JP2000144247A - Production of high strength reinforcing bar - Google Patents
Production of high strength reinforcing barInfo
- Publication number
- JP2000144247A JP2000144247A JP32320498A JP32320498A JP2000144247A JP 2000144247 A JP2000144247 A JP 2000144247A JP 32320498 A JP32320498 A JP 32320498A JP 32320498 A JP32320498 A JP 32320498A JP 2000144247 A JP2000144247 A JP 2000144247A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- reinforcing bar
- temperature
- weight
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、降伏伸び及び曲げ
加工性に優れた降伏応力685N/mm2 以上の主筋用
直棒材として使用される高強度鉄筋の製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength rebar used as a straight bar for a main bar having a yield stress of 685 N / mm 2 or more, which is excellent in yield elongation and bending workability.
【0002】[0002]
【従来の技術】降伏応力685N/mm2 以上の主筋用
高強度鉄筋の製造方法は、特開平9−324215号公
報に記載されている。この製造方法は、C:0.25〜
0.40%(重量%以下同じ)、Si:0.25〜2.
0%、Mn+Cr:1.0〜3.0%(Mn=0%又は
Cr=0%を含む)、V:0.2〜0.5%、Nb:
0.010〜0.10%、Al:0.005〜0.10
%、N:0.002〜0.020%、残部:Fe及び不
可避不純物を満足する鋼を、加熱温度:1000〜11
50℃、及び圧延終了温度:850超〜950℃で圧延
することを特徴とする。 2. Description of the Related Art A method for manufacturing a high-strength rebar for a main rebar having a yield stress of 685 N / mm 2 or more is described in JP-A-9-324215. This production method has a C: 0.25
0.40% (the same applies to weight% or less), Si: 0.25 to 2.
0%, Mn + Cr: 1.0 to 3.0% (including Mn = 0% or Cr = 0%), V: 0.2 to 0.5%, Nb:
0.010 to 0.10%, Al: 0.005 to 0.10
%, N: 0.002 to 0.020%, balance: Fe and steel satisfying inevitable impurities, heating temperature: 1000 to 11
Rolling is performed at 50 ° C. and a rolling end temperature of more than 850 to 950 ° C.
【0003】この製造方法は、金属組織の微細化に有利
な低い温度で仕上ロール圧延を実施して鉄筋の降伏伸び
率を改善する。しかし、低い温度の仕上ロール圧延は、
圧延抵抗が必然的に大きくなるから、負荷容量の大きな
大規模圧延設備が必要となり、コストが増大する。又、
上記成分と略同じ鋼からなる高強度剪断補強筋用鋼材及
びその製造方法は、特開平10−121200号に記載
されている。しかし、剪断補強筋は主筋に比べると細径
であり、コイル状に溶接して使用されるから、曲げ性と
溶接性は重要であるが、降伏伸び性はあまり要求されな
い。したがって、圧延温度も曲げ性と溶接性から設定さ
れたものであり、降伏伸び性は考慮されていない。[0003] In this manufacturing method, finish roll rolling is performed at a low temperature which is advantageous for refining the metallographic structure, thereby improving the yield elongation of the reinforcing steel. However, finishing roll rolling at low temperature,
Since the rolling resistance is inevitably increased, large-scale rolling equipment having a large load capacity is required, and the cost is increased. or,
A steel material for high-strength shear reinforcement comprising substantially the same steel as the above components and a method for producing the same are described in JP-A-10-121200. However, since the shear reinforcing bar has a smaller diameter than the main reinforcing bar and is used by welding in a coil shape, the bending property and the weldability are important, but the yield elongation is not so required. Therefore, the rolling temperature is also set from the bendability and the weldability, and the yield elongation is not considered.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、大規
模圧延設備を必要としない高温域の仕上ロール圧延によ
り、降伏伸び性に優れた主筋用の高強度鉄筋を低コスト
で製造する方法を提供することにある。本願発明者は、
C:0.20〜0.50%(重量%以下同じ)、Si:
0.15〜1.50%、Mn:0.50〜1.80%、
Cu:0.02〜0.50%、Cr:0.02〜0.5
0%、Ni:0〜0.50%、V:0.05〜0.40
%、Nb:0.010〜0.10%、N:0.005〜
0.02%、残部:Fe及び不可避不純物からなる鋼を
熱間圧延して降伏応力685N/mm2 以上の高強度鉄
筋を製造するテストを繰り返し実施してきた。その結
果、仕上ロール圧延を圧延抵抗が比較的小さい高温域で
実施しても、鉄筋の降伏伸び率を大幅に向上させること
ができるという知見を得た。SUMMARY OF THE INVENTION An object of the present invention is to provide a low-cost method of producing a high-strength rebar having excellent yield elongation for a main rebar by finishing roll rolling in a high-temperature region which does not require large-scale rolling equipment. Is to provide. The inventor of the present application
C: 0.20 to 0.50% (the same applies to weight% or less), Si:
0.15 to 1.50%, Mn: 0.50 to 1.80%,
Cu: 0.02-0.50%, Cr: 0.02-0.5
0%, Ni: 0 to 0.50%, V: 0.05 to 0.40
%, Nb: 0.010 to 0.10%, N: 0.005 to
A test for producing a high-strength rebar having a yield stress of 685 N / mm 2 or more by hot rolling steel containing 0.02% and the balance: Fe and unavoidable impurities has been repeatedly performed. As a result, it has been found that even when the finish roll rolling is performed in a high temperature region where the rolling resistance is relatively small, the yield elongation of the reinforcing bar can be significantly improved.
