cell, and the electrolysis conditions common to each PR energizing condition. As shown in the table, in this PR electrolytic refining, a high current density operation with a positive current density (DK + ) of 450 A / m 2 was performed. In addition, the positive current conduction time (T + ),
The combination of the reversal current conduction time (T ) and the reversal current density (DK ) were changed for each condition as shown in Table 2. There is no power outage period.

【0015】結果を表2に示す。なお、表2には同一P
R条件の複数枚のうちの最低値を示している。同表に示
すように、T+ とT- とを本発明範囲内に維持した実施
例では電気銅表面全体の88%以上が平滑面になり、粒発
生程度も軽度であった。一方、T+ とT- とを本発明範
囲外とした比較例では、電気銅表面全体の高々84%まで
しか平滑にならず、粒発生程度も中度より良くはならな
かった。
The results are shown in Table 2. Table 2 shows the same P
It shows the lowest value among a plurality of sheets of the R condition. As shown in the Table, T + and T - and will have a smooth surface at least 88% of the total copper surface in the embodiment which is maintained in the present invention range about particle generation also were mild. On the other hand, T + and T - the comparative example in which the present invention range is the only not smooth to at most 84% of the total copper surface had about particle generation also better than moderate in.

【0016】また、実施例の中での比較では、反転電流
密度と正電流密度の比(DK- /DK+ )が0.5 以上の
ものの方が0.5 未満のものよりも良好であり、DK-
DK + が1.0 を超えても1.0 以下に比べて有意差がなか
った。
In the comparison in the embodiments, the inversion current
Density to positive current density ratio (DK-/ DK+) Is greater than 0.5
Are better than those less than 0.5 and DK-/
DK +Is greater than 1.0 and there is no significant difference compared to 1.0 or less
Was.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】かくして本発明によれば、銅の電解精製
において高電流密度で操業しても外観品質を悪化させず
に電気銅を生産できるようになるという優れた効果を奏
する。また、表面状態が従来よりも一段と良好になるた
め、カソード析出を滑らかにするための添加剤量も減ら
すことができ、それにより電圧が下がることから、電力
原単位も削減することができる。
Thus, according to the present invention, there is an excellent effect that electrolytic copper can be produced without deteriorating the appearance quality even when operated at a high current density in the electrolytic refining of copper. In addition, since the surface condition is much better than before, the amount of additives for smoothing cathode deposition can be reduced, and the voltage can be reduced, so that the power consumption can be reduced.

【0020】さらに、正電流の通電時間が長くて反転電
流密度が正電流密度の0.5 〜1.0 倍であり、また電流の
停止時間も不要なことから、生産性も向上させることが
できる。
In addition, productivity can be improved because the current supply time of the positive current is long, the reversal current density is 0.5 to 1.0 times the positive current density, and the current stop time is unnecessary.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 恒夫 岡山県玉野市日比6−1−1 三井金属鉱 業株式会社日比製煉所内 Fターム(参考) 4K058 AA04 AA11 BA21 BB03 CA23 EC04  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Tsuneo Maruyama 6-1-1 Hibi, Tamano-shi, Okayama F-term in Mitsui Kinzoku Mining Co., Ltd. Hibiki Refinery 4K058 AA04 AA11 BA21 BB03 CA23 EC04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を周期的反転電流により電解精製する
にあたり、反転電流の通電時間を60秒以上/回、正電流
の通電時間を1200〜3000秒/回とすることを特徴とする
銅の電解精製方法。
1. An electrolytic refining method for copper using a periodic reversal current, wherein the reversal current is supplied for at least 60 seconds / time and the positive current is supplied for 1200 to 3000 seconds / times. Electrolytic refining method.
【請求項2】 反転電流密度を正電流密度の0.5 〜1.0
倍として通電する請求項1記載の電解精製方法。
2. The reversal current density is set to 0.5 to 1.0 of the positive current density.
2. The electrolytic refining method according to claim 1, wherein the current is supplied twice.
JP32794598A 1998-11-18 1998-11-18 Method for electrolytic purification of copper Expired - Fee Related JP4031879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32794598A JP4031879B2 (en) 1998-11-18 1998-11-18 Method for electrolytic purification of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32794598A JP4031879B2 (en) 1998-11-18 1998-11-18 Method for electrolytic purification of copper

Publications (2)

Publication Number Publication Date
JP2000144473A true JP2000144473A (en) 2000-05-26
JP4031879B2 JP4031879B2 (en) 2008-01-09

Family

ID=18204776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32794598A Expired - Fee Related JP4031879B2 (en) 1998-11-18 1998-11-18 Method for electrolytic purification of copper

Country Status (1)

Country Link
JP (1) JP4031879B2 (en)

Also Published As

Publication number Publication date
JP4031879B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US4140596A (en) Process for the electrolytic refining of copper
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP4986057B2 (en) Method for electrolytic purification of bismuth
JP5669995B1 (en) Method and apparatus for processing Au-containing iodine-based etching solution
JPS61290669A (en) Operation of zinc-halogen secondary battery
JP2000144473A (en) Electrolytic refining method for copper
US2923671A (en) Copper electrodeposition process and anode for use in same
JP3097824B2 (en) Long-period pulse electrolysis operation method in copper electrorefining
JP5747441B2 (en) Method for producing electrogalvanized steel sheet
US3488264A (en) High speed electrodeposition of nickel
JP3063636B2 (en) Copper electrolytic refining method
CA1174199A (en) Bipolar refining of lead
JP3761074B2 (en) Method for electrolytic purification of copper
JPS5913097A (en) Material for insoluble anode for electroplating
JP2000054181A (en) Method for electrolytically refining copper
US2556635A (en) Electrolytic refining of copper
JPH0625882A (en) Electrolytic refining method for copper
JP2009102723A (en) Non-ferrous electrolytic refining method
JPH1112777A (en) Method for electrolytically refining copper
JPH11200082A (en) Electrolysis method of cooper
JP2639950B2 (en) Insoluble anode material
JP2006283047A (en) Production method of crude nickel sulfate
JP2928426B2 (en) Manufacturing method of electrolytic iron
JP2006002225A (en) Aluminum foil for electrolytic capacitor, and electrolytic capacitor
JPH09217190A (en) Energization method in electrolytic refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees