JP2000140868A - Ozonized water supply device keeping fixed range concentration - Google Patents

Ozonized water supply device keeping fixed range concentration

Info

Publication number
JP2000140868A
JP2000140868A JP10341028A JP34102898A JP2000140868A JP 2000140868 A JP2000140868 A JP 2000140868A JP 10341028 A JP10341028 A JP 10341028A JP 34102898 A JP34102898 A JP 34102898A JP 2000140868 A JP2000140868 A JP 2000140868A
Authority
JP
Japan
Prior art keywords
ozone
water
flow rate
ozonized water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341028A
Other languages
Japanese (ja)
Other versions
JP3558901B2 (en
Inventor
Junji Mizutani
淳二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP34102898A priority Critical patent/JP3558901B2/en
Publication of JP2000140868A publication Critical patent/JP2000140868A/en
Application granted granted Critical
Publication of JP3558901B2 publication Critical patent/JP3558901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the ozone concn. of ozonized water at a place where the ozonized water is used within a fixed range. SOLUTION: The ozonized water supplying device is provided with a raw water supplying system 1, a branched raw water system 2, a branched ozonized water production system 3, a resistive body 21, a laminar flow type flow limitter 32, an ozone dissolving tank 31, and an ozone generating device 4, etc. The resistance respectively proportional to squared flow rate and flow rate are generated at the resistive body 21 and the flow limitter 32, as a result, the flow rate of the laminar flow instrument 32 is reduced in proportion of the squared flow rate of the resistive body 21, and the concn. of the ozonized water passed through the ozone dissolving tank 31 is changed in inverse proportion to the flow rate, and the concn. of the ozonized water to be used is maintained in the range near to a fixed value finally. In this way, structure becomes simple, controlling and operation are eliminated and actuation is made sure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術の分野】本発明は、オゾンを含むオ
ゾン水を供給するためのオゾン水供給装置に関し、特に
オゾン水濃度を一定範囲に維持する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone water supply apparatus for supplying ozone water containing ozone, and more particularly to a technique for maintaining an ozone water concentration within a certain range.

【0002】[0002]

【従来の技術】オゾンを溶解させた水は、殺菌力、脱臭
力、有機物分解力等を持ち極めて有用であると共に、残
留性がなく水道水と同様の方法で使用できるため、種々
の分野で種々の用途に供されている。そして、その濃度
は用途によって0.5ppm 程度から30ppm 程度まで広
範囲にわたっている。一方、オゾン水を製造するための
オゾン発生装置としては、濃度の高いオゾンガスを発生
できるものが望ましい。このようなオゾン発生装置とし
ては、電解式のものが望ましいが、酸素発生装置や電極
構造自体の改良により、最近では無声放電式の装置であ
ってもある程度の高濃度オゾンガスを発生できるように
なっているので、このような装置であってもよい。
2. Description of the Related Art Ozone-dissolved water has a bactericidal activity, a deodorizing activity, an organic matter decomposing activity, etc., is extremely useful, and has no residual properties and can be used in the same manner as tap water. It is used for various applications. The concentration ranges from about 0.5 ppm to about 30 ppm depending on the application. On the other hand, as an ozone generator for producing ozone water, a device capable of generating ozone gas having a high concentration is desirable. As such an ozone generator, an electrolytic type is preferable, but improvement of the oxygen generator and the electrode structure itself has made it possible to generate a certain high-concentration ozone gas even in a silent discharge type device in recent years. Therefore, such a device may be used.