【0005】[0005]
【課題を解決するための手段】前記課題を達成するた
め、本発明が採用する手段は、C:0.20〜0.50
%(重量%以下同じ)、Si:0.15〜1.50%、
Mn:0.50〜1.80%、Cu:0.02〜0.5
0%、Cr:0.02〜0.50%、Ni:0〜0.5
0%、V:0.05〜0.40%、Nb:0.010〜
0.10%、N:0.005〜0.02%、残部:Fe
及び不可避不純物からなる鋼を、加熱炉で加熱し、つい
で、熱間圧延して鉄筋を製造する方法において、鉄筋の
降伏伸び率(降伏開始点のひずみεyと、そこからさら
に応力が755N/mm2 に達するまでのひずみ(ε−
εy)との比率(ε−εy)/εy)が所定の値、例えば
5.0以上となるように、粗ロール圧延温度を830〜
900℃、中間ロール圧延温度を890〜950℃、圧
延終了温度を950超〜1050℃とすることにある。
ここで、好ましくは、加熱炉内雰囲気温度は1150超
〜1250℃とする。圧延終了後の鉄筋は強制冷却する
必要はなく、常温に放置して自然冷却することも可能で
ある。Means for Solving the Problems In order to achieve the above-mentioned objects, means adopted by the present invention is as follows: C: 0.20 to 0.50
% (The same applies to weight% or less), Si: 0.15 to 1.50%,
Mn: 0.50 to 1.80%, Cu: 0.02 to 0.5
0%, Cr: 0.02 to 0.50%, Ni: 0 to 0.5
0%, V: 0.05 to 0.40%, Nb: 0.010 to
0.10%, N: 0.005 to 0.02%, balance: Fe
And a steel comprising inevitable impurities is heated in a heating furnace and then hot-rolled to produce a rebar. In a method for producing a rebar, the yield elongation of the rebar (strain ε y at the yield starting point, and further stress of 755 N / mm until it reaches mm 2 (ε-
Ratio (ε-ε y) / ε y) is a predetermined value of the epsilon y), for example, as a 5.0 or higher, a rough rolling temperature 830~
900 ° C, an intermediate roll rolling temperature of 890 to 950 ° C, and a rolling end temperature of more than 950 to 1050 ° C.
Here, preferably, the atmosphere temperature in the heating furnace is more than 1150 to 1250 ° C. It is not necessary to forcibly cool the rebar after rolling, and it is also possible to leave it at room temperature and cool it naturally.
【0006】[0006]
【発明の実施の形態】本発明は鋼組成及び熱間圧延条件
を特定したところに特徴を有するものであるが、以下、
本発明で規定する要件の設定理由について説明する。ま
ず、基本的な化学成分について説明する。 C:0.20〜0.50重量% Cは鉄筋の降伏応力を確保するのに不可欠な元素であ
り、そのためには少なくとも0.20重量%以上含有さ
せなければならない。しかしながら、C量が多くなり過
ぎると、延性や曲げ加工性が低下するので、その上限を
0.50重量%以下に押さえなければならない。 Si:0.15〜1.50重量% Siは鋼材溶融時の脱酸に有効に作用すると共に、固溶
強化元素として降伏応力の向上にも寄与する元素であ
る。この様な作用を有効に発揮させるためには、少なく
とも0.15重量%以上含有させなければならない。し
かしながら多すぎると延性や曲げ加工性が低下するので
1.5重量%を上限値とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that the steel composition and hot rolling conditions are specified.
