JP2000133314A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2000133314A
JP2000133314A JP10302465A JP30246598A JP2000133314A JP 2000133314 A JP2000133314 A JP 2000133314A JP 10302465 A JP10302465 A JP 10302465A JP 30246598 A JP30246598 A JP 30246598A JP 2000133314 A JP2000133314 A JP 2000133314A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
electrolyte battery
electrode
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302465A
Other languages
Japanese (ja)
Inventor
Yasushi Nakagiri
康司 中桐
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10302465A priority Critical patent/JP2000133314A/en
Publication of JP2000133314A publication Critical patent/JP2000133314A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery assuring a high efficiency stably by suppressing dendorite deposition at the edge part of a metal lithium negative electrode. SOLUTION: A non-aqueous electrolyte battery is structured so that a positive electrode 3 and a negative electrode 1 using lithium as active material are installed opposing as pinching a separator 6 inside a cylindrical organic resin 7 within a quarter of the top and the bottom and the gaps between the peripheries of the negative and positive electrodes 3 and the inside of the organic resin 7 are corresponding to the thickness of the separator 6, whereby dendorite deposition at the edge of the metallic lithium negative electrode 1 is suppressed, the stability increased, the charge-discharge efficiency enhanced, and the cyclic operating characteristic improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
し、特に金属リチウム負極を用いた非水電解質電池に関
する。
The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery using a lithium metal anode.

【0002】[0002]

【従来の技術】今日、負極活物質に、リチウム金属を用
い、プロピレンカーボネート、γ−ブチロラクトン、ジ
メトキシエタン、テトラヒドロフラン、ジオキソラン等
の有機溶媒に、LiClO4、LiBF4、LiAs
6、LiPF6、LiCF3SO3等の塩を溶解させた電
解液と組み合わせた非水電解質電池は、高エネルギー密
度を有することから、電子時計、カメラをはじめとする
小型電子機器用の一次電池に使用され、また、携帯電
話、携帯用パーソナルコンピュータ、ビデオムービー等
の携帯用機器の二次電池としても期待されている。
2. Description of the Related Art At present, lithium metal is used as a negative electrode active material, and LiClO 4 , LiBF 4 , LiAs
Non-aqueous electrolyte batteries combined with electrolytes in which salts such as F 6 , LiPF 6 , and LiCF 3 SO 3 are dissolved have high energy densities, making them primary for electronic watches, cameras, and other small electronic devices. It is used as a battery, and is also expected as a secondary battery for portable devices such as mobile phones, portable personal computers, and video movies.

【0003】この種の非水電解質電池は、リチウム金属
の化学反応性が高く、容易に電解液成分と反応して負極
表面に不動態皮膜を形成するため、自己放電反応が抑制
され、保存特性が良いという特長がある。
In this type of nonaqueous electrolyte battery, lithium metal has high chemical reactivity and easily reacts with an electrolyte component to form a passivation film on the negative electrode surface. Is good.

【0004】[0004]

【発明が解決しようとする課題】しかし、一方で、充電
中に負極表面に樹枝状、針状、フィブリル状等のリチウ
ム金属の析出物、いわゆる、デンドライトが著しく発生
する。これは、不動態皮膜の形成や反応表面の結晶学
的、形態的不均一性のために、負極表面上でのリチウム
金属イオンの析出場所が局在化するためである。充電時
にこのようなデンドライトが形成され、次の放電過程で
は、デンドライトが部分的に溶解して寸断され、充電中
に析出させたすべてのリチウム金属を溶解させることが
できなくなり、結果として充放電効率が著しく低下する
といった問題があった。また、デンドライトが寸断され
ずに成長する場合には、負極と正極の間の内部短絡が生
じ、充放電サイクル寿命が短くなるといった問題もあっ
た。
However, on the other hand, during the charge, dendrites such as dendrites, needles, fibrils, and the like, so-called dendrites, are remarkably generated on the surface of the negative electrode. This is because the deposition site of lithium metal ions on the negative electrode surface is localized due to the formation of a passivation film and the crystallographic and morphological inhomogeneity of the reaction surface. Such dendrites are formed during charging, and in the next discharging process, the dendrites are partially dissolved and cut off, so that it is impossible to dissolve all lithium metal deposited during charging, resulting in charge and discharge efficiency Has been significantly reduced. In addition, when the dendrite grows without breaking, there is a problem that an internal short circuit occurs between the negative electrode and the positive electrode, and the charge / discharge cycle life is shortened.