【0003】オゾンガスを水に溶解させる方法として
は、エゼクタ方式や混気式ポンプによる方法が知られて
いる。この場合、水への溶解度を高めるためにオゾンガ
スの濃度を高くすれば、飽和溶解度を40ppm 程度にも
上げることができる。このような場合、一定量の水と一
定量のオゾンガスとを接触させて例えば1ppm のオゾン
水を供給できるようにすることは容易であるが、そのよ
うにしたときに、使用するオゾン水量が減少すると、オ
ゾン濃度が4〜5ppm にも上昇し、過剰濃度になって使
用上不都合になるという問題がある。
[0003] As a method of dissolving ozone gas in water, there are known an ejector method and a method using an air-mixing pump. In this case, if the concentration of ozone gas is increased to increase the solubility in water, the saturation solubility can be increased to about 40 ppm. In such a case, it is easy to bring a certain amount of water into contact with a certain amount of ozone gas to supply, for example, 1 ppm of ozone water, but in such a case, the amount of ozone water used decreases. Then, there is a problem that the ozone concentration increases to 4 to 5 ppm and becomes excessive, which is inconvenient for use.

【0004】[0004]

【発明が解決しようとする課題】このような問題を解決
するには、溶存オゾン濃度を計測し、オゾン発生装置の
オゾンガス発生量が自動的に減少するように制御するこ
とが考えられるが、そのような装置は構成が複雑でコス
トが高いという問題がある。そこで本発明は、簡単な構
成で確実に作動し、オゾン濃度を実用可能な一定の変動
範囲内に維持できるオゾン水供給装置を提供することを
課題とする。
In order to solve such a problem, it is conceivable to measure the dissolved ozone concentration and control the amount of ozone gas generated by the ozone generator to automatically decrease. Such a device has a problem that the configuration is complicated and the cost is high. Therefore, an object of the present invention is to provide an ozone water supply device that can operate reliably with a simple configuration and can maintain the ozone concentration within a practically feasible fixed range.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、オゾンを含むオゾン水を供給するためのオ
ゾン水供給装置において、前記オゾン水を製造するため
の水を供給する原料水供給系と、これから分岐された後
再び合流されて前記オゾン水になる分岐原料水系及び分
岐オゾン水製造系と、前記分岐原料水系に設けられ流量
のほぼ二乗に比例する通過抵抗を発生させる第1流量制
限器と、前記分岐オゾン水製造系に設けられたオゾン溶
解槽及び流量のほぼ一乗に比例する通過抵抗を発生させ
る第2流量制限器と、前記オゾン溶解槽に高濃度オゾン
を供給するオゾン発生装置と、を有することを特徴とす
る。
According to the present invention, there is provided an ozone water supply apparatus for supplying ozone water containing ozone, comprising: a raw material water for supplying water for producing the ozone water; A supply system, a branch raw material water system and a branch ozone water production system which are merged again after being branched therefrom to become the ozone water, and a first system which is provided in the branch raw material water system and which generates a passage resistance proportional to approximately the square of the flow rate. A flow restrictor, an ozone dissolving tank provided in the branch ozone water producing system, a second flow restrictor for generating a passage resistance proportional to a first power of the flow, and ozone for supplying high-concentration ozone to the ozone dissolving tank. And a generator.

【0006】[0006]

【発明の実施の形態】図1は本発明を適用したオゾン水
供給装置の構成例を示す。本装置は、オゾン水を製造す
るための水を供給する原料水供給系1、これから分岐さ
れた後再び合流されて最終使用するオゾン水を供給する
分岐原料水系2及び分岐オゾン水製造系3、分岐原料水
系2に設けられた第1流量制限手段としての抵抗体2
1、分岐オゾン水製造系3に設けられたオゾン溶解槽3
1及び第2流量制限手段としての層流式流量制限器(以
下「層流器」と略す)32、電解式のオゾン発生装置
4、等を有する。
FIG. 1 shows an example of the configuration of an ozone water supply apparatus to which the present invention is applied. The apparatus comprises a raw water supply system 1 for supplying water for producing ozone water, a branched raw water system 2 for supplying ozone water for final use which is branched and then joined again, and a branched ozone water production system 3, Resistor 2 as first flow rate limiting means provided in branch raw material water system 2
1. Ozone dissolution tank 3 provided in branch ozone water production system 3
It has a laminar flow restrictor (hereinafter abbreviated as “laminar flow device”) 32 as the first and second flow restricting means, an electrolytic ozone generator 4, and the like.