The reasons for setting the requirements specified in the present invention will be described. First, basic chemical components will be described. C: 0.20 to 0.50% by weight C is an element indispensable for securing the yield stress of the reinforcing bar, and therefore, it must be contained at least 0.20% by weight or more. However, if the amount of C is too large, ductility and bendability deteriorate, so the upper limit must be suppressed to 0.50% by weight or less. Si: 0.15 to 1.50% by weight Si is an element that effectively acts on deoxidation at the time of melting steel material and also contributes to improvement of yield stress as a solid solution strengthening element. In order to effectively exert such an effect, the content must be at least 0.15% by weight or more. However, if the content is too large, ductility and bending workability decrease, so the upper limit is 1.5% by weight.
【0007】Mn:0.50〜1.80重量% Mnは、圧延後の冷却過程中におけるパーライト変態温
度を低下させ、その結果、圧延材の強度を高めるにに寄
与する元素である。圧延材の降伏応力を685N/mm
2 以上確保するためには、少なくとも合計で0.50重
量%以上含有する必要がある。しかしながら、多量に添
加するとフェライト組織の生成を著しく抑制し、鉄筋に
要求される降伏伸びが低下してしまうので、その上限は
1.80重量%である。 Cr:0.20〜0.50重量% Crは、Mnと同じ作用をする元素である。しかし、M
nは安価であるのに対しCrは高価な元素であることか
ら、経済性を考慮すれば、CrよりもMnをできるだけ
多く添加し、Crは原料に自然に含まれる量にとどめる
ことが好ましい。Mn: 0.50 to 1.80% by weight Mn is an element that lowers the pearlite transformation temperature during the cooling process after rolling, thereby contributing to increasing the strength of the rolled material. The yield stress of the rolled material is 685 N / mm
In order to secure 2 or more, it is necessary to contain at least 0.50% by weight or more in total. However, when added in a large amount, the formation of a ferrite structure is remarkably suppressed, and the yield elongation required for the reinforcing steel is reduced. Therefore, the upper limit is 1.80% by weight. Cr: 0.20 to 0.50% by weight Cr is an element having the same effect as Mn. But M
Since n is inexpensive, but Cr is an expensive element, it is preferable to add Mn as much as possible than Cr and to keep the amount of Cr naturally contained in the raw material in consideration of economy.
【0008】V:0.05〜0.40重量% Vは析出強化元素として有効な元素である。本発明で目
的とする降伏応力685N/mm2 を確保するために
は、少なくとも0.05重量%以上の添加が必要であ
る。V添加による析出強化作用を高めるためには、圧延
加熱時の固溶V量を多くする必要があるが、Vを多量に
添加すると、圧延加熱時にV炭化物が固溶し難くなるた
め、圧延後の析出鋼強化作用を有効に発揮させることが
できない。従って、その上限を0.40重量%とする。 Nb:0.010〜0.10重量% Nbは圧延後の結晶粒を微細化させ、圧延材の延性を改
善させる作用を有する。この様な作用を有効に発揮させ
るには0.010重量%以上の添加が必要である。しか
しながら、0.10重量%を超えて添加しても、その作
用が飽和してしまい経済的に無駄である。V: 0.05 to 0.40% by weight V is an element effective as a precipitation strengthening element. In order to secure the intended yield stress of 685 N / mm @ 2 in the present invention, it is necessary to add at least 0.05% by weight or more. In order to enhance the precipitation strengthening effect by the addition of V, it is necessary to increase the amount of solid solution V at the time of rolling and heating. However, if a large amount of V is added, it becomes difficult for V carbide to form a solid solution at the time of rolling and heating. Cannot effectively exert the effect of strengthening the precipitated steel. Therefore, the upper limit is set to 0.40% by weight. Nb: 0.010 to 0.10% by weight Nb has an effect of refining crystal grains after rolling and improving ductility of a rolled material. In order to effectively exert such an effect, it is necessary to add 0.010% by weight or more. However, even if it is added in excess of 0.10% by weight, its action is saturated and is economically useless.
