JPH06240381A - Production of ti alloy sintered compact by injection-molding of metal powder - Google Patents

Production of ti alloy sintered compact by injection-molding of metal powder

Info

Publication number
JPH06240381A
JPH06240381A JP5045932A JP4593293A JPH06240381A JP H06240381 A JPH06240381 A JP H06240381A JP 5045932 A JP5045932 A JP 5045932A JP 4593293 A JP4593293 A JP 4593293A JP H06240381 A JPH06240381 A JP H06240381A
Authority
JP
Japan
Prior art keywords
powder
oxygen
carbon
thickness
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5045932A
Other languages
Japanese (ja)
Inventor
Toshio Maetani
敏夫 前谷
Kimihiro Nishimura
公宏 西村
Mitsuhiro Kuga
光広 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5045932A priority Critical patent/JPH06240381A/en
Publication of JPH06240381A publication Critical patent/JPH06240381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the infiltration of carbon and oxygen into a Ti powder in kneading, melting and degreasing by coating the Ti powder with a specified metal such as Ni having a lower bonding strength to carbon and oxygen than to Ti, kneading, molding, degreasing and sintering the powder. CONSTITUTION:Ti powder is coated with the powders of >=1 kind of metal among Ni, Co, Cu, Ag and Au in 0.05-5mum thickness by the mechanical cladding method, and the powders are kneaded, molded, degreased and sintered. Alternatively, the Ti powder coated with the powders of >=1 kind of metal among Ni, Co, Cu, Ag and Au in 0.05-5mum thickness by the mechanical cladding method or plating and a binder are kneaded at the maximum shearing force of <=2X10<5> Pa, injection-molded at the maximum shearing force of <=2X10<5> Pa, degreased and sintered. When the thickness of the coat is below the lower limit, a uniform coating is not formed, and carbon and oxygen are infiltrated into the powder. When the thickness is above the upper limit, the alloy element content is increased, and the ductility of the material is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属粉末射出成形法によ
るTi系合金焼結体の製造方法に係り、詳しくは、表面
をNi、Co、Cu、Ag、Auの金属粉で被覆したT
i系粉末をそのまま若しくは有機バインダ−と共に特定
の最大せん断応力で混練し、脱脂焼結する金属粉末射出
成形法による脆化性の改善されたTi系合金焼結体の製
造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Ti-based alloy sintered body by means of a metal powder injection molding method. More specifically, the surface of the sintered body is coated with a metal powder of Ni, Co, Cu, Ag, Au
The present invention relates to a method for producing a Ti-based alloy sintered body having an improved embrittlement property by a metal powder injection molding method in which an i-based powder is kneaded as it is or with an organic binder at a specific maximum shear stress and degreased and sintered.

【0002】[0002]

【従来の技術】Ti合金は比強度が高く、しかも耐食性
に優れた特性を有するため、航空機用材料や化学装置の
耐食材料等に用いられている。しかしながら、鍛造や切
削の加工性が劣るため、その製造方法が問題とされ、粉
末冶金法によるTi合金の製造が注目されている。粉末
冶金の中でも、寸法精度が優れ、複雑形状部品が製造可
能な金属粉末射出成形法によるTi合金の製造に対する
要望が高くなっている。
2. Description of the Related Art A Ti alloy has a high specific strength and excellent corrosion resistance, and is therefore used as a material for aircraft or a corrosion resistant material for chemical equipment. However, since the workability of forging and cutting is inferior, the manufacturing method thereof is problematic, and attention has been paid to the manufacture of Ti alloys by the powder metallurgy method. Among powder metallurgy, there is an increasing demand for the production of Ti alloys by the metal powder injection molding method, which has excellent dimensional accuracy and enables the production of complex shaped parts.