【0007】原水供給系1は通常水道水ラインでよい。
本例では、使用に便利なように減圧弁11及び逆止弁1
2を設け、その後流側の圧力を1kgf/cm2Gに保持してい
る。オゾン水の供給先には、オゾン水を複数場所で使用
可能なように4個の蛇口51〜54を設けている。
The raw water supply system 1 may usually be a tap water line.
In this example, the pressure reducing valve 11 and the check valve 1 are used for convenience.
2, and the pressure on the downstream side is maintained at 1 kgf / cm 2 G. At the supply destination of the ozone water, four faucets 51 to 54 are provided so that the ozone water can be used at a plurality of places.

【0008】抵抗体21は、流量のほぼ二乗に比例する
通過抵抗を発生させるオリフィスやベンチュリー管等で
構成される。本例では、定格流量が毎分60リットル
(60L/mim )でそのときの圧力損失が0.3kgf/cm
2 のものが使用されている。
The resistor 21 is constituted by an orifice, a Venturi tube or the like which generates a passage resistance proportional to the square of the flow rate. In this example, the rated flow rate is 60 liters per minute (60 L / mim) and the pressure loss at that time is 0.3 kgf / cm.
Two things are used.

【0009】層流器32は、流量のほぼ一乗に比例する
通過抵抗を発生させる構造のものであり、本例では、直
径20mmで高さ100mmのエレメントを持つステン
レス粉末焼結フィルターである。このフィルターは、定
格流量が3L/mim 、差圧が0.3kgf/cm2 、公称ろ過
精度が2μmのものである。このような層流器32によ
れば、その抵抗ΔPは、周知の式 ΔP=λ(L/d)
(γv2 /2g)で表され、この中の管摩擦係数λは流
れが層流のときにはほぼ64/Reになり、Reはρv
d/μであるから、結局ΔP∝v、即ち抵抗が流量の一
乗に比例することになる。なお、このような層流器とし
ては、例えば多数のキャピラリーチューブやハニカム成
形体又は焼結体等、流れが層流になって適当な差圧を形
成できるものであればよい。
The laminar flow device 32 has a structure that generates a passage resistance that is approximately proportional to the first power of the flow rate. In this embodiment, the laminar flow filter 32 is a sintered stainless powder filter having an element having a diameter of 20 mm and a height of 100 mm. This filter has a rated flow rate of 3 L / mim, a differential pressure of 0.3 kgf / cm 2 , and a nominal filtration accuracy of 2 μm. According to such a laminar flow device 32, the resistance ΔP is represented by a known formula ΔP = λ (L / d)
(Γv 2 / 2g), in which the pipe friction coefficient λ is approximately 64 / Re when the flow is laminar, and Re is ρv
Since d / μ, ΔP∝v, that is, the resistance, is eventually proportional to the first power of the flow rate. In addition, as such a laminar flow device, any material such as a large number of capillary tubes, a honeycomb formed body, or a sintered body can be used as long as the flow becomes laminar and an appropriate differential pressure can be formed.

【0010】電解式のオゾン発生装置4は、詳細図示を
省略しているが、固体高分子電解質膜から成るイオン交
換膜を挟んで陽極及び陰極を配設した本体部と純水等を
溜める気液分離タンクとを備え、本体部と気液分離タン
クとの間で純水を循環させつつ、電気分解によって発生
した酸素及びこの中に高濃度で含まれるオゾンガスから
成る混合ガスを気液分離タンク内で純水から分離させて
取り出すように構成されている通常の構造のものであ
る。これにより、200g/Nm3 程度以上の高濃度オ
ゾンをオゾン溶解槽31に供給することができる。な
お、オゾン水の用途によっては、無声放電式のオゾン発
生装置も使用可能である。
Although not shown in detail, the electrolytic ozone generator 4 has a main body in which an anode and a cathode are disposed with an ion exchange membrane made of a solid polymer electrolyte membrane interposed therebetween and a gas for storing pure water and the like. A liquid-liquid separation tank, and circulating pure water between the main body and the gas-liquid separation tank, while mixing oxygen-generated gas generated by electrolysis and ozone gas contained therein at a high concentration in the gas-liquid separation tank. It has a normal structure that is configured to be separated from pure water and taken out. Thereby, high-concentration ozone of about 200 g / Nm 3 or more can be supplied to the ozone dissolving tank 31. Note that, depending on the use of the ozone water, a silent discharge type ozone generator can also be used.

