JP2000129301A - Prealloy power and production of sintered titanium alloy using it - Google Patents

Prealloy power and production of sintered titanium alloy using it

Info

Publication number
JP2000129301A
JP2000129301A JP10308469A JP30846998A JP2000129301A JP 2000129301 A JP2000129301 A JP 2000129301A JP 10308469 A JP10308469 A JP 10308469A JP 30846998 A JP30846998 A JP 30846998A JP 2000129301 A JP2000129301 A JP 2000129301A
Authority
JP
Japan
Prior art keywords
alloy
powder
sintered
weight
soap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10308469A
Other languages
Japanese (ja)
Other versions
JP3001541B1 (en
Inventor
Toshiya Yamaguchi
登士也 山口
Yoshinori Shibata
義範 柴田
Takasumi Shimizu
孝純 清水
Takao Okochi
敬雄 大河内
Moritaka Aikawa
守貴 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyota Motor Corp
Original Assignee
Daido Steel Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Toyota Motor Corp filed Critical Daido Steel Co Ltd
Priority to JP10308469A priority Critical patent/JP3001541B1/en
Application granted granted Critical
Publication of JP3001541B1 publication Critical patent/JP3001541B1/en
Publication of JP2000129301A publication Critical patent/JP2000129301A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce prealloy powder contributing to the stable production of a sintered body of high performance in the case of being used as the prealloy powder of a sintered Ti alloy and moreover excellent in stability for oxidation and to provide a method for producing a sintered Ti alloy using it. SOLUTION: Ti powder 12 is blended with prealloy powder 13 essentially consisting of Al in a prescribed ratio to prepare raw material powder 15, the raw material powder 15 is compacted into a required shape, and it is thereafter sintered. By controlling the content of oxygen in the prealloy powder 13 to <=1.2 wt.%, a dense sintered Ti alloy having high strength can be obtd. Furthermore, by incorporating soap components essentially consisting of metallic soap and/or the Li salt of organic acid by 0.1 to 1 wt.% based on carbon equivalent, the stability for the oxidation of the prealloy powder 13 can remarkably be improved, in its turn, the increase of the content of oxygen in the prealloy powder 13 is increased, and the sintered Ti alloy of high performance can more stably be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプレアロイ粉末、特
にTi系焼結体を製造する際の、その合金成分源として
使用されるプレアロイ粉末と、それを用いた焼結Ti合
金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pre-alloy powder, particularly to a pre-alloy powder used as a source of an alloy component when producing a Ti-based sintered body, and a method for producing a sintered Ti alloy using the same.

【0002】[0002]

【従来の技術】Ti部品は軽量かつ高強度で耐食性に優
れる特性を活かし、機械・構造用部品をはじめとして、
さまざまな分野で広く使用されている。しかしながら、
純Tiは強度がそれほど高くないため、合金元素を配合
して機械的性質を改善したTi合金の形で使用されるこ
とが多い。そのような合金元素の代表的なものにAlが
ある。AlはTiに対して大きな固溶度を有して固溶強
化能が高く、しかも合金の高温強度及び耐クリープ性を
向上させるので、Ti系実用合金のほとんどのものに添
加されている。代表的なものには、例えばTi−6Al
−4V合金等がある。
2. Description of the Related Art Ti parts make use of their properties of light weight, high strength, and excellent corrosion resistance.
Widely used in various fields. However,
Since pure Ti does not have high strength, it is often used in the form of a Ti alloy having improved mechanical properties by blending alloying elements. A typical example of such an alloy element is Al. Al has a large solid solubility in Ti, has a high solid solution strengthening ability, and improves the high temperature strength and creep resistance of the alloy. Therefore, Al is added to most of Ti-based practical alloys. Typical ones are, for example, Ti-6Al
-4V alloy and the like.

【0003】一方、Tiは常温での加工性が悪く、切削
加工による部品製造は材料歩留まりが低い欠点がある。
そこで、より歩留まりの高い方法として、Ti金属粉末
を所定の形状に成形後これを焼結することによりTi部
品を得る、いわゆる粉末冶金法の適用が図られている。
ここで、Ti合金の焼結体を製造する場合、原料粉末と
して合金粉末を用いることは、合金溶解工程と粉砕工程
とが新たに必要になるため不経済である。そのため、T
i粉末に対し合金成分元素の粉末を配合して、焼結の段
階で合金化する手法が多く採用されている。
On the other hand, Ti is poor in workability at room temperature, and the production of parts by cutting has the disadvantage of low material yield.
Therefore, as a method with higher yield, application of a so-called powder metallurgy method in which a Ti metal powder is formed into a predetermined shape and then sintered to obtain a Ti part has been attempted.
Here, when manufacturing a sintered body of a Ti alloy, using an alloy powder as a raw material powder is uneconomical because an alloy melting step and a pulverizing step are newly required. Therefore, T
In many cases, a method of blending a powder of an alloying element with an i-powder and alloying it at a sintering stage has been adopted.

【0004】ここで、Alを合金元素として配合する場
合、Alの単体粉末の形で配合すると、Tiの融点がA
lよりもかなり高いので、焼結時にAlが先に溶解して
しまい、均質な合金を得ることができなくなる。そのた
め、Alは、他の合金元素と予め合金化した、いわゆる
プレアロイ粉末の形で配合されることが多い。例えば、
Ti−6Al−4V合金部品を焼結により製造する場合
は、Al−40重量%V合金粉末がプレアロイ粉末とし
て使用される。
Here, when Al is compounded as an alloying element, if it is compounded in the form of a simple powder of Al, the melting point of Ti becomes A
Since Al is considerably higher than Al, the aluminum is first dissolved during sintering, and a homogeneous alloy cannot be obtained. Therefore, Al is often compounded in the form of a so-called pre-alloy powder which has been alloyed with another alloy element in advance. For example,
When a Ti-6Al-4V alloy part is manufactured by sintering, an Al-40% by weight V alloy powder is used as a pre-alloy powder.

【0005】ところで、焼結Ti合金部品は材料歩留ま
りが高い半面、原料粉末中の不純物濃度レベルにより機
械的性質がばらつきやすい欠点がある。特に、粉末中の
酸素含有量が高くなると、焼結体の緻密化が妨げられて
強度が大幅に低下する問題がある。この場合、原料粉末
中の酸素量が増加しないようにするには、粉末が大気に
長時間さらされることがないよう、工程管理を徹底する
ことの他に、粉末自体の酸化に対する安定性を改善する
ことも重要なポイントである。
[0005] Sintered Ti alloy parts have a high material yield, but have the disadvantage that their mechanical properties tend to vary depending on the impurity concentration level in the raw material powder. In particular, when the oxygen content in the powder is high, there is a problem that the densification of the sintered body is hindered and the strength is significantly reduced. In this case, in order to prevent the amount of oxygen in the raw material powder from increasing, in addition to thoroughly controlling the process so that the powder is not exposed to the air for a long time, the stability of the powder itself against oxidation is improved. Doing so is also an important point.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、原料粉
末中の酸素濃度を単に制御しても、得られる焼結Ti合
金の機械的性質が必ずしも安定しない場合がある。例え
ば、同じ酸素濃度であっても、ある場合には比較的強度
の高い焼結体が得られる一方、別の場合には強度が全く
不足してしまうといったことが実際に起こりうるのであ
る。そして、本発明者らの検討によれば、この傾向は、
Ti粉末にプレアロイ粉末を配合して焼結を行ったもの
の場合に特に顕著であることがわかった。
However, simply controlling the oxygen concentration in the raw material powder may not always stabilize the mechanical properties of the obtained sintered Ti alloy. For example, even if the oxygen concentration is the same, a sintered body having relatively high strength can be obtained in one case, but the strength may be completely insufficient in another case. According to the study of the present inventors, this tendency is
It was found that the effect was particularly remarkable in the case of sintering by mixing a prealloy powder with a Ti powder.