【0009】N:0.005〜0.02重量% Nは、V及びNbとフェライト中で炭窒化物を形成し、
強度を高めるとともに結晶粒を微細化して強靱化する作
用がある。しかし、その含有量が0.005重量%未満
では効果がなく、0.02重量%以上では逆に靱性を低
下させる。 Cu:0.02〜0.50重量% Cuは圧延材の強度を高める作用がある。その含有量が
0.02重量%未満では効果がなく、0.50重量%超
では効果が飽和する。 Ni:0〜0.50重量% Niは圧延材の強度を高めるが、0.50重量%超では
効果が飽和し、コストアップになる。N: 0.005 to 0.02% by weight N forms a carbonitride in ferrite with V and Nb,
It has the effect of increasing the strength and refining the crystal grains to make them tougher. However, if the content is less than 0.005% by weight, there is no effect, and if it is 0.02% by weight or more, the toughness is reduced. Cu: 0.02 to 0.50% by weight Cu has the effect of increasing the strength of the rolled material. If the content is less than 0.02% by weight, there is no effect, and if it exceeds 0.50% by weight, the effect is saturated. Ni: 0 to 0.50% by weight Ni enhances the strength of the rolled material, but if it exceeds 0.50% by weight, the effect is saturated and the cost increases.
【0010】次に、圧延条件について説明する。 加熱温度:1000℃以上、好ましくは1150超〜1
250℃ 前工程の加熱炉内雰囲気温度は強度及び降伏伸びに重要
な役割を果たす。この温度は、1000℃未満では満足
な結果が得られないから1000℃以上とする。好まし
くは、1150超〜1250℃とし、オーステナイトの
マトリックス内にNbを十分固溶させた状態で圧延を開
始する。Next, the rolling conditions will be described. Heating temperature: 1000 ° C. or higher, preferably more than 1150 to 1
250 ° C. The ambient temperature in the heating furnace in the preceding step plays an important role in strength and yield elongation. If the temperature is lower than 1000 ° C., satisfactory results cannot be obtained. Preferably, the temperature is higher than 1150 to 1250 ° C., and rolling is started in a state where Nb is sufficiently dissolved in the austenitic matrix.
【0011】本願発明者は、テストの結果、上記成分か
らなる鋼の3段階圧延において、仕上ロール圧延前の粗
ロール圧延及び中間ロール圧延を、A3変態点(950
℃)ないしAr3変態点の温度範囲の未再結晶γ域圧延
とし、仕上ロール圧延を950℃以上の高温の再結晶圧
延としても、圧延終了後の金属組織が微細化する下地が
形成され、降伏伸び性に優れた鉄筋が得られることを見
出して本発明を完成した。その温度範囲は次のとおりで
ある。 粗ロール圧延温度:830〜900℃ 中間ロール圧延温度:890〜950℃ 仕上ロール圧延終了温度:950超〜1050℃ 圧延終了後、400℃まで30〜80℃/分で冷却す
る。この冷却は常温下放置の自然冷却によることも可能
である。As a result of the test, the inventor of the present invention found that in the three-stage rolling of the steel comprising the above components, the rough rolling and the intermediate rolling before the finish rolling were performed at the A3 transformation point (950).
° C) to the unrecrystallized γ-range rolling in the temperature range from the Ar3 transformation point, and the finishing roll rolling is also performed at a high temperature of 950 ° C or higher at a recrystallization rolling temperature of 950 ° C or more. The present inventors have found that a rebar having excellent extensibility can be obtained and completed the present invention. The temperature range is as follows. Coarse roll rolling temperature: 830 to 900 ° C Intermediate roll rolling temperature: 890 to 950 ° C Finish roll rolling finishing temperature: more than 950 to 1050 ° C After rolling is completed, the roll is cooled to 400 ° C at 30 to 80 ° C / min. This cooling can be by natural cooling left at room temperature.
【0012】製造した鉄筋の金属組織は、析出したフェ
ライトの面積比が30〜60%であり、その最大粒径は
25μm以下、平均粒径は15μm以下である。鉄筋の
高強度化はこの粒径の微細化によって、又、鉄筋の高い
降伏伸び率はこのフェライト面積比の値によって、それ
ぞれ実現されたものである。このように、本発明の製造
方法は、圧延抵抗の大きな仕上ロール圧延を950℃超
の高温で実施するから、大規模圧延設備は不要であり、
設備費と運転費は大幅に節減される。The metal structure of the produced reinforcing bar has an area ratio of precipitated ferrite of 30 to 60%, a maximum particle size of 25 μm or less, and an average particle size of 15 μm or less. The reinforcement of the reinforcing bar is realized by the refinement of the grain size, and the high yield elongation of the reinforcing bar is realized by the value of the ferrite area ratio. As described above, the production method of the present invention performs finishing roll rolling at a high rolling resistance at a high temperature of more than 950 ° C., so that a large-scale rolling facility is unnecessary,
Equipment and operating costs are greatly reduced.