【0005】特に、このようなデンドライトは、金属リ
チウムのエッジ部での発生が著しい。つまり、電極表面
における根本的なデンドライト析出の抑制と共に、電池
構成におけるエッジ部でのデンドライト析出の抑制も重
要である。
[0005] In particular, such dendrite is remarkably generated at the edge of lithium metal. That is, it is important not only to suppress fundamental dendrite deposition on the electrode surface, but also to suppress dendrite deposition at the edge of the battery configuration.

【0006】そこで、本発明は、金属リチウム負極のエ
ッジ部でのデンドライト析出を抑制し、安定して高効率
が得られる非水電解質電池を提供することを目的とす
る。
Accordingly, it is an object of the present invention to provide a non-aqueous electrolyte battery in which dendrite deposition at the edge of a lithium metal anode is suppressed and high efficiency is obtained stably.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
め本発明の非水電解質電池は、リチウムを活物質とする
負極と、放電可能な正極とを、樹脂製筒型容器の内側で
上下からそれぞれ4分の1より内部にセパレータを挟ん
で対向して設置し、前記負極と前記正極との周囲と、前
記樹脂製筒型容器の内側との隙間が前記セパレータの厚
み分であることを特徴とする。
In order to solve the above problems, a nonaqueous electrolyte battery according to the present invention comprises a negative electrode using lithium as an active material and a dischargeable positive electrode which are vertically arranged inside a resin cylindrical container. From each other, it is installed facing each other with a separator interposed between them, and the gap between the periphery of the negative electrode and the positive electrode and the inside of the resin cylindrical container is equal to the thickness of the separator. Features.

【0008】このとき、負極が金属リチウムであること
が有用である。また、対向する電極の向かい合う方向
に、荷重がかかる構成を有することが有用である。
At this time, it is useful that the negative electrode is metallic lithium. It is also useful to have a configuration in which a load is applied in the direction in which the opposing electrodes face each other.

【0009】また、樹脂製筒型容器を荷重により固定し
たことが有用である。ここで、筒形有機樹脂としてポリ
エチレンまたはポリプロピレンを用いることが有用であ
る。
It is useful that the resin cylindrical container is fixed by a load. Here, it is useful to use polyethylene or polypropylene as the tubular organic resin.

【0010】[0010]

【発明の実施の形態】以下に図を参照しながら、本発明
の実施の形態を説明する。図1に本発明に使用する非水
電解質電池の断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a nonaqueous electrolyte battery used in the present invention.

【0011】金属リチウム負極1は負極集電体2に貼り
付いている。正極3は正極集電体4と一体となってい
る。正極としては、LiCoO2、LiMn24、Li
NiO2等のリチウム複合酸化物を用いる。そして電解
液保持用の不織布5とポリプロピレン製の微多孔膜のセ
パレータ6を間に挟んで、金属リチウム負極1と正極3
を対向させて、筒形有機樹脂7の内部に設置する。この
時の筒形有機樹脂の材質は、ポリエチレンかポリプロピ
レンが望ましい。ここで、金属リチウム負極1、正極3
および不織布5は同じ大きさであり、セパレータ6はそ
れよりも大きく、はみ出る部分は筒形有機樹脂7の内側
と電極部の周囲の間に挟まることになる。
The metal lithium anode 1 is attached to the anode current collector 2. The positive electrode 3 is integrated with the positive electrode current collector 4. LiCoO 2 , LiMn 2 O 4 , Li
A lithium composite oxide such as NiO 2 is used. Then, a metal lithium negative electrode 1 and a positive electrode 3 are sandwiched between a nonwoven fabric 5 for holding an electrolyte and a separator 6 of a microporous film made of polypropylene.
Are placed inside the tubular organic resin 7 so as to face each other. At this time, the material of the tubular organic resin is preferably polyethylene or polypropylene. Here, metal lithium negative electrode 1, positive electrode 3
The nonwoven fabric 5 is the same size as the nonwoven fabric 5, and the separator 6 is larger than that, and the protruding portion is sandwiched between the inside of the cylindrical organic resin 7 and the periphery of the electrode portion.