【0007】また、Ti粉末とAlを主体とするプレア
ロイ粉末とを使用する場合、その酸化安定性を改善する
具体的な方法として、例えば特開平1−198401号
公報に、Ti粉末粒子とプレアロイ粉末粒子(異種金属
粒子)とを有機バインダーでコーティングし、表面酸化
を防止する方法が開示されている。ここでは、有機バイ
ンダーとして、例えば、パラフィン系、芳香族炭化水素
系、アルコール系、カルボン酸系の低分子化合物や、各
種ワックス類が使用されているのであるが、プレアロイ
粉末の酸化安定性改善効果は必ずしも十分ではない。
[0007] When a Ti powder and a pre-alloy powder mainly composed of Al are used, as a specific method for improving the oxidative stability, for example, Japanese Unexamined Patent Publication (Kokai) No. 1-198401 discloses Ti powder particles and pre-alloy powder. A method of coating particles (different metal particles) with an organic binder to prevent surface oxidation is disclosed. Here, as the organic binder, for example, paraffinic, aromatic hydrocarbon-based, alcohol-based, carboxylic acid-based low-molecular compounds and various waxes are used, and the effect of improving the oxidation stability of the pre-alloy powder is used. Is not always enough.

【0008】本発明の課題は、焼結Ti合金のプレアロ
イ粉末として使用した場合に、高性能の焼結体を安定的
に製造することに寄与し、また、酸化に対する安定性に
も優れたプレアロイ粉末と、それを用いた焼結Ti合金
の製造方法とを提供することにある。
[0008] An object of the present invention is to provide a pre-alloy which, when used as a pre-alloy powder of a sintered Ti alloy, stably produces a high-performance sintered body and has excellent oxidation stability. An object of the present invention is to provide a powder and a method for producing a sintered Ti alloy using the powder.

【0009】[0009]

【課題を解決するための手段及び作用・効果】上記課題
を解決するために、本発明のプレアロイ粉末の第一の構
成は、Al及びMgの少なくともいずれかを主成分とす
る合金にて構成され、金属セッケン及び/又は有機酸の
Li塩を主体とするセッケン成分を炭素当量にて0.1
〜1.2重量%含有し、その酸素含有量が1.2重量%
以下であることを特徴とする。
Means for Solving the Problems and Action / Effect In order to solve the above problems, a first structure of the pre-alloy powder of the present invention is made of an alloy containing at least one of Al and Mg as a main component. , A soap component mainly composed of a metal soap and / or a Li salt of an organic acid is 0.1 to 0.1% by carbon equivalent.
1.21.2% by weight, and the oxygen content is 1.2% by weight
It is characterized by the following.

【0010】また、第二の構成は、Al及びMgの少な
くともいずれかを主成分とする合金にて構成され、金属
セッケン及び/又は有機酸のLi塩を主体とするセッケ
ン成分を炭素当量にて0.1〜1.2重量%含有し、か
つ500℃にて1時間加熱したときに、主にセッケン成
分の蒸発に由来する重量減少が0.3〜1.2重量%と
なることを特徴とする。
The second structure is composed of an alloy containing at least one of Al and Mg as a main component, and a metal component and / or a soap component mainly composed of a Li salt of an organic acid are converted to carbon equivalent. 0.1 to 1.2% by weight, and when heated at 500 ° C. for 1 hour, the weight loss mainly due to the evaporation of the soap component is 0.3 to 1.2% by weight. And

【0011】なお、「Al及びMgの少なくともいずれ
かを主成分とする」とは、AlとMgとの一方、又は両
方の合計が、重量含有量の最も高い合金構成成分となっ
ていることを意味する。また、合金は、AlとMgとの
一方のみを含有する合金であってもよい。
[0011] The phrase "having at least one of Al and Mg as a main component" means that one or both of Al and Mg are the alloy components having the highest weight content. means. Further, the alloy may be an alloy containing only one of Al and Mg.

【0012】さらに、本発明のプレアロイ粉末の第三の
構成は、焼結Ti合金の合金添加元素成分源として、焼
結Ti合金の原料粉末中に添加して使用される焼結Ti
合金用プレアロイ粉末であって、金属セッケン及び/又
は有機酸のLi塩を主体とするセッケン成分を、炭素当
量にて0.1〜1.2重量%含有することを特徴とす
る。なお、この第三の構成においては、プレアロイ粉末
の主体はAlとMgとの少なくとも一方となっていても
よいし、耐酸化性が問題となる他の金属成分であっても
よい。
Further, a third structure of the pre-alloy powder of the present invention is that a sintered Ti alloy used as a source of an alloying additive element of a sintered Ti alloy by being added to a raw material powder of the sintered Ti alloy.
A pre-alloy powder for an alloy, characterized by containing a soap component mainly composed of a metal soap and / or a Li salt of an organic acid in a carbon equivalent of 0.1 to 1.2% by weight. In the third configuration, the main component of the pre-alloy powder may be at least one of Al and Mg, or may be another metal component having a problem in oxidation resistance.

【0013】また、本発明の焼結Ti合金の製造方法
は、上記本発明のプレアロイ粉末をTi粉末に所定量配
合して、これを所期の形状に成形後焼結することを特徴
とする。
Further, the method for producing a sintered Ti alloy according to the present invention is characterized in that a predetermined amount of the prealloy powder of the present invention is mixed with Ti powder, which is then formed into a desired shape and then sintered. .

【0014】上記本発明のプレアロイ粉末の各構成に共
通する特徴は、金属セッケン及び/又は有機酸のLi塩
を主体とするセッケン成分を、炭素当量にて0.1〜
1.2重量%含有させた点にある。なお、本発明におい
て金属セッケンは、アルカリ金属塩を除く有機酸の金属
塩を総称するものとして定義する。このようなセッケン
成分を表記範囲にて含有させることで、プレアロイ粉末
の酸化に対する安定性を飛躍的に向上させることがで
き、ひいてはプレアロイ粉末の酸素量増加が抑制されて
高性能の焼結Ti合金をさらに安定的に製造することが
可能となる。また、このようなプレアロイ粉末を使用す
る本発明焼結Ti合金の製造方法により、緻密で高強度
の焼結Ti合金を得ることができる。
The common feature of the prealloyed powder of the present invention is that a soap component mainly composed of a metal soap and / or a Li salt of an organic acid is used in an amount of 0.1 to 0.1 in carbon equivalent.
That is, the content is 1.2% by weight. In the present invention, the metal soap is generally defined as a metal salt of an organic acid excluding an alkali metal salt. By including such a soap component in the indicated range, the stability of the pre-alloy powder against oxidation can be remarkably improved, and the increase in the amount of oxygen in the pre-alloy powder is suppressed, so that a high performance sintered Ti alloy is obtained. Can be manufactured more stably. Further, a dense and high-strength sintered Ti alloy can be obtained by the method for producing a sintered Ti alloy of the present invention using such a pre-alloy powder.