【0013】[0013]
【実施例】本発明を鉄筋の引張試験に基づいて説明す
る。試験に使用した鉄筋は、実施例NO.1、実施例N
O.2、比較例NO.3、比較例NO.4の4種類であ
る。実施例と比較例は同一の鋼材から製造した同一サイ
ズの鉄筋であり、鋼材の成分範囲は次のとおりである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on a tensile test of a reinforcing bar. The reinforcing bars used in the test were the same as those in Example NO. 1. Example N
O. 2, Comparative Example NO. 3, Comparative Example NO. 4 types. The example and the comparative example are reinforcing bars of the same size manufactured from the same steel material, and the component range of the steel material is as follows.
【0014】C:0.27〜0.36重量% Si:0.27〜0.68重量% Mn:1.36〜1.59重量% Cr:0.14〜0.20重量% V:0.20〜0.38重量% Nb:0.02〜0.06重量% N:0.005〜0.02重量% 残部:Fe及び不可避不純物 実施例は圧延条件が本発明によるものであり、比較例は
圧延条件が従来のものである。実施例と比較例の各鉄筋
はそれぞれ下表に示す加熱炉内雰囲気温度において前処
理され、同じく下表に示す圧延終了温度の熱間圧延によ
り製造されたものである。製造後、各鉄筋は引張試験機
によりテストし、図1に示す応力ひずみ曲線を描いた。
その応力ひずみ曲線から、降伏開始点から応力が755
N/mm 2 に達するまでのひずみ(ε−εy)と、降伏
開始点のひずみεyの比である降伏伸び率(ε−εy)/
εyを求めた。降伏伸び率は下表に示すとおりであっ
た。C: 0.27 to 0.36% by weight Si: 0.27 to 0.68% by weight Mn: 1.36 to 1.59% by weight Cr: 0.14 to 0.20% by weight V: 0 0.20 to 0.38% by weight Nb: 0.02 to 0.06% by weight N: 0.005 to 0.02% by weight Remainder: Fe and unavoidable impurities Examples are
The rolling conditions are conventional. Reinforcing bars of Examples and Comparative Examples
At the ambient temperature in the heating furnace shown in the table below.
Hot rolling at the rolling end temperature shown in the table below.
It was manufactured. After manufacturing, each rebar is a tensile tester
, And a stress-strain curve shown in FIG. 1 was drawn.
From the stress-strain curve, the stress was 755 from the yield starting point.
N / mm Two Strain to reach (ε-εy) And surrender
Starting strain εyYield elongation (ε-εy) /
εyI asked. Yield elongation is as shown in the table below.
Was.
【0015】 鉄筋NO. NO.1 NO.2 NO.3 NO.4 種類 実施例 実施例 比較例 比較例 加熱炉内雰囲気温度℃ 1150 1200 1050 1150 圧延終了温度℃ 1000 1050 850 950 降伏応力(N/mm2 ) 715 710 690 691 降伏伸び率 6.1 5.8 4.5 5.2 (ε−εy)/εy この表から、本発明方法により製造した鉄筋は、降伏応
力685N/mm2 以上の高強度鉄筋であり、従来方法
のものに比べると、降伏伸び性は格段に優れていること
がわかる。Reinforcing bar NO. NO. 1 NO. 2 NO. 3 NO. 4 types Example Example Example Comparative example Comparative example Atmospheric temperature in heating furnace ° C 1150 1200 1050 1150 Rolling end temperature ° C 1000 1050 850 950 Yield stress (N / mm 2 ) 715 710 690 691 Yield elongation rate 6.1 5.8 4 from .5 5.2 (ε-ε y) / ε y this table, rebar produced by the method of the present invention, yield stress 685N / mm 2 or more is a high strength reinforcing bar, compared with the conventional method, the yield It turns out that elongation is remarkably excellent.