【0012】上部からは押さえ板8で押さえ、下部から
は底上げ板9で底上げを行う。この押さえ板8と底上げ
板9の厚さを調節することにより、金属リチウム負極1
および正極3の位置を調節することができる。不織布5
およびセパレータ6を挟んで対向した金属リチウム負極
1および正極3の位置を筒形有機樹脂7の上下から4分
の1以内に調節する。
From the upper part, the holding plate 8 is used to hold down, and from the lower part, the bottom is raised by a bottom raising plate 9. By adjusting the thickness of the holding plate 8 and the bottom raising plate 9, the metal lithium negative electrode 1 is formed.
In addition, the position of the positive electrode 3 can be adjusted. Non-woven fabric 5
The positions of the metal lithium negative electrode 1 and the positive electrode 3 opposed to each other with the separator 6 interposed therebetween are adjusted within one-fourth from the top and bottom of the cylindrical organic resin 7.

【0013】これらをステンレス製の収納容器10に設
置し、電解液(図示せず)の注液を行う。そして、ステ
ンレス製のコイルバネ11、12およびO−リング13
を介してステンレス製の上部蓋14により密閉する。コ
イルバネ11は金属リチウム負極1と正極3間に荷重を
与え、コイルバネ12は、筒形有機樹脂7を固定するた
めに荷重を与えている。また、O−リング13により、
セル内部には外部からの気体の導入を防いでいる。そし
て、上部蓋14は金属リチウム負極1と導通を持ってお
り、収納容器10は正極3と導通を持っているので、そ
れぞれから充放電装置(図示せず)へとリードをとるこ
とができる。
These are placed in a stainless steel container 10, and an electrolyte (not shown) is injected. Then, stainless steel coil springs 11 and 12 and O-ring 13
And sealed with a stainless steel upper lid 14. The coil spring 11 applies a load between the metallic lithium negative electrode 1 and the positive electrode 3, and the coil spring 12 applies a load for fixing the tubular organic resin 7. Also, by the O-ring 13,
The introduction of gas from the outside is prevented inside the cell. Since the upper lid 14 has conduction with the metal lithium negative electrode 1 and the storage container 10 has conduction with the positive electrode 3, it is possible to take a lead from each of them to a charging / discharging device (not shown).

【0014】上記のような構成において、充放電サイク
ルを繰り返すと、金属リチウム負極のエッジ部でのデン
ドライト析出の発生が抑制され、充放電効率が上昇し、
サイクル特性が良くなる。
In the above configuration, when the charge / discharge cycle is repeated, generation of dendrite at the edge of the lithium metal negative electrode is suppressed, and the charge / discharge efficiency is increased.
Cycle characteristics are improved.

【0015】[0015]

【実施例】以下、本発明に好適な実施例について、図面
を参照しながら詳細に説明する。なお、以下のセル組み
立てはアルゴンガス雰囲気中で行い、その後に温度管理
した空気中で充放電試験を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. The following cell assembly was performed in an argon gas atmosphere, and then a charge / discharge test was performed in temperature-controlled air.