【0003】Ti合金の製造において、特に重要な点
は、脆化を防ぐようにするため、炭素、酸素等の固溶元
素の含有量を極力下げることにある。また、金属粉末射
出成形法では金属粉末と有機バインダ−を混練し、成
形、脱脂、焼結というプロセスを経るが、活性なTi系
粉末を用いた場合、有機バインダ−中の炭素、酸素等の
元素とTi系粉末が反応し、脱脂後に多量の炭素、酸素
を含む。金属粉末射出成形法によるFe系合金やステン
レス鋼の製造においては、焼結時の炭素と酸素の反応に
より、脱脂後に残留する炭素、酸素を取り除くことが可
能であるが(特開平2−290901号、特開平2−5
4701号の各公報参照)、Ti合金においては、Ti
の炭化物、酸化物が安定なため、焼結時に炭素、酸素を
取り除くことは不可能であり、そのため脱脂後の炭素、
酸素はそのまま焼結体中に炭素、酸素として残るという
問題があった。
In the production of Ti alloy, a particularly important point is to reduce the contents of solid solution elements such as carbon and oxygen as much as possible in order to prevent embrittlement. Further, in the metal powder injection molding method, the metal powder and the organic binder are kneaded, and a process of molding, degreasing, and sintering is performed, but when an active Ti-based powder is used, carbon, oxygen, etc. in the organic binder are removed. The element reacts with the Ti-based powder, and after degreasing, contains a large amount of carbon and oxygen. In the production of Fe-based alloys and stainless steel by the metal powder injection molding method, carbon and oxygen remaining after degreasing can be removed by the reaction between carbon and oxygen during sintering (Japanese Patent Laid-Open No. 2-290901). Japanese Patent Laid-Open No. 2-5
No. 4701), and in Ti alloy, Ti
It is impossible to remove carbon and oxygen during sintering because the carbides and oxides of are stable, so the carbon after degreasing,
There is a problem that oxygen remains as carbon and oxygen in the sintered body as it is.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題を解
決することを目的とし、具体的には、Ti合金の製造に
おいて、炭素、酸素等の固溶元素含有量の増大は材料の
脆化をもたらすこと、また、金属粉末射出成形法におい
て、混練、成形、脱脂時にTi系粉末へ炭素、酸素が侵
入することをそれを極力防止し、また、Ti系合金に被
覆した層が後の混練や成形工程で剥離しないように所望
の焼結体を製造する方法を提案することを目的とする。
An object of the present invention is to solve the above problems. Specifically, in the production of a Ti alloy, an increase in the content of solid solution elements such as carbon and oxygen causes embrittlement of the material. In addition, in the metal powder injection molding method, it is possible to prevent carbon and oxygen from invading the Ti-based powder during kneading, molding and degreasing as much as possible, and the layer coated with the Ti-based alloy can be kneaded later. It is an object of the present invention to propose a method for producing a desired sintered body so that it does not peel off in the molding process.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明はTi
粉末の表面上に、Ni、Co、Cu、AgおよびAuの
群から選ばれた1種以上の金属粉を機械的複合法によっ
て0.05〜5μmの厚さに被覆し、混練、成形、脱
脂、焼結することを特徴とし、また、Ti系粉末の表面
上に、Ni、Co、Cu、AgおよびAuの群から選ば
れた1種以上の金属粉を機械的複合法またはメッキ法に
よって0.05〜5μmの厚さの層に被覆したTi系粉
末とバインダ−とを、最大せん断応力2×105Pa以
下で混練し、かつ、最大せん断応力2×105Pa以下
で射出成形し、脱脂、焼結することを特徴とする。
That is, the present invention provides Ti
The surface of the powder is coated with at least one metal powder selected from the group consisting of Ni, Co, Cu, Ag and Au to a thickness of 0.05 to 5 μm by a mechanical composite method, and kneading, molding and degreasing. In addition, one or more metal powders selected from the group consisting of Ni, Co, Cu, Ag and Au are formed on the surface of the Ti-based powder by a mechanical composite method or a plating method. a binder Ti-based powder coating a layer of a thickness of .05~5Myuemu - and were kneaded under the following maximum shear stress 2 × 10 5 Pa, and then injection molded at a maximum shear stress 2 × 10 5 Pa or less, Characterized by degreasing and sintering.

【0006】以下本発明の手段たる構成ならびにその作
用について詳しく説明する。
The structure and operation of the means of the present invention will be described in detail below.

【0007】[0007]

【作用】本発明で使用するTi系粉末の平均粒径はコン
パウンドの流動性および粉末の焼結性から0.1〜10
0μmの範囲とすることが好ましい。さらに好ましくは
平均粒径0.1〜50μmの範囲である。粉末粒径は小
さいほど射出時の流動性がよく、焼結性もよいので有利
であるが、平均粒径0.1μm未満に微粉にするために
は膨大なエネルギ−を必要とするため実用上不利であ
る。平均粒径が100μmを超えると射出成形時の流動
性が悪くなるとともに、焼結性も低下し、焼結密度が上
からなくなる。また、そのTi系粉末は水素化脱水素
粉、ガスアトマイズ粉等のいずれの製造方法でつくられ
たものでもよい。
The average particle size of the Ti-based powder used in the present invention is 0.1 to 10 depending on the fluidity of the compound and the sinterability of the powder.
The range is preferably 0 μm. More preferably, the average particle size is in the range of 0.1 to 50 μm. The smaller the powder particle size, the better the fluidity at the time of injection and the better the sinterability, which is advantageous. However, in order to make the average particle size less than 0.1 μm into a fine powder, enormous energy is required and it is practical It is a disadvantage. If the average particle size exceeds 100 μm, the fluidity at the time of injection molding becomes poor, the sinterability also deteriorates, and the sintered density