【0016】[0016]
【発明の効果】上記のとおり、本発明のV及びNbを含
む鋼から主筋として使用する高強度鉄筋を製造する方法
は、圧延負荷が大きい仕上ロール圧延を圧延抵抗が大き
くなる950℃以下の低温度で実施するために大規模な
圧延設備を必要としていた従来のものとは異なり、圧延
負荷の小さい粗ロール圧延と中間ロール圧延は950℃
以下の低温度で実施するが、圧延負荷の大きい仕上ロー
ル圧延は圧延抵抗の比較的小さい950超〜1050℃
の圧延終了温度で実施するから、大規模な圧延設備は不
要であり、設備費と運転費の少ない中小規模の圧延設備
により、降伏伸び性に優れた鉄筋を低コストで製造する
ことができるという優れた効果を奏する。As described above, the method for producing a high-strength rebar used as a main rebar from steel containing V and Nb according to the present invention is a method of producing a high-strength rebar having a large rolling load by lowering the rolling resistance to 950.degree. Unlike the conventional one that required a large-scale rolling equipment to perform at a temperature, the rough roll rolling and the intermediate roll rolling with a small rolling load are performed at 950 ° C.
Although it is carried out at the following low temperature, finishing roll rolling with a large rolling load has a relatively small rolling resistance of more than 950 to 1050 ° C.
Since large-scale rolling equipment is not required, it is possible to produce low-cost rebar with excellent yield elongation by using small and medium-sized rolling equipment with low equipment costs and operating costs. It has excellent effects.
【図1】応力ひずみ曲線図FIG. 1 Stress-strain curve diagram
───────────────────────────────────────────────────── フロントページの続き (72)発明者 関口 利夫 栃木県小山市横倉新田520 東京鐵鋼株式 会社内 Fターム(参考) 4K032 AA05 AA11 AA14 AA16 AA21 AA22 AA23 AA31 AA32 AA36 BA02 CC04 CD05 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshio Sekiguchi 520 Yokokura Nitta, Oyama City, Tochigi Prefecture F-term (reference) 4K032 AA05 AA11 AA14 AA16 AA21 AA22 AA23 AA31 AA32 AA36 BA02 CC04 CD05
Claims (3)
同じ)、Si:0.15〜1.50%、Mn:0.50
〜1.80%、Cu:0.02〜0.50%、Cr:
0.02〜0.50%、Ni:0〜0.50%、V:
0.05〜0.40%、Nb:0.01〜0.10%、
N:0.005〜0.02%、残部:Fe及び不可避不
純物からなる鋼を、加熱炉において加熱し、ついで熱間
圧延して鉄筋を製造する方法であって、前記鉄筋の降伏
伸び率(降伏開始点のひずみεyと、そこからさらに応
力が755N/mm2 に達するまでのひずみ(ε−
εy)との比率(ε−εy)/εy)が所定値以上となる
ように、粗ロール圧延温度を830〜900℃、中間ロ
ール圧延温度を890〜950℃、圧延終了温度を95
0超〜1050℃とすることを特徴とする高強度鉄筋の
製造方法。1. C: 0.20 to 0.50% (the same applies to weight% or less), Si: 0.15 to 1.50%, Mn: 0.50
11.80%, Cu: 0.02 to 0.50%, Cr:
0.02 to 0.50%, Ni: 0 to 0.50%, V:
0.05 to 0.40%, Nb: 0.01 to 0.10%,
N: 0.005 to 0.02%, balance: Fe and unavoidable impurities are heated in a heating furnace, and then hot-rolled to produce a reinforcing bar. The strain ε y at the yield start point and the strain (ε−) until the stress further reaches 755 N / mm 2.
ratio of ε y) (ε-ε y ) / ε y) such that a predetermined value or more, the rough rolling temperature eight hundred thirty to nine hundred ° C., the intermediate rolling temperature eight hundred ninety to nine hundred fifty ° C., the rolling end temperature 95
A method for producing a high-strength rebar, wherein the temperature is higher than 0 to 1,050 ° C.
ことを特徴とする請求項1記載の高強度鉄筋の製造方
法。2. The method according to claim 1, wherein the predetermined value of the yield elongation is 5.0 or more.