【0015】特開平1−198401号公報には、前述
の通り、Ti粉末粒子とプレアロイ粉末粒子(異種金属
粒子)とを各種有機バインダーでコーティングする方法
が開示されている。しかしながら、そこで使用されてい
る有機バインダーはパラフィン系、芳香族炭化水素系、
アルコール系、カルボン酸系の低分子化合物や、各種ワ
ックス類であり、金属粉末粒子表面との間に顕著な吸着
作用を示す基を有さない分子からなるものばかりであ
る。従って、形成されるコーティング被膜は付着力が弱
く均一性に欠け、酸素の遮断能力も必ずしも十分なもの
にならないと考えられる。この場合、被膜厚さを大きく
して酸化安定性を改善することも考えられるが、有機バ
インダーの総添加量、ひいては焼結体への炭素分の残留
量が増大して、強度等の低下を招きやすくなる。
Japanese Patent Application Laid-Open No. 1-198401 discloses a method of coating Ti powder particles and pre-alloy powder particles (different metal particles) with various organic binders, as described above. However, the organic binders used there are paraffin-based, aromatic hydrocarbon-based,
It is an alcohol-based or carboxylic acid-based low-molecular compound or various waxes, and consists only of molecules having no group exhibiting a remarkable adsorption action with the surface of the metal powder particles. Therefore, it is considered that the formed coating film has weak adhesion and lacks uniformity, and does not necessarily have sufficient oxygen blocking ability. In this case, it is conceivable to improve the oxidation stability by increasing the coating thickness, but the total amount of the organic binder added, and hence the residual amount of carbon in the sintered body increases, and the strength and the like decrease. It is easy to invite.

【0016】しかしながら、上記本発明で使用するセッ
ケン成分は、図2に示すように、金属イオンからなる親
水基20と有機酸分子を主体とする疎水基21とを有す
る界面活性剤成分であり、親水基20が金属粒子Pの表
面に吸着して、薄く均一で、しかも付着力に優れたコー
ティング被膜を形成することができる。その結果、少量
の添加でも酸素遮断能力に優れたコーティング被膜が実
現され、粉末の酸化安定性が改善されるものと推測され
る。なお、このコーティング被膜は、表面に疎水基が配
列していることから水素結合等による付着力を生じにく
く、成形時の離型性を改善する効果も有している。
However, as shown in FIG. 2, the soap component used in the present invention is a surfactant component having a hydrophilic group 20 composed of metal ions and a hydrophobic group 21 mainly composed of organic acid molecules. The hydrophilic groups 20 are adsorbed on the surface of the metal particles P, and a thin and uniform coating film having excellent adhesion can be formed. As a result, it is presumed that a coating film excellent in oxygen blocking ability is realized even with a small amount of addition, and the oxidation stability of the powder is improved. In addition, since the coating film has hydrophobic groups arranged on its surface, it hardly generates an adhesive force due to hydrogen bonding or the like, and has an effect of improving the releasability at the time of molding.

【0017】本発明にて使用可能な金属セッケン成分
は、例えば有機酸成分が、ナフテン酸(ナフテート)、
ラウリン酸(ラウレート)、ステアリン酸(ステアレー
ト)、オレイン酸(オレエート)、2−エチルヘキサニ
ック酸(オクテート)、あまに油あるいは大豆油脂肪酸
(リノレート)、トール油(トーレート)、ロジン(レ
ジネート)等からなるものを例示できる。また、金属の
種類は下記のようなものを例示できる。 ・ナフテート系(Al、Ca、Co、Cu、Fe、P
b、Mn、Zn等) ・レジネート系(Al、Ca、Co、Cu、Fe、P
b、Mn、Zn等) ・リノレート系(Co、Fe、Pb、Mn等) ・ステアレート系(Ca、Zn等) ・オクテート系(Ca、Co、Fe、Pb、Mn、Zn
等) ・トーレート系(Ca、Co、Fe、Pb、Mn、Zn
等) また、有機酸のLi塩としてはステアリン酸Li等を例
示することができる。これらのうち、ステアリン酸Z
n、ステアリン酸Li及びステアリン酸Caを、前記し
た効果を有効に引き出す上で特に好適に使用することが
できる。
The metal soap component usable in the present invention is, for example, an organic acid component comprising naphthenic acid (naphthate),
Lauric acid (laurate), stearic acid (stearate), oleic acid (oleate), 2-ethylhexanoic acid (octate), linseed oil or soybean oil fatty acid (linoleate), tall oil (tolate), rosin (resinate) And the like. In addition, the following types of metals can be exemplified.・ Naphthate (Al, Ca, Co, Cu, Fe, P
b, Mn, Zn, etc.) Resinates (Al, Ca, Co, Cu, Fe, P
b, Mn, Zn, etc.) Linoleate (Co, Fe, Pb, Mn, etc.) Stearate (Ca, Zn, etc.) Octate (Ca, Co, Fe, Pb, Mn, Zn)
Etc.)-Torrate type (Ca, Co, Fe, Pb, Mn, Zn)
Etc.) Examples of the organic acid Li salt include Li stearate and the like. Of these, stearic acid Z
n, Li stearate and Ca stearate can be particularly preferably used to effectively bring out the above-mentioned effects.

【0018】なお、セッケン成分は1種類のものを単独
で使用してもよいし、2種以上のものを組み合わせて用
いてもよい。また、プレアロイ粉末へのセッケン成分の
配合方法は、例えば粉砕後のプレアロイ粉末に添加し
て、各種公知の混合装置を用いて混合する方法と、プレ
アロイ粉末の粉砕時に添加して合金粉砕とセッケンの混
合とを同時に行う方法とがある。後者の場合は、セッケ
ンの混合工程を省略できる利点があるが、セッケンの炭
素成分と合金粉末との反応が過度に生じないよう、混合
条件等を適宜調整する必要がある。
As the soap component, one kind may be used alone, or two or more kinds may be used in combination. Further, the method of compounding the soap component into the pre-alloy powder is, for example, a method of adding to the pulverized pre-alloy powder and mixing using various known mixing devices, and a method of adding alloy during pulverization of the pre-alloy powder and pulverizing the alloy and the soap There is a method of performing mixing simultaneously. In the latter case, there is an advantage that the soap mixing step can be omitted, but it is necessary to appropriately adjust the mixing conditions and the like so that the reaction between the carbon component of the soap and the alloy powder does not excessively occur.