【0016】(実施例1)金属リチウム負極として、厚
さ100μm、幅22mmのリチウム箔を用いた。この
リチウム箔を直径15.6mmの径に打ち抜いて、直径
15.9mmのSUS集電体に圧着した。リチウムは、
圧着時に少し広がって、集電体径と同じ直径15.9m
mとなった。正極としては、LiMn24粉末、カーボ
ンブラックおよび四フッ化ポリエチレン粉末を混合した
正極合剤を正極集電体の上方に所定量充填して加圧した
ものを用いた。電解液には、プロピレンカーボネートと
ジメトキシエタンを体積比で1:1の割合で混合し、こ
の混合溶媒にLiClO4を1モル/リットルの割合で
溶解したものを用いた。
Example 1 A lithium foil having a thickness of 100 μm and a width of 22 mm was used as a metallic lithium negative electrode. This lithium foil was punched out to a diameter of 15.6 mm and pressed on a SUS current collector having a diameter of 15.9 mm. Lithium is
Spreads slightly during crimping, 15.9m in diameter, the same as the current collector diameter
m. As the positive electrode, a positive electrode mixture obtained by mixing LiMn 2 O 4 powder, carbon black, and polyethylene tetrafluoride powder, was filled in a predetermined amount above the positive electrode current collector, and was then pressurized. As the electrolyte, a mixture of propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 and LiClO 4 dissolved at a ratio of 1 mol / liter in this mixed solvent was used.

【0017】また、比較例として筒形有機樹脂を用いな
いで、同様の非水電解質電池を組み立てた。実施例、比
較例ともそれぞれ10個づつ電池を作製し、実験を行っ
た。
As a comparative example, a similar nonaqueous electrolyte battery was assembled without using a cylindrical organic resin. In each of the example and the comparative example, ten batteries were manufactured, and an experiment was performed.

【0018】以上のように作製した電池を、各試料につ
いて20℃の環境下で、2mA/cm2の電流密度で、
放電下限電圧2V、充電上限電圧を3.5Vとする充放
電サイクル試験を行いサイクル寿命を求めた。ただし、
放電容量が1サイクル目の半分になったところで寿命と
し、充放電サイクル途中で、デンドライトによる内部短
絡が起きた場合には、そのサイクルで寿命とした。
The batteries prepared as described above were subjected to a current density of 2 mA / cm 2 under the environment of 20 ° C. for each sample.
A charge / discharge cycle test was performed at a discharge lower limit voltage of 2 V and a charge upper limit voltage of 3.5 V to determine the cycle life. However,
The life was determined when the discharge capacity became half of the first cycle, and when an internal short circuit occurred due to dendrite during the charge / discharge cycle, the life was determined in that cycle.

【0019】その結果を表1に示す。表中のサイクル寿
命の値は、平均値±σを表す。
Table 1 shows the results. The cycle life values in the table represent average values ± σ.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、筒形有機樹脂を用いて
いない比較例1の電池のサイクル寿命より、実施例1の
電池のサイクル寿命の方が長く、バラツキも抑制できて
いることがわかった。つまり、筒形有機樹脂を用いて所
定の構成に設置した電池において、安定性が高く、長寿
命性を得ることを見いだした。
As shown in Table 1, it was found that the cycle life of the battery of Example 1 was longer than that of the battery of Comparative Example 1 in which no cylindrical organic resin was used, and that the variation could be suppressed. Was. That is, it has been found that a battery installed in a predetermined configuration using a cylindrical organic resin has high stability and long life.

【0022】(実施例2)次に、本発明の効果がわかり
やすく、また、金属リチウム負極の評価用のセルとして
も用いることができる非水電解質電池を作製した。
(Example 2) Next, a nonaqueous electrolyte battery was prepared in which the effect of the present invention was easily understood and which could be used as a cell for evaluating a metal lithium anode.

【0023】本実施例においては、負極を試験極として
評価する金属リチウムを用い、正極にも対極としての金
属リチウムを用いた。そのため、本実施例では、負極を
試験極、正極を対極と呼ぶことにする。
In the present embodiment, metal lithium evaluated using the negative electrode as a test electrode, and metal lithium as a counter electrode was used as the positive electrode. Therefore, in the present embodiment, the negative electrode is referred to as a test electrode, and the positive electrode is referred to as a counter electrode.