ることを特徴とする請求項1又は2記載の高強度鉄筋の
製造方法。3. The method for producing a high-strength reinforcing bar according to claim 1, wherein the reinforcing bar after the rolling is allowed to cool naturally at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32320498A JP2000144247A (en) | 1998-11-13 | 1998-11-13 | Production of high strength reinforcing bar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32320498A JP2000144247A (en) | 1998-11-13 | 1998-11-13 | Production of high strength reinforcing bar |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000144247A true JP2000144247A (en) | 2000-05-26 |
Family
ID=18152214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32320498A Pending JP2000144247A (en) | 1998-11-13 | 1998-11-13 | Production of high strength reinforcing bar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000144247A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104018075A (en) * | 2014-06-25 | 2014-09-03 | 武汉钢铁(集团)公司 | Hot rolled ribbed steel bar with yield-to-tensile ratio of less than or equal to 0.8 and Rel of more than or equal to 600MPa, and production method |
CN105543699A (en) * | 2016-01-20 | 2016-05-04 | 广西丛欣实业有限公司 | Corrosion-resistant reinforcing bar production method |
CN112742864A (en) * | 2020-12-04 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Production process of cold-rolled steel bar |
CN112742865A (en) * | 2020-12-08 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Energy-saving production process of cold-rolled steel bar |
CN112742863A (en) * | 2020-12-04 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Production method of cold-rolled steel bar |
CN114472512A (en) * | 2022-03-08 | 2022-05-13 | 石横特钢集团有限公司 | Hot rolling process method for reinforcing steel bars of crescent rib left-handed anchor rod |
-
1998
- 1998-11-13 JP JP32320498A patent/JP2000144247A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104018075A (en) * | 2014-06-25 | 2014-09-03 | 武汉钢铁(集团)公司 | Hot rolled ribbed steel bar with yield-to-tensile ratio of less than or equal to 0.8 and Rel of more than or equal to 600MPa, and production method |
CN104018075B (en) * | 2014-06-25 | 2016-05-04 | 武汉钢铁(集团)公司 | Rel >=600MPa hot rolled ribbed bars and the production method of yield tensile ratio≤0.8 |
CN105543699A (en) * | 2016-01-20 | 2016-05-04 | 广西丛欣实业有限公司 | Corrosion-resistant reinforcing bar production method |
CN105543699B (en) * | 2016-01-20 | 2017-08-25 | 广西柳州中嘉知识产权服务有限公司 | The production method of corrosion-resistant steel bar |
CN112742864A (en) * | 2020-12-04 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Production process of cold-rolled steel bar |
CN112742863A (en) * | 2020-12-04 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Production method of cold-rolled steel bar |
CN112742865A (en) * | 2020-12-08 | 2021-05-04 | 安阳复星合力新材料股份有限公司 | Energy-saving production process of cold-rolled steel bar |
CN114472512A (en) * | 2022-03-08 | 2022-05-13 | 石横特钢集团有限公司 | Hot rolling process method for reinforcing steel bars of crescent rib left-handed anchor rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
JP2005264176A (en) | High-strength steel having adequate workability and manufacturing method therefor | |
JPS6160891B2 (en) | ||
JP4405026B2 (en) | Method for producing high-tensile strength steel with fine grain | |
JP3242303B2 (en) | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same | |
JPH05105957A (en) | Production of heat resistant high strength bolt | |
JP2000144247A (en) | Production of high strength reinforcing bar | |
JPH09279233A (en) | Production of high tension steel excellent in toughness | |
JP3290595B2 (en) | Method for manufacturing high-tensile steel plate with excellent toughness and weldability | |
JPH10306315A (en) | Production of non-heat treated high tensile-strength steel excellent in low temperature toughness | |
JPH06264183A (en) | Hot rolled high tensile strength steel plate with high workability and its production | |
JPS6156235A (en) | Manufacture of high toughness nontemper steel | |
JP3218442B2 (en) | Manufacturing method of mechanical structural steel with excellent delayed fracture resistance | |
JPS63223125A (en) | Manufacture of high-tensile steel plate with high-toughness | |
JPS63241120A (en) | Manufacture of high ductility and high strength steel sheet having composite structure | |
JPH03170618A (en) | Highly efficient production of cold-rolled steel sheet extremely excellent in workability | |
JP2001342520A (en) | Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property | |
JP3229107B2 (en) | Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation | |
JPS586937A (en) | Production of hot-rolled high-tensile steel plate for working | |
JPH10280050A (en) | Production of high strength hot rolled steel sheet excellent in press formability | |
JP4396007B2 (en) | High tensile high workability hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same | |
JPH0949020A (en) | Production of steel material for low temperature reinforcement | |
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
JP2000096137A (en) | Production of steel having fine crystal grain structure | |
JPH06264181A (en) | Hot rolled high tensile strength steel plate with high workability and its production |