【0019】なお、上記セッケン成分の配合量が炭素当
量にて0.1重量%未満になると、該セッケン成分配合
による粉末の酸化安定性改善効果が十分に期待できなく
なる。他方、1.2重量%を超えると、焼結体への炭素
分の残留量が増大して、強度等の低下を招きやすくな
る。なお、酸化が進行した場合と同様に、炭素分がプレ
アロイ粉末粒子の表面に濃化して焼結時の拡散を妨げ、
密度低下を招くといったようなことも考えられる。な
お、望ましくはセッケン成分の配合量は、炭素当量にて
0.1〜1.0重量%、さらに望ましくは0.5〜0.
8重量%とするのがよい。なお、原料中の不可避不純物
のように、セッケ成分に由来しない炭素成分が含有され
るとき、セッケン成分に由来するものも含めて、プレア
ロイ粉末中の炭素含有量は1.2重量%以下となってい
ることが、同様の理由により望ましいと言える。
If the amount of the soap component is less than 0.1% by weight in terms of carbon equivalent, the effect of improving the oxidative stability of the powder by the soap component cannot be expected sufficiently. On the other hand, when the content exceeds 1.2% by weight, the residual amount of carbon in the sintered body increases, and the strength or the like tends to be reduced. In addition, as in the case where the oxidation proceeds, the carbon content is concentrated on the surface of the pre-alloy powder particles to prevent diffusion during sintering,
It is also conceivable that the density is reduced. Preferably, the compounding amount of the soap component is 0.1 to 1.0% by weight in carbon equivalent, more preferably 0.5 to 0.1% by weight.
The content is preferably 8% by weight. When a carbon component not derived from the soap component is contained, such as an unavoidable impurity in the raw material, the carbon content in the pre-alloy powder including the one derived from the soap component is 1.2% by weight or less. Is desirable for the same reason.

【0020】なお、プレアロイ粉末中にセッケン成分を
含有させる場合、500℃にて1時間加熱したときに、
主にセッケン成分の蒸発に由来する重量減少が0.3〜
1.5重量%となるようにするのがよい。上記重量減少
が0.3重量%未満になると、該セッケン成分配合によ
る粉末の酸化安定性改善効果が十分に期待できなくな
る。他方、1.5重量%を超えると、焼結体への炭素分
の残留量が増大して、強度等の低下を招きやすくなる。
上記重量減少は、望ましくは0.3〜1.3重量%、よ
り望ましくは0.3〜0.7重量%とするのがよい。な
お、加熱時の重量減少が、主にセッケン成分の蒸発に由
来するか否かは、蒸発により発生するガス組成を分析し
たときに、前記した各種セッケン成分、あるいはセッケ
ンの疎水基となりうる前記した各種有機酸分子が主体と
なっているか否かを調べることにより特定することがで
きる。
When the soap component is contained in the pre-alloy powder, when the soap component is heated at 500 ° C. for 1 hour,
Weight loss mainly due to evaporation of soap component is 0.3 ~
It is good to be 1.5% by weight. If the weight loss is less than 0.3% by weight, the effect of improving the oxidative stability of the powder by the soap component cannot be expected sufficiently. On the other hand, when the content exceeds 1.5% by weight, the residual amount of carbon in the sintered body increases, and the strength or the like tends to be reduced.
The weight loss is desirably 0.3 to 1.3% by weight, and more desirably 0.3 to 0.7% by weight. In addition, whether the weight loss during heating is mainly due to the evaporation of the soap component, when analyzing the gas composition generated by evaporation, the above-described various soap components, or the above-mentioned soap can be a hydrophobic group. It can be specified by examining whether or not various organic acid molecules are the main components.

【0021】なお、主成分元素をAl及び/又はMgと
する場合、プレアロイ粉末中の合金元素成分としては、
具体的にはV、Cr、Zr、Nb、Mo、W、Si及び
Snから選ばれる1種又は2種以上(以下、これらを総
称して従属添加元素成分という)とすることができ、そ
の含有量は、例えば0.2〜40重量%の範囲で調整で
きる。従属添加元素成分としてのV、Cr、Zr、N
b、Mo、W、Si又はSnは、いずれも公知の実用T
i合金に含有されているものである。個々の元素の役割
は、最終的に得られる焼結Ti合金の組成によっても異
なるが、いずれも公知の内容であるので詳細な説明は省
略する。上記従属添加元素成分は、概してAlやMgと
比較すれば耐酸化性に優れた成分であり、その含有量が
40重量%を超えると、合金自体の耐酸化性が良好とな
り、前記した本発明特有のコーティングを施す意味があ
まりなくなる場合がある。他方、0.2重量%未満で
は、焼結Ti合金中の従属添加元素成分の含有量が低く
なり過ぎて、添加効果が十分に得られなくなる場合があ
る。なお、本発明のプレアロイ粉末には、上記以外の従
属添加元素成分が含有されていてもよい。また、本発明
の焼結Ti合金の製造方法においては、Ti粉末に対
し、上記本発明のプレアロイ粉末に加え、成分及び組成
の異なる別の補助合金成分粉末を配合してもよい。
When the main component element is Al and / or Mg, the alloy element component in the pre-alloy powder is as follows:
Specifically, it may be one or more selected from V, Cr, Zr, Nb, Mo, W, Si, and Sn (hereinafter, these are collectively referred to as dependent additive element components). The amount can be adjusted, for example, in the range of 0.2 to 40% by weight. V, Cr, Zr, N as dependent additive element components
b, Mo, W, Si or Sn are all known T
It is contained in the i-alloy. Although the role of each element differs depending on the composition of the finally obtained sintered Ti alloy, detailed descriptions thereof are omitted because they are all known contents. The dependent additive element component is generally a component having excellent oxidation resistance as compared with Al and Mg. When the content exceeds 40% by weight, the oxidation resistance of the alloy itself becomes good, and the above-described present invention In some cases, there is little point in applying a specific coating. On the other hand, if it is less than 0.2% by weight, the content of the dependent additive element component in the sintered Ti alloy is too low, and the effect of the additive may not be sufficiently obtained. The pre-alloy powder of the present invention may contain a dependent additive element other than the above. In the method for producing a sintered Ti alloy of the present invention, another auxiliary alloy component powder having a different component and composition may be added to the Ti powder in addition to the prealloy powder of the present invention.

【0022】プレアロイ粉末中の酸素含有量は、1.2
重量%以下となっていることが望ましい。例えば、酸素
含有量が増大した場合に焼結Ti合金の強度が損なわれ
ることは周知であり、この不具合を防止するために原料
粉末中の酸素含有量を制御することも従来より行われて
きた。しかしながら、Ti粉末とプレアロイ粉末との配
合粉末(以下、単に配合粉末という)を焼結する手法に
おいては従来、配合粉末の平均的な酸素含有量が制御さ
れているに過ぎなかった。本発明者らが鋭意検討した結
果によれば、主体を占めるTi粉末の酸素濃度が低くと
も、プレアロイ粉末の酸素濃度がある値以上、具体的に
は1.2重量%以上に増大すると、全体的な酸素濃度が
それほど高くないにもかかわらず焼結体の緻密化が急速
に妨げられ、強度が損なわれることが判明した。そし
て、プレアロイ粉末の酸素含有量を1.2重量%以下に
制限することで、Ti粉末中の酸素量が多少ばらついて
も緻密で高強度の焼結Ti合金が得られるのである。
The oxygen content in the pre-alloy powder is 1.2
% By weight or less. For example, it is well known that when the oxygen content increases, the strength of the sintered Ti alloy is impaired, and the oxygen content in the raw material powder has been conventionally controlled to prevent this problem. . However, in the technique of sintering a compounded powder of a Ti powder and a pre-alloy powder (hereinafter, simply referred to as a compounded powder), conventionally, only the average oxygen content of the compounded powder has been controlled. According to the results of extensive studies by the present inventors, even when the oxygen concentration of the Ti powder occupying the main component is low, when the oxygen concentration of the prealloy powder is increased to a certain value or more, specifically, 1.2 wt% or more, the overall It has been found that the densification of the sintered body is rapidly hindered and the strength is impaired even though the typical oxygen concentration is not so high. By limiting the oxygen content of the pre-alloy powder to 1.2% by weight or less, a dense and high-strength sintered Ti alloy can be obtained even if the amount of oxygen in the Ti powder varies to some extent.