【0024】試験極として、厚さ100μm、幅22m
mのリチウム箔を用いた。このリチウム箔を直径15.
6mmの径に打ち抜いて、直径15.9mmのSUS集
電体に圧着した。対極としては、厚さ200μm、幅2
2mmのリチウム箔を同様にφ15.6の径に打ち抜い
て、直径15.9mmのSUS集電体に圧着した。リチ
ウムは、圧着時に少し広がって、集電体径と同じφ1
5.9となった。電解液保持用の不織布とポリプロピレ
ン製の微多孔膜セパレータを2枚と電極、集電体を一体
にすると全体で、厚みは、1.8mmとなった。電極部
分からはみ出ているセパレータの厚みは、50μmであ
る。
As a test electrode, a thickness of 100 μm and a width of 22 m
m of lithium foil was used. This lithium foil has a diameter of 15.
It was punched out to a diameter of 6 mm, and pressed on a SUS current collector having a diameter of 15.9 mm. As a counter electrode, thickness 200 μm, width 2
A 2 mm lithium foil was similarly punched out to a diameter of φ15.6, and pressed on a SUS current collector having a diameter of 15.9 mm. Lithium spreads a little during crimping and has the same diameter as the current collector, φ1
It was 5.9. When the two nonwoven fabrics for holding the electrolytic solution and the microporous membrane separator made of polypropylene, the electrodes, and the current collector were integrated, the total thickness was 1.8 mm. The thickness of the separator protruding from the electrode portion is 50 μm.

【0025】筒形有機樹脂は、ポリエチレン樹脂を用い
た。高さは8mmとし、内径は、直径16.0、16.
1、16.2mmの3種類を準備した。また、電極位置
として、上から1、3、4、5、7mmに中心位置が合
うように、調整した。電解液は、LiClO4をエチレ
ンカーボネートとジエチルカーボネート(体積比1:
1)の混合溶媒の中に1モル/リットルの濃度で溶解し
たものを使用した。各構成におけるセルは、同じものを
10個準備して、すべて充放電試験を行い、平均値と標
準偏差値を算出した。充放電効率の算出方法は、事前に
試験極リチウムの重量を計測しておき、所定の充放電サ
イクルを繰り返した後に残存しているリチウム量を計測
し、その差により1サイクルにおける平均充放電効率を
算出した。充放電条件は、20℃の環境下で、1mA/
cm2の電流密度で充電(リチウム析出)および放電
(リチウム溶解)をそれぞれ1時間行い、20サイクル
後に0.5mA/cm2の電流密度で溶けきるまで溶解
を行い、残存しているリチウム量を測定した。
As the cylindrical organic resin, a polyethylene resin was used. The height is 8 mm, and the inner diameter is 16.0, 16.
Three types of 1, 16.2 mm were prepared. The electrode position was adjusted such that the center position was 1, 3, 4, 5, and 7 mm from the top. The electrolytic solution was prepared by mixing LiClO 4 with ethylene carbonate and diethyl carbonate (volume ratio 1: 1).
A solution dissolved in the mixed solvent of 1) at a concentration of 1 mol / liter was used. The same cell was prepared for each of the 10 cells, and all of the cells were subjected to a charge / discharge test to calculate an average value and a standard deviation value. The charge / discharge efficiency is calculated by measuring the weight of the test electrode lithium in advance, measuring the amount of lithium remaining after repeating a predetermined charge / discharge cycle, and calculating the average charge / discharge efficiency in one cycle based on the difference. Was calculated. The charge / discharge conditions were 1 mA /
cm charged with 2 of current density (lithium deposition) and discharging (lithium dissolved) was carried out each hour, subjected to dissolved after 20 cycles until as possible to melt at a current density of 0.5 mA / cm 2, the amount of lithium remaining It was measured.

【0026】まず、電極位置は中心部(4mm)に調整
して、筒形有機樹脂の内径が充放電効率に及ぼす影響を
観察した。その結果を図2に示す。
First, the position of the electrode was adjusted to the center (4 mm), and the effect of the inner diameter of the cylindrical organic resin on the charge / discharge efficiency was observed. The result is shown in FIG.