【0011】オゾン溶解槽31は、オゾン発生装置4で
発生した高濃度オゾンガスを導入し、これを、減圧弁1
1で1kgf/cm2Gにされ更に層流器32で一次抵抗を付与
された後の0.7kgf/cm2G程度以上の圧力になっている
器内でバブリングさせ、原料水中に溶解させて高濃度の
分岐オゾン水を製造する。オゾン溶解槽31の頂部に
は、フロート式自動ガス抜き用の気液分離器31a及び
排ガス中に残留しているオゾンを分解処理する排オゾン
分解器31bが設けられている。
The ozone dissolving tank 31 introduces high-concentration ozone gas generated by the ozone generator 4 and supplies it to the pressure reducing valve 1.
1 is a 1 kgf / cm 2 G by bubbling further laminar flow 32 within the vessel that is a 0.7 kgf / cm 2 G of about or more pressure after being granted primary resistance, by dissolving a raw material water Produce high concentration branched ozone water. At the top of the ozone dissolving tank 31, a float-type gas-liquid separator 31a for automatic degassing and a waste ozone decomposer 31b for decomposing ozone remaining in the exhaust gas are provided.

【0012】図2は、このようなオゾン溶解槽の流量と
溶解度従ってオゾン水濃度との関係の一例を示す。オゾ
ン溶解槽は、一般的に、導入する原料水の流量が多けれ
ばオゾン水になったときの濃度が低くなり流量が少なけ
ればオゾン水濃度が高くなる特性を持つ。この例では、
溶解されるオゾンガス濃度が220g/Nm3 のとき
に、原料水の流量を最大の1(100%)から例えば1
/4を経て最小の1/16まで変えたときに、8ppm か
ら24ppm を経て36ppm 程度に変化している。なお、
図では最大量が3L/mim 及び6L/mim のときの値も表示
している。
FIG. 2 shows an example of the relationship between the flow rate of such an ozone dissolving tank and the solubility, that is, the concentration of ozone water. Generally, the ozone dissolution tank has a characteristic that the concentration of ozone water becomes low when the flow rate of the introduced raw water is large, and the ozone water concentration becomes high when the flow rate is small. In this example,
When the dissolved ozone gas concentration is 220 g / Nm 3 , the flow rate of the raw water is increased from 1 (100%) to 1
When it is changed to the minimum 1/16 through / 4, it changes from 8 ppm to about 36 ppm through 24 ppm. In addition,
In the figure, the values when the maximum amount is 3 L / mim and 6 L / mim are also displayed.

【0013】以上のようなオゾン水供給装置では、使用
すべきオゾン水量に対応して蛇口51〜54の使用個数
を変えたときのオゾン水濃度は、次の式によって計算さ
れる。即ち、分岐原料水系2及び分岐オゾン水製造系3
の流量をそれぞれQ及びq、抵抗体21及び層流器32
の共に同じ値になる抵抗をΔP、分岐オゾン水流量q及
び合流後の使用オゾン水流量(Q+q)の濃度をそれぞ
れd及びDとし、Q及びqの定格時の値をQ0 及び
0 、このときの共通の圧力損失をP0 とすると ΔP=AQ2 、ここでA=P0 /Q0 2 ΔP=Bq、 ここでB=P0 /q0 従って、 q=Q2 0 /Q0 2 −− d=f(q)−−−−−− D=dq/(Q+q)−−
In the above-described ozone water supply apparatus, the ozone water concentration when the number of taps 51 to 54 used is changed according to the amount of ozone water to be used is calculated by the following equation. That is, the branched raw material water system 2 and the branched ozone water production system 3
Are respectively Q and q, the resistor 21 and the laminar flow device 32
Are the same resistance, ΔP, the concentration of the branch ozone water flow rate q and the concentration of the used ozone water flow rate (Q + q) after merging are d and D, respectively, and the rated values of Q and q are Q 0 and q 0 , If the common pressure loss at this time is P 0 , ΔP = AQ 2 , where A = P 0 / Q 0 2 ΔP = Bq, where B = P 0 / q 0, and therefore q = Q 2 q 0 / Q 0 2 −− d = f (q) −−−−−− D = dq / (Q + q) −−