【0023】なお、従来、配合粉末を用いた焼結Ti合
金の機械的性質がばらつきやすかったのは、粉末全体の
平均的な酸素含有量を重視するあまり、プレアロイ粉末
の酸素濃度レベルの管理・制御が等閑になっていたこと
が原因ではないかと推測される。上記のように、プレア
ロイ粉末の酸素濃度を1.2重量%以下に管理すること
で、高性能でばらつきの少ない焼結Ti合金を安定に製
造できる。なお、プレアロイ粉末の酸素濃度レベルが高
くなった場合に、焼結体の緻密化が妨げられるのは、プ
レアロイ粉末粒子表面の酸化層が厚くなり、合金成分の
拡散が著しく妨げられることが、その一因として推測さ
れる。
Conventionally, the mechanical properties of the sintered Ti alloy using the compounded powder tended to fluctuate because the average oxygen content of the entire powder was emphasized because the control of the oxygen concentration level of the prealloyed powder was difficult. It is presumed that the cause was that the control was quiet. As described above, by controlling the oxygen concentration of the pre-alloyed powder to 1.2% by weight or less, it is possible to stably produce a sintered Ti alloy with high performance and little variation. In addition, when the oxygen concentration level of the pre-alloy powder is increased, the densification of the sintered body is prevented because the oxide layer on the surface of the pre-alloy powder particles is thickened, and the diffusion of alloy components is significantly prevented. It is speculated as one factor.

【0024】次に、本発明のプレアロイ粉末は、各種公
知の方法にて製造できるが、例えば図1に示すように、
原料を配合・溶解した後、これをガスアトマイズ法等に
より噴霧して粒度45〜250μm(例えば180μm
程度)の粗粒粉10を作り、次いでこれをアトライタミ
ル、振動ミルあるいはボールミル等の各種方法にて微粉
砕することにより、最終的なプレアロイ粉末13とする
方法を例示できる。
Next, the pre-alloy powder of the present invention can be produced by various known methods. For example, as shown in FIG.
After mixing and dissolving the raw materials, this is sprayed by a gas atomizing method or the like, and the particle size is 45 to 250 μm (for example, 180 μm
A method of producing a final pre-alloyed powder 13 by preparing a coarse powder 10) and then pulverizing the coarse powder 10 by various methods such as an attritor mill, a vibration mill or a ball mill.

【0025】本発明のプレアロイ粉末は、平均粒径を1
0〜45μmとするのがよい。平均粒径が10μm未満
になると粉末の比表面積が増大して酸化安定性が低下
し、酸素含有量を1.2重量%未満に維持するのが困難
となる場合がある。他方、プレス成形により成形体を作
り、これを焼結する場合は、平均粒径が10μm未満に
なると成形体の密度が上がりにくくなり、結果として焼
結時の収縮量が大きくなり過ぎて、焼結体の寸法精度が
確保しにくくなる場合がある。他方、平均粒径が45μ
mを超えると、焼結時にプレアロイ粉末とTi粉末との
間で均一な成分拡散を生じさせることが困難となり、成
分濃度不均一による強度低下等を生じる場合がある。上
記平均粒径は、望ましくは10〜20μm、さらに望ま
しくは13〜20μmとするのがよい。
The prealloy powder of the present invention has an average particle size of 1
The thickness is preferably 0 to 45 μm. If the average particle size is less than 10 μm, the specific surface area of the powder increases, the oxidation stability decreases, and it may be difficult to maintain the oxygen content at less than 1.2% by weight. On the other hand, when a compact is formed by press molding and sintered, if the average particle diameter is less than 10 μm, the density of the compact becomes difficult to increase, and as a result, the shrinkage during sintering becomes too large, and In some cases, it is difficult to ensure the dimensional accuracy of the unit. On the other hand, the average particle size is 45 μ
If it exceeds m, it is difficult to cause uniform component diffusion between the pre-alloy powder and the Ti powder during sintering, and the strength may be reduced due to non-uniform component concentration. The average particle size is preferably 10 to 20 μm, and more preferably 13 to 20 μm.

【0026】また、本発明の焼結Ti合金の製造方法に
て使用されるTi粉末は、一般に純Ti粉末と通称され
るものを使用できる。ただし、C、N、O、Fe、Mg
等の不可避不純物元素を合計で0.5重量%程度まで含
有していてもよい。そして、平均粒径は35〜100μ
m程度のものを使用するのがよい。平均粒径が35μm
未満になると、成形体の密度が上がりにくくなり、結果
として焼結時の収縮量が大きくなり過ぎて、焼結体の寸
法精度が確保しにくくなる場合がある。他方、100μ
mを超えると、粉末の成形性が悪化するほか、プレアロ
イ粉末を均一分散させることが困難となり、成分濃度不
均一による強度低下等を生じる場合がある。
As the Ti powder used in the method for producing a sintered Ti alloy according to the present invention, a powder generally called a pure Ti powder can be used. However, C, N, O, Fe, Mg
And the like may be contained up to about 0.5% by weight in total. And the average particle size is 35-100μ
m. Average particle size is 35μm
If it is less than 10, the density of the molded body is difficult to increase, and as a result, the amount of shrinkage at the time of sintering becomes too large, and it may be difficult to secure the dimensional accuracy of the sintered body. On the other hand, 100μ
If it exceeds m, the moldability of the powder will deteriorate, and it will be difficult to uniformly disperse the pre-alloy powder, and the strength may be reduced due to non-uniform component concentrations.

【0027】以下、本発明の焼結Ti合金の製法の一例
を以下に説明する。まず、図3に示すように、Ti粉末
12と、プレアロイ粉末13と、必要に応じて補助合金
元素粉末14とを所定量秤量して、ミキサ16(例えば
アトライタ)により混合し、原料粉末(配合粉末)15
を得る。次いでこれを所期の形状に成形して焼結するこ
とにより、焼結Ti合金部材を得る。成形方法として
は、例えば図4に示すように、ダイ101のキャビティ
103に原料粉末15を充填してパンチ102,102
で圧縮することにより成形体を得るダイプレス成形が採
用できる。なお、ゴム型に粉末を充填して液圧圧縮する
冷間静水圧プレス法(ラバープレス法を含む)を使用し
てもよい。
Hereinafter, an example of the method for producing the sintered Ti alloy of the present invention will be described. First, as shown in FIG. 3, a predetermined amount of a Ti powder 12, a pre-alloy powder 13, and an auxiliary alloy element powder 14 are weighed as required and mixed by a mixer 16 (for example, an attritor). Powder) 15
Get. Next, this is shaped into a desired shape and sintered to obtain a sintered Ti alloy member. As a molding method, for example, as shown in FIG.
Die press molding, in which a compact is obtained by compressing the molded article, can be employed. Note that a cold isostatic pressing method (including a rubber pressing method) in which a rubber mold is filled with powder and hydraulically compressed may be used.

【0028】また、図5に示すように、原料粉末に樹脂
バインダを配合・混練してコンパウンドを作り、これを
加熱して流動状態としたコンパウンド15’を金型10
5のキャビティ106に射出して射出成形体を作り、こ
れを脱バインダした後焼結する金属射出成形法を用いて
もよい。さらに、これ以外にも、熱間静水圧プレス法、
押出成形法、ホットプレス法等を採用することができ
る。
As shown in FIG. 5, a compound is prepared by mixing and kneading a resin binder with the raw material powder, and the compound is heated and heated to form a compound 15 ′.
Alternatively, a metal injection molding method may be used in which an injection molded body is produced by injecting into the cavity 106 of No. 5 and then debindered and then sintered. Furthermore, in addition to this, hot isostatic pressing,
Extrusion molding, hot pressing and the like can be employed.

【0029】[0029]

【実施例】本発明の効果を確認するために、下記の実験
を行った。 (実施例1)プレアロイ粉末として表1に示すものを以
下のようにして各種用意した。まず、原料を所定量配合
・溶解してこれをアルゴンガスを用いた公知のガスアト
マイズ法により噴霧して、平均粒径180μmの略球状
のアトマイズ粉末を作製した。原料として用いたのは、
Al金属(工業用純Al、純度99%)、V金属(純度
99.8%)、スポンジZr(工業用純Zr、純度>9
8%)、Sn金属(純度>99.8%)、Mo金属(純
度>99%)、Si(純度98.4%)である。続いて
このアトマイズ粉末をアトライタ粉砕することにより、
平均粒径14μmに微粉砕した。微粉砕後の粉末は、6
0℃、相対湿度90%RHの大気中に各種時間放置する
ことにより、酸素含有量を調査した。これを含め、プレ
アロイ粉末中の酸素量は、公知のガス分析法により同定
している。
EXAMPLES The following experiments were conducted to confirm the effects of the present invention. (Example 1) Various prealloyed powders shown in Table 1 were prepared as follows. First, a predetermined amount of a raw material was blended and dissolved, and this was sprayed by a known gas atomizing method using argon gas to prepare a substantially spherical atomized powder having an average particle diameter of 180 μm. The material used was
Al metal (industrial pure Al, purity 99%), V metal (purity 99.8%), sponge Zr (industrial pure Zr, purity> 9)
8%), Sn metal (purity> 99.8%), Mo metal (purity> 99%), and Si (purity 98.4%). Then, by atomizing this atomized powder,
It was pulverized to an average particle size of 14 μm. The powder after pulverization is 6
The oxygen content was investigated by leaving it in the air at 0 ° C. and a relative humidity of 90% RH for various times. Including this, the amount of oxygen in the pre-alloy powder is identified by a known gas analysis method.

【0030】他方、補助合金元素粉末としては、ホウ化
Mo(MoB:純度99%、平均粒径3μm)、ホウ素
単体(純度99.5%、平均粒径5μm)、フェロバナ
ジウム粉末(Fe−80V:純度96%、平均粒径25
μm)をそれぞれ用意した。また、Ti粉末としては、
スポンジTiを粉砕して得られる工業用純Ti粉末(純
度99%、平均粒径42μm)を用意した。なお、Ti
粉末の酸素含有量は0.1重量%である。
On the other hand, as auxiliary alloy element powders, Mo boride (MoB: purity 99%, average particle diameter 3 μm), boron alone (purity 99.5%, average particle diameter 5 μm), ferrovanadium powder (Fe-80V : 96% purity, average particle size 25
μm). Moreover, as Ti powder,
Industrial pure Ti powder (purity 99%, average particle size 42 μm) obtained by pulverizing sponge Ti was prepared. Note that Ti
The oxygen content of the powder is 0.1% by weight.

【0031】上記Ti粉末、プレアロイ粉末及び補助合
金元素粉末を、所期の焼結体組成が得られる比率にて配
合し、これをアトライタにて十分に混合して原料粉末と
した。そして、この原料粉末をダイプレス成形機を用い
てプレス成形することにより、後述する引張試験用試験
片の成形体を得た。次に、これを真空(10−4〜10
−5torr)中にて1200〜1300℃で2〜5h
r焼結することにより、各種組成の焼結体を得た。
The above-mentioned Ti powder, pre-alloy powder and auxiliary alloy element powder were blended in such a ratio that a desired sintered body composition was obtained, and these were sufficiently mixed with an attritor to obtain a raw material powder. Then, the raw material powder was press-formed using a die press forming machine to obtain a molded product of a test specimen for a tensile test described later. Next, this is evacuated (10 −4 to 10).
-5 torr) at 1200 to 1300 ° C for 2 to 5 h
By sintering, sintered bodies of various compositions were obtained.

【0032】得られた焼結体はアルキメデス法によりそ
の密度を測定するとともに、外面を研磨することによ
り、厚み5mm×幅5.7mm×平行部32mm×全長
96.5mmの引張試験片(粉体・粉末冶金協会標準2
−64)として、室温で引張試験を行い、破断強度を求
めた。以上の結果を表1に示す。
The density of the obtained sintered body was measured by the Archimedes method, and the outer surface thereof was polished to obtain a tensile test piece (powder having a thickness of 5 mm × a width of 5.7 mm × a parallel portion of 32 mm × a total length of 96.5 mm).・ Powder Metallurgy Association Standard 2
-64), a tensile test was performed at room temperature to determine the breaking strength. Table 1 shows the above results.

【0033】[0033]

【表1】 [Table 1]

【0034】すなわち、プレアロイ粉末として酸素量が
1.2重量%以下のものを用いることにより、焼結体密
度が向上し、強度も高くなっていることがわかる。
That is, it can be seen that the use of the prealloy powder having an oxygen content of 1.2% by weight or less increases the sintered body density and the strength.

【0035】次に、プレアロイ粉末としてのAl−40
重量%V合金粉末を、上記したものと同様の方法にて調
製した。なお、粉末の平均粒径は14μmであり、酸素
含有量は0.90重量%であった。この粉末に対し、表
2に示す各種セッケン成分あるいは有機バインダとして
のアクラワックスを各種比率にて配合し、アトライタを
用いて混合した。混合後の粉末中の炭素量を、公知のガ
ス分析法により測定した。また、粉末10gを大気中に
て500℃で1時間加熱し、重量減少を測定した。な
お、加熱中に発生したガスをガスクロマトグラフィーに
より分析したところ、粉末の重量減少は大半が配合した
セッケン成分あるいは有機バインダの蒸発ないし分解に
基づくものであることがわかった。
Next, Al-40 as a pre-alloy powder
A wt% V alloy powder was prepared in the same manner as described above. The average particle size of the powder was 14 μm, and the oxygen content was 0.90% by weight. To this powder, various soap components shown in Table 2 or acura wax as an organic binder were blended in various ratios and mixed using an attritor. The amount of carbon in the powder after mixing was measured by a known gas analysis method. Further, 10 g of the powder was heated in the air at 500 ° C. for 1 hour, and the weight loss was measured. When the gas generated during the heating was analyzed by gas chromatography, it was found that the weight loss of the powder was mostly due to the evaporation or decomposition of the soap component or the organic binder incorporated therein.