【0027】図2からわかるように、内径が小さくなる
ほど効率が向上し、そのバラツキも小さくなっているこ
とがわかる。電極の径が直径15.9mmであるが、セ
パレータ径はそれよりも大きく、その周りに25μmの
セパレータが2枚挟まっており、50μmしかない隙間
に50μmのセパレータが挟まっていることになる。す
なわち、これ以上内径を小さくすることはできない。つ
まり、電極部の周囲と筒形有機樹脂の内側との隙間がセ
パレータの厚み分である場合には、精度良く高い効率を
得ることができるが、余分な隙間がある場合には、効率
が低くなりバラツキも大きくなっていることがわかる。
As can be seen from FIG. 2, the smaller the inner diameter is, the higher the efficiency is and the smaller the variation is. Although the diameter of the electrode is 15.9 mm in diameter, the separator diameter is larger than that, and two 25 μm separators are sandwiched around the separator, and a 50 μm separator is sandwiched in a gap of only 50 μm. That is, the inner diameter cannot be further reduced. In other words, when the gap between the periphery of the electrode portion and the inside of the cylindrical organic resin is equal to the thickness of the separator, high efficiency can be obtained with high accuracy, but when there is an extra gap, the efficiency is low. It can be seen that the variation has increased.

【0028】次に、内径は、直径16.0mmで固定し
ておいて、試験極位置を変化させた場合の結果を図3に
示す。図3からわかるように、筒形有機樹脂の上部から
1mmの位置や7mmの位置では、効率が低くバラツキ
も大きい。それに対して、上部から3、4、5mmの位
置では、効率がほぼ同様の高い効率で、精度も高くなっ
ている。すなわち、筒形有機樹脂の上部から4分の1以
上で下部からも4分の1以上内部に電極部が設置されて
いる場合に、精度良く高い効率が得られていることにな
る。
Next, FIG. 3 shows the result when the inner diameter is fixed at 16.0 mm and the test pole position is changed. As can be seen from FIG. 3, at a position 1 mm or 7 mm from the top of the cylindrical organic resin, the efficiency is low and the variation is large. On the other hand, at the positions of 3, 4, and 5 mm from the upper part, the efficiency is almost the same, and the accuracy is also high. That is, when the electrode portion is installed inside the cylindrical organic resin at least one-fourth or more from the upper part and at least one-fourth from the lower part, high efficiency is obtained with high accuracy.

【0029】試験極周りの隙間や、電極位置が、効率に
及ぼす影響としては、やはり、電極のエッジ部分に余分
な空間ができることによるデンドライト析出であると考
えられる。また、上記のような構成において、対極にも
金属リチウムを使用し、集電体はステンレス製なので、
正極に酸化物やその他の物質を用いた場合の活物質や集
電体からの溶出物が影響を与えることなく、本発明の効
果がよりわかりやすい構成となっている。さらに、この
ような構成は、金属リチウム負極に対する、改善、改良
の手段に対しての評価セルとしての構成としても用いる
ことができる。
The effect of the gap around the test electrode and the position of the electrode on the efficiency is considered to be dendrite deposition due to the extra space created at the edge of the electrode. Also, in the above configuration, metal lithium is also used for the counter electrode, and the current collector is made of stainless steel,
When the oxide or other substance is used for the positive electrode, the effect of the present invention is more easily understood without being influenced by the active material or the eluate from the current collector. Further, such a configuration can also be used as a configuration as an evaluation cell for an improvement and a means of improvement with respect to a metal lithium anode.