【0014】表1は、上式による本発明の使用オゾン水
濃度Dの維持特性を分かり易くするために例示的にまと
めたものである。即ち、通常のオゾン水の使用状態で
は、Dをdより十分小さくするので、qはQより十分小
さくなることが多く、この表ではQをベースとしてこれ
をQ0 の1/2及び1/4に減らしたとき、即ち蛇口で
言えば4個使用状態からほぼ2個及び1個の使用状態に
減らしたときの計算例を示している。なお、上式の特性
から、qが相当大きくなった場合でも、Q又は(Q+
q)を変化させたときの使用オゾン濃度Dの変化傾向は
同様になる。
Table 1 exemplarily summarizes the maintenance characteristics of the used ozone water concentration D according to the present invention according to the above formula for easy understanding. That is, in a normal use condition of ozone water, D is sufficiently smaller than d, so that q is often sufficiently smaller than Q. In this table, based on Q, this is q and の of Q 0. , That is, a calculation example when the number of used taps is reduced from four used states to almost two and one used states. From the characteristics of the above equation, even when q becomes considerably large, Q or (Q +
The change tendency of the used ozone concentration D when q) is changed becomes the same.

【0015】[0015]

【表1】 [Table 1]

【0016】表2及び表3は、前記計算式において、そ
れぞれ、Q0 =60L/mim 、q0 =3L/mim 及び6L/mi
m 、これらの場合の圧力損失P0 =0.3kgf/cm2 とし
たときに、 ΔP=AQ2 、ここでA=0.3/602 ΔP=Bq、 ここでB=0.3/3及び0.3/6 従って、 q=Q2 /1200及びQ2 /600−−−−−´ という数値例の式にしてD等を計算した表である。
Tables 2 and 3 show that Q 0 = 60 L / mim, q 0 = 3 L / mim and 6 L / mi in the above formulas, respectively.
m, when pressure loss P 0 = 0.3 kgf / cm 2 in these cases, ΔP = AQ 2 , where A = 0.3 / 602 2 ΔP = Bq, where B = 0.3 / 3 and 0.3 / 6 Thus, a table of calculation of the D or the like in the formula of the numerical example where q = Q 2/1200 and Q 2/600 ----- '.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】これらの計算結果によれば、qが比例定数
をq0 /Q0 2 としてQの二乗に比例し、従ってQが1
/2又は1/4になればqが1/4又は1/16にな
り、dがqに対して反比例的に変化し、従って図2のよ
うにqが1/4又は1/16になればdが3倍又は4・
5倍になり、Dは近似的にはd、q及び1/Qに比例す
るので、Qが1から1/2又は1/4になれば、結局D
は1からほぼ3/2=1.5又は4.5/4=1.12
5になり、従って実用上全く問題のない濃度変化範囲に
維持されることが分かる。なお、このような使用オゾン
水濃度Dはオゾン溶解槽の特性によって多少異なるが、
その場合でも、Dを実用可能の濃度範囲に維持すること
ができる。
According to these calculation results, q is proportional to the square of Q, where q is a proportional constant and q 0 / Q 0 2.
When に or 1 /, q becomes 1 / or 1/16, and d changes in inverse proportion to q, so that q becomes 1 / or 1/16 as shown in FIG. If d is 3 or 4
5 times and D is approximately proportional to d, q and 1 / Q, so if Q goes from 1 to 1/2 or 1/4, then D
Is from 1 to approximately 3/2 = 1.5 or 4.5 / 4 = 1.12.
5, which means that the density can be maintained within a practically acceptable range. In addition, such used ozone water concentration D is slightly different depending on the characteristics of the ozone dissolving tank,
Even in such a case, D can be maintained in a practically usable concentration range.