【0036】次に、上記各粉末を60℃、相対湿度90
%RHの大気中に48時間放置し、放置前後の酸素量レ
ベル変化から酸素増加量を求めた。また、放置前の粉末
を実施例1と同様に成形・焼結して、焼結体の強度を測
定した。以上の結果を表2に示す。
Next, each of the above powders was treated at 60 ° C. and 90% relative humidity.
The sample was allowed to stand in the atmosphere of% RH for 48 hours, and the amount of increase in oxygen was determined from the change in the oxygen level before and after standing. The powder before standing was molded and sintered in the same manner as in Example 1, and the strength of the sintered body was measured. Table 2 shows the above results.

【0037】[0037]

【表2】 [Table 2]

【0038】すなわち、セッケン成分を配合したものは
放置による酸素増加量が少なく、酸化に対する安定性に
優れていることがわかる。この場合、酸化抑制効果は、
セッケン成分の配合量が炭素含有量換算値(炭素当量)
にて0.1重量%以上にて特に顕著である。他方、炭素
含有量を1.2重量%以下とすることで、焼結体強度を
比較的良好な値に維持できることもわかる。
That is, it can be seen that the composition containing the soap component has a small increase in oxygen upon standing and is excellent in stability against oxidation. In this case, the oxidation suppression effect is:
The amount of soap component is converted to carbon content (carbon equivalent)
At 0.1% by weight or more. On the other hand, it is also found that the sintered body strength can be maintained at a relatively good value by setting the carbon content to 1.2% by weight or less.

【0039】(実施例2)プレアロイ粉末としてのAl
−40重量%V合金粉末を、実施例1と同様の方法にて
調製した。ただし、アトライタミルによる粉砕時間を調
整することにより、粉末の平均粒径を8〜50μmの各
種値とした。これにTi粉末を、Ti−6Al−4Vの
合金組成が得られるように配合し、4ton/cm
圧力にてダイプレス成形して、断面径が20mmの円柱
状の成形体を得るとともに、各成形体の高さを測定し
た。次いで、これをアルゴン雰囲気(780torr)
中にて1300℃で2時間焼結することにより焼結体を
得た。この焼結体を表面研磨して試験片とし、これを用
い圧縮試験を行うとともに、その荷重−変位曲線から
0.2%耐力を読み取って強度を測定した。他方、各粉
末を60℃、相対湿度90%RHの大気中に48時間放
置し、放置前後の酸素量レベルを測定した。以上の結果
を表3に示す。
(Example 2) Al as pre-alloy powder
A -40 wt% V alloy powder was prepared in the same manner as in Example 1. However, the average particle size of the powder was adjusted to various values of 8 to 50 μm by adjusting the pulverization time by the attritor mill. This was mixed with Ti powder so as to obtain an alloy composition of Ti-6Al-4V, and was die-pressed at a pressure of 4 ton / cm 2 to obtain a cylindrical shaped body having a cross-sectional diameter of 20 mm. The height of the compact was measured. Next, this was placed in an argon atmosphere (780 torr).
By sintering at 1300 ° C. for 2 hours in the inside, a sintered body was obtained. The surface of the sintered body was polished into a test piece, and a compression test was performed using the test piece. The strength was measured by reading the 0.2% proof stress from the load-displacement curve. On the other hand, each powder was left in the air at 60 ° C. and a relative humidity of 90% RH for 48 hours, and the oxygen level before and after the standing was measured. Table 3 shows the above results.

【0040】[0040]

【表3】 [Table 3]

【0041】すなわち、プレアロイ粉末の平均粒径を1
0μm以上とすることで酸化安定性が良好となることが
わかる。他方、平均粒径が45μmを超えたものは、成
形体の強度がやや低く、取り扱い時に欠け等が発生しや
すかった。
That is, the average particle size of the pre-alloy powder was 1
It is understood that the oxidation stability is improved by setting the thickness to 0 μm or more. On the other hand, when the average particle size exceeded 45 μm, the strength of the molded article was slightly low, and chipping or the like was likely to occur during handling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プレアロイ粉末の粉砕による調製方法を示す概
念図。
FIG. 1 is a conceptual diagram showing a preparation method by pulverizing a pre-alloy powder.

【図2】セッケン成分の作用推測図。FIG. 2 is a diagram for estimating the action of a soap component.

【図3】プレアロイ粉末を用いた焼結Ti合金の製造工
程における、粉末の混合工程を示す説明図。
FIG. 3 is an explanatory view showing a powder mixing process in a manufacturing process of a sintered Ti alloy using a pre-alloy powder.

【図4】ダイプレス成形を用いた焼結Ti合金の製造工
程の説明図。
FIG. 4 is an explanatory diagram of a manufacturing process of a sintered Ti alloy using die press molding.

【図5】射出成形法を用いた焼結Ti合金の製造工程の
説明図。
FIG. 5 is an explanatory diagram of a manufacturing process of a sintered Ti alloy using an injection molding method.

【符号の説明】[Explanation of symbols]