【0030】これらの結果から分かるように、対極にリ
チウムを用いており、セパレータを挟んで対向している
試験極リチウムと対極リチウムが、筒形有機樹脂の内側
に上下からそれぞれ4分の1より内部に設置され、前記
試験極および対極の周囲と前記筒形有機樹脂の内側との
隙間がセパレータの厚み分であるといった金属リチウム
評価用セルとしての非水電解質電池を用いることによ
り、精度が良く安定した効率を得ることができ、余分な
影響がなく、実際の電池を想定した状況でのデンドライ
ト析出抑制への改善、改良の手段を評価することができ
る。
As can be seen from these results, lithium is used for the counter electrode, and the test electrode lithium and the counter electrode lithium which are opposed to each other with the separator interposed between the upper and lower sides of the cylindrical organic resin by a quarter of each. Installed inside, by using a non-aqueous electrolyte battery as a lithium metal evaluation cell such that the gap between the periphery of the test electrode and the counter electrode and the inside of the cylindrical organic resin is the thickness of the separator, the accuracy is good A stable efficiency can be obtained, there is no extra effect, and it is possible to evaluate the means for improving the suppression of dendrite deposition in a situation assuming an actual battery and a means for improvement.

【0031】すなわち、本発明の非水電解質電池で、負
極および正極を共に金属リチウムとすることで、金属リ
チウムの負極としての評価用セルとして使用することが
できる。
That is, in the non-aqueous electrolyte battery of the present invention, when the negative electrode and the positive electrode are both made of metallic lithium, they can be used as an evaluation cell as an anode of metallic lithium.

【0032】[0032]

【発明の効果】以上のように、本発明によると、リチウ
ムを活物質とする負極と正極が、筒形有機樹脂の内側に
上下からそれぞれ4分の1より内部にセパレータを挟ん
で対向して設置され、前記負極および正極の周囲と前記
筒形有機樹脂の内側との隙間がセパレータの厚み分であ
ることを特徴とする非水電解質電池を用いることによ
り、金属リチウム負極のエッジ部でのデンドライト析出
の発生が抑制され、安定性が増し、充放電効率が上昇
し、サイクル特性が良くなるといった効果を得ることが
できる。
As described above, according to the present invention, the negative electrode and the positive electrode using lithium as an active material face each other from inside of the cylindrical organic resin from above and below with a separator interposed therebetween at a quarter. By using a non-aqueous electrolyte battery, wherein a gap between the periphery of the negative electrode and the positive electrode and the inside of the cylindrical organic resin is equal to the thickness of the separator, dendrite at the edge of the lithium metal negative electrode The effect of suppressing the occurrence of precipitation, increasing the stability, increasing the charge / discharge efficiency, and improving the cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である非水電解質電池の断面
を示した図
FIG. 1 is a diagram showing a cross section of a nonaqueous electrolyte battery according to one embodiment of the present invention.

【図2】本発明の一実施例である非水電解質電池の充放
電効率を示した図
FIG. 2 is a diagram showing charge / discharge efficiency of a nonaqueous electrolyte battery according to one embodiment of the present invention.

【図3】本発明の一実施例である非水電解質電池の充放
電効率を示した図
FIG. 3 is a diagram showing the charge / discharge efficiency of a non-aqueous electrolyte battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金属リチウム負極 2 負極集電体 3 正極 4 正極集電体 5 不織布 6 セパレータ 7 筒形有機樹脂 8 押さえ板 9 底上げ板 10 収納容器 11,12 コイルバネ 13 O−リング DESCRIPTION OF SYMBOLS 1 Metal lithium negative electrode 2 Negative electrode collector 3 Positive electrode 4 Positive electrode collector 5 Nonwoven fabric 6 Separator 7 Cylindrical organic resin 8 Pressing plate 9 Bottom raising plate 10 Storage container 11, 12 Coil spring 13 O-ring