【0020】従って、このようなオゾン水供給装置によ
れば、蛇口51〜54の種々の使用状態において、全く
制御や操作をすることなく、使用するオゾン水濃度を1
〜1.5倍程度、例えば0.4ppm 〜0.6ppm 又は
0.8ppm 〜1.2ppm 程度の範囲におさめることがで
き、実用上極めて便利になる。
Therefore, according to such an ozone water supply apparatus, in various use states of the faucets 51 to 54, the concentration of the used ozone water can be reduced to 1 without any control or operation.
It can be reduced to about 1.5 times, for example, about 0.4 ppm to 0.6 ppm or about 0.8 ppm to 1.2 ppm, which is extremely convenient for practical use.

【0021】[0021]

【発明の効果】以上の如く本発明によれば、原料水供給
系から分岐され再び合流される分岐原料水系及び分岐オ
ゾン水製造系を設け、それぞれに流量のほぼ二乗に比例
する通過抵抗を発生させる第1流量制限器及び流量のほ
ぼ一乗に比例する通過抵抗を発生させる第2流量制限器
とを設け、更に分岐オゾン水製造系にオゾン溶解槽を設
けてこれにオゾン発生装置で高濃度オゾンを供給するよ
うに構成するので、分岐原料水系及び分岐オゾン水製造
系の圧力損失が共に同じになるため、分岐オゾン水製造
系の流量が分岐原水系の流量の二乗に比例し、製造され
るオゾン水濃度が水量に反比例的に変化し、更に合流後
の使用オゾン水濃度が分岐オゾン水製造系の流量及びオ
ゾン水濃度に比例し分岐原料水系の流量にほぼ反比例す
るため、結局使用オゾン水量が変化してもオゾン濃度の
変化を実用可能な一定範囲に維持することができる。
As described above, according to the present invention, a branched raw water system and a branched ozone water production system which are branched from the raw water supply system and merged again are provided, each of which generates a passage resistance proportional to the square of the flow rate. A first flow restrictor for controlling the flow rate and a second flow restrictor for generating a passage resistance in proportion to the first power of the flow rate. Since the pressure loss of the branch raw water system and the branch ozone water production system are the same, the flow rate of the branch ozone water production system is proportional to the square of the flow rate of the branch raw water system, so that the water is produced. Since the concentration of ozone water changes in inverse proportion to the amount of water, and the concentration of used ozone water after merging is proportional to the flow rate of the branch ozone water production system and the ozone water concentration and almost inversely proportional to the flow rate of the branch raw water system, it is eventually used. Even Zon water is changed can be maintained in viable a range of change of the ozone concentration.

【0022】その結果、制御や操作をすることなく確実
な作動の下に使用するオゾン水濃度を一定範囲内に維持
でき、構成が簡単で安価で極めて実用性が高く便利なオ
ゾン水供給装置を提供することができる。
As a result, the concentration of ozone water to be used can be maintained within a certain range under reliable operation without control or operation, and a simple, inexpensive, highly practical and convenient ozone water supply device can be provided. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したオゾン水供給装置の構成例を
示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration example of an ozone water supply device to which the present invention is applied.

【図2】上記装置に適用できるオゾン溶解槽の特性例を
示す曲線図である。
FIG. 2 is a curve diagram showing an example of characteristics of an ozone dissolving tank applicable to the above apparatus.