12 Ti粉末 13 プレアロイ粉末 12 Ti powder 13 Pre-alloy powder

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月24日(1999.9.2
4)
[Submission date] September 24, 1999 (1999.9.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 義範 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 清水 孝純 愛知県一宮市大字高田字北門37番地 (72)発明者 大河内 敬雄 愛知県名古屋市緑区姥子山三丁目418番地 (72)発明者 相川 守貴 愛知県名古屋市千種区南ヶ丘1−10−62− 101 Fターム(参考) 4K018 AA06 BA07 BA19 BB04 BC29 BC30 CA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Shibata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Automobile Co., Ltd. Takao Okochi 3-418, Ubakoyama, Midori-ku, Nagoya-shi, Aichi (72) Inventor Moriki Aikawa 1-10-62-101 Minamigaoka, Chigusa-ku, Nagoya-shi, Aichi F-term 4K018 AA06 BA07 BA19 BB04 BC29 BC30 CA08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 Al及びMgの少なくともいずれかを主
成分とする合金にて構成され、金属セッケン及び/又は
有機酸のLi塩を主体とするセッケン成分を炭素当量に
て0.1〜1.2重量%含有し、その酸素含有量が1.
2重量%以下であることを特徴とするプレアロイ粉末。
1. A soap component mainly composed of an alloy containing at least one of Al and Mg as a main component and mainly containing a metal soap and / or a Li salt of an organic acid in a carbon equivalent of 0.1 to 1. 2% by weight, and the oxygen content is 1.
A pre-alloy powder characterized by being at most 2% by weight.
【請求項2】 金属セッケン及び/又は有機酸のLi塩
を主体とするセッケン成分を含有し、かつ500℃にて
1時間加熱したときに、主に前記セッケン成分の蒸発に
由来する重量減少が0.3〜1.5重量%となる請求項
1記載のプレアロイ粉末。
2. When a soap component mainly containing a metal soap and / or a Li salt of an organic acid is contained and heated at 500 ° C. for 1 hour, weight loss mainly due to evaporation of the soap component is reduced. The pre-alloy powder according to claim 1, wherein the amount is 0.3 to 1.5% by weight.
【請求項3】 Al及びMgの少なくともいずれかを主
成分とする合金にて構成され、金属セッケン及び/又は
有機酸のLi塩を主体とするセッケン成分を炭素当量に
て0.1〜1.2重量%含有し、かつ500℃にて1時
間加熱したときに、主に前記セッケン成分の蒸発に由来
する重量減少が0.3〜1.5重量%となることを特徴
とするプレアロイ粉末。
3. A soap component composed of an alloy containing at least one of Al and Mg as a main component and mainly containing a metal soap and / or a Li salt of an organic acid in a carbon equivalent of 0.1 to 1. A pre-alloy powder containing 2% by weight and having a weight loss of 0.3 to 1.5% by weight mainly due to evaporation of the soap component when heated at 500 ° C for 1 hour.
【請求項4】 V、Cr、Zr、Nb、Mo、W、Si
及びSnから選ばれる1種又は2種以上を0.2〜40
重量%の範囲で含有する請求項1ないし3のいずれかに
記載のプレアロイ粉末。
4. V, Cr, Zr, Nb, Mo, W, Si
And at least one selected from Sn and 0.2 to 40
The pre-alloy powder according to any one of claims 1 to 3, which is contained in a range of weight%.
【請求項5】 焼結Ti合金の合金添加元素成分源とし
て、前記焼結Ti合金の原料粉末中に添加して使用され
る焼結Ti合金用プレアロイ粉末であって、金属セッケ
ン及び/又は有機酸のLi塩を主体とするセッケン成分
を、炭素当量にて0.1〜1.2重量%含有することを
特徴とするプレアロイ粉末。
5. A pre-alloyed powder for a sintered Ti alloy used as a source of an alloying additive element component of the sintered Ti alloy in a raw material powder of the sintered Ti alloy, wherein the metal soap and / or the organic A pre-alloy powder comprising a soap component mainly composed of an acid Li salt in an amount of 0.1 to 1.2% by weight in terms of carbon equivalent.
【請求項6】 酸素含有量が1.2重量%以下である請
求項5記載のプレアロイ粉末。
6. The pre-alloy powder according to claim 5, wherein the oxygen content is 1.2% by weight or less.
【請求項7】 粉末粒子の表面が前記セッケン成分を主
体とするコーティング被膜により被覆されている請求項
1ないし6のいずれかに記載のプレアロイ粉末。
7. The pre-alloy powder according to claim 1, wherein the surface of the powder particles is coated with a coating film mainly composed of the soap component.
【請求項8】 平均粒径が10〜45μmである請求項
1ないし7のいずれかに記載のプレアロイ粉末。
8. The pre-alloy powder according to claim 1, which has an average particle size of 10 to 45 μm.
【請求項9】 平均粒径が13〜20μmである請求項
1ないし7のいずれかに記載のプレアロイ粉末。
9. The pre-alloy powder according to claim 1, which has an average particle size of 13 to 20 μm.
【請求項10】 炭素含有量が1.2重量%以下である
請求項1ないし9のいずれかに記載のプレアロイ粉末。
10. The pre-alloy powder according to claim 1, which has a carbon content of 1.2% by weight or less.
【請求項11】 前記セッケン成分は、ステアリン酸Z
n、ステアリン酸Li及びステアリン酸Caから選ばれ
る1種又は2種以上である請求項1ないし10のいずれ
かに記載のプレアロイ粉末。
11. The soap component comprises stearic acid Z.
The prealloy powder according to any one of claims 1 to 10, wherein the prealloy powder is at least one selected from n, Li stearate, and Ca stearate.
【請求項12】 請求項1ないし11のいずれかに記載
のプレアロイ粉末をTi粉末に所定量配合して、これを
所期の形状に成形後焼結することを特徴とする焼結Ti
合金の製造方法。
12. A pre-alloyed powder according to any one of claims 1 to 11, which is blended in a predetermined amount with a Ti powder, which is formed into a desired shape and then sintered.
Alloy manufacturing method.
JP10308469A 1998-10-29 1998-10-29 Prealloy powder and method for producing sintered Ti alloy using the same Expired - Lifetime JP3001541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308469A JP3001541B1 (en) 1998-10-29 1998-10-29 Prealloy powder and method for producing sintered Ti alloy using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308469A JP3001541B1 (en) 1998-10-29 1998-10-29 Prealloy powder and method for producing sintered Ti alloy using the same

Publications (2)

Publication Number Publication Date
JP3001541B1 JP3001541B1 (en) 2000-01-24
JP2000129301A true JP2000129301A (en) 2000-05-09

Family

ID=17981407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308469A Expired - Lifetime JP3001541B1 (en) 1998-10-29 1998-10-29 Prealloy powder and method for producing sintered Ti alloy using the same

Country Status (1)

Country Link
JP (1) JP3001541B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825560A (en) * 2017-02-23 2017-06-13 深圳市星特烁科技有限公司 A kind of oxalic acid powder feed machine for powder metallurgy mesoxalic acid catalysis degreasing stove
CN107552802A (en) * 2017-09-26 2018-01-09 中南大学 A kind of cermet titanium carbonitride based solid solution powder and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588653A (en) * 2015-01-20 2015-05-06 哈尔滨工业大学 Preparation method of TiAl alloy profile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825560A (en) * 2017-02-23 2017-06-13 深圳市星特烁科技有限公司 A kind of oxalic acid powder feed machine for powder metallurgy mesoxalic acid catalysis degreasing stove
CN107552802A (en) * 2017-09-26 2018-01-09 中南大学 A kind of cermet titanium carbonitride based solid solution powder and preparation method

Also Published As

Publication number Publication date
JP3001541B1 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
JP5113555B2 (en) Iron-based sintered alloy and method for producing the same
TWI714649B (en) Iron based powders for powder injection molding
JP2008507623A (en) A method for preparing a feedstock of nano-sized metal powder and a method for producing a sintered body using the feedstock.
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2001294905A (en) Method for producing micromodule gear
KR100660653B1 (en) Fabrication method of nano-sized metal powder and fabrication method of sintered body by using the same
JPH0353003A (en) Composition for injection molding
JP5786755B2 (en) Method for producing ferrous sintered material
EP1323840B1 (en) Iron base mixed powder for high strength sintered parts
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JPH0688153A (en) Production of sintered titanium alloy
JPH06240381A (en) Production of ti alloy sintered compact by injection-molding of metal powder
JP3694968B2 (en) Mixed powder for powder metallurgy
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH11181541A (en) Production of stainless steel sintered body
JP2758569B2 (en) Method for producing iron-based sintered body by metal powder injection molding method
JPH07188801A (en) Production of titanium sintered compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term