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H028 AA07 AA08 CC24 CC26 EE06 FF04 HH06 5H029 AJ03 AJ05 AJ12 AK03 AL12 AM01 AM02 AM03 AM07 CJ05 DJ02 DJ04 EJ12 HJ04 HJ12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H028 AA07 AA08 CC24 CC26 EE06 FF04 HH06 5H029 AJ03 AJ05 AJ12 AK03 AL12 AM01 AM02 AM03 AM07 CJ05 DJ02 DJ04 EJ12 HJ04 HJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを活物質とする負極と、放電可
能な正極とを、樹脂製筒型容器の内側で上下からそれぞ
れ4分の1より内部にセパレータを挟んで対向して設置
し、前記負極と前記正極との周囲と、前記樹脂製筒型容
器の内側との隙間が前記セパレータの厚み分であること
を特徴とする非水電解質電池。
1. A negative electrode using lithium as an active material and a dischargeable positive electrode are installed facing each other with a separator between the upper and lower sides of the resin-made cylindrical container from above and below, respectively. A nonaqueous electrolyte battery, wherein a gap between the periphery of the negative electrode and the positive electrode and the inside of the cylindrical resin container is equal to the thickness of the separator.
【請求項2】 負極が金属リチウムであることを特徴と
する請求項1記載の非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the negative electrode is metallic lithium.
【請求項3】 対向する電極の向かい合う方向に、荷重
がかかる構成を有することを特徴とする請求項1または
2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein a load is applied in a direction in which the opposing electrodes face each other.
【請求項4】 樹脂製筒型容器を荷重により固定したこ
とを特徴とする請求項1、2または3記載の非水電解質
電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the resin-made cylindrical container is fixed by a load.
【請求項5】 筒形有機樹脂としてポリエチレンまたは
ポリプロピレンを用いることを特徴とする請求項1、
2、3または4記載の非水電解質電池。
5. The method according to claim 1, wherein polyethylene or polypropylene is used as the tubular organic resin.
5. The non-aqueous electrolyte battery according to 2, 3 or 4.
JP10302465A 1998-10-23 1998-10-23 Non-aqueous electrolyte battery Pending JP2000133314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302465A JP2000133314A (en) 1998-10-23 1998-10-23 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302465A JP2000133314A (en) 1998-10-23 1998-10-23 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000133314A true JP2000133314A (en) 2000-05-12

Family

ID=17909280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302465A Pending JP2000133314A (en) 1998-10-23 1998-10-23 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000133314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140695A (en) * 2021-04-22 2021-07-20 珠海冠宇电池股份有限公司 Battery core and battery
CN113410425A (en) * 2021-06-21 2021-09-17 珠海冠宇电池股份有限公司 Battery core and battery
CN113588645A (en) * 2021-08-05 2021-11-02 南京航空航天大学 In-situ microscopic imaging device for metal negative electrode battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140695A (en) * 2021-04-22 2021-07-20 珠海冠宇电池股份有限公司 Battery core and battery
CN113410425A (en) * 2021-06-21 2021-09-17 珠海冠宇电池股份有限公司 Battery core and battery
CN113588645A (en) * 2021-08-05 2021-11-02 南京航空航天大学 In-situ microscopic imaging device for metal negative electrode battery
CN113588645B (en) * 2021-08-05 2023-05-30 南京航空航天大学 Metal negative electrode battery in-situ microscopic imaging device

Similar Documents

Publication Publication Date Title
KR101049331B1 (en) Lithium secondary battery
KR101344966B1 (en) Lithium ion rechargeable battery
KR101946732B1 (en) Nonaqueous electrolyte battery and battery system
US20230083371A1 (en) Secondary battery
JPH1027626A (en) Lithium secondary battery
JPH11204148A (en) Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP2014179248A (en) Nonaqueous electrolyte secondary battery
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP2000133314A (en) Non-aqueous electrolyte battery
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JP4712139B2 (en) Lithium secondary battery
JPH1027627A (en) Lithium secondary battery
JPH09204933A (en) Lithium secondary battery
JPH07282851A (en) Nonaqueous electrolytic secondary battery
JP4488558B2 (en) Non-aqueous electrolyte secondary battery
JPH08255635A (en) Organic electrolyte battery
EP4106066A2 (en) Nonaqueous electrolyte secondary battery, and method for fabricating nonaqueous electrolyte secondary battery
JP4956860B2 (en) Non-aqueous electrolyte secondary battery
JP2001176559A (en) Method of measuring charged voltage of secondary battery
JP2019160615A (en) Lithium ion secondary battery
US20230420678A1 (en) Lithium secondary battery and method of fabricating anode for lithium secondary battery