【符号の説明】[Explanation of symbols]

1 原料水供給系 2 分岐原料水系 3 分岐オゾン水製造系 4 オゾン発生装置 21 抵抗体(第1流量制限器) 31 オゾン溶解槽 32 層流器、層流式流量制限器(第2流量
制限器)
REFERENCE SIGNS LIST 1 raw water supply system 2 branch raw water system 3 branch ozone water production system 4 ozone generator 21 resistor (first flow restrictor) 31 ozone dissolving tank 32 laminar flow, laminar flow restrictor (second flow restrictor) )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを含むオゾン水を供給するための
オゾン水供給装置において、 前記オゾン水を製造するための水を供給する原料水供給
系と、これから分岐された後再び合流されて前記オゾン
水になる分岐原料水系及び分岐オゾン水製造系と、前記
分岐原料水系に設けられ流量のほぼ二乗に比例する通過
抵抗を発生させる第1流量制限器と、前記分岐オゾン水
製造系に設けられたオゾン溶解槽及び流量のほぼ一乗に
比例する通過抵抗を発生させる第2流量制限器と、前記
オゾン溶解槽に高濃度オゾンを供給するオゾン発生装置
と、を有することを特徴とするオゾン水供給装置。
1. An ozone water supply apparatus for supplying ozone water containing ozone, comprising: a raw water supply system for supplying water for producing the ozone water; A branch raw material water system and a branched ozone water production system that become water, a first flow restrictor that is provided in the branch raw material water system and generates a passage resistance that is approximately proportional to the square of the flow rate, and is provided in the branch ozone water production system. An ozone water supply device, comprising: an ozone dissolution tank and a second flow restrictor for generating a passage resistance proportional to a first power of the flow rate; and an ozone generator for supplying high-concentration ozone to the ozone dissolution tank. .
JP34102898A 1998-11-12 1998-11-12 Ozone water supply system with constant concentration Expired - Fee Related JP3558901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34102898A JP3558901B2 (en) 1998-11-12 1998-11-12 Ozone water supply system with constant concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34102898A JP3558901B2 (en) 1998-11-12 1998-11-12 Ozone water supply system with constant concentration

Publications (2)

Publication Number Publication Date
JP2000140868A true JP2000140868A (en) 2000-05-23
JP3558901B2 JP3558901B2 (en) 2004-08-25

Family

ID=18342564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34102898A Expired - Fee Related JP3558901B2 (en) 1998-11-12 1998-11-12 Ozone water supply system with constant concentration

Country Status (1)

Country Link
JP (1) JP3558901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161858A (en) * 2006-10-20 2008-07-17 Otech Labo:Kk Ozone-containing water spraying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161858A (en) * 2006-10-20 2008-07-17 Otech Labo:Kk Ozone-containing water spraying device

Also Published As

Publication number Publication date
JP3558901B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
CN108238665B (en) Portable super-concentrated hydrogen-rich micro-bubble drinking device
US11167253B2 (en) Apparatus for generating ultrafine bubbles of molecular hydrogen in water
JP4150533B2 (en) Disinfection water production equipment
KR20050005459A (en) Ozonated water flow and concentration control apparatus and method
TW201800143A (en) Gas and liquid supply system for therapeutic purpose
WO2020004653A1 (en) Fine bubble generation device and fine bubble generation method
JP6129289B2 (en) Water treatment system and water treatment method
JP2013172821A (en) Dialysis fluid/stock solution hydrogen-reduction apparatus
JP3951385B2 (en) Apparatus and method for adjusting dissolved gas concentration in liquid
JP4919385B2 (en) Gas dissolving method and apparatus
JP3558901B2 (en) Ozone water supply system with constant concentration
CN112934023A (en) System and method for generating oxidizing bubbles in a fluid
JP2009195882A (en) Method for producing hydrogen reduction water
JP2010194440A (en) Gas-liquid mixing apparatus
JP2018051533A (en) Apparatus and method for the production of hydrogen-containing water
US7491302B2 (en) Electrolytic gas generation method and electrolytic gas generation device
JP2020104087A (en) Apparatus for generation of superfine bubbles of molecular hydrogen in water
WO2018123193A1 (en) Device for manufacturing diluted liquid, and method for manufacturing diluted liquid
TW201804154A (en) Method of obtaining hydrogen concentration in hydrogen-containing liquid and generator for hydrogen-containing liquid
JP6777533B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP2018103148A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JP2004307405A (en) Apparatus and method for producing weakly acidic disinfectant
US4268367A (en) Electrolytic process for the sterilization of liquids
JP2013220370A (en) Electrolytic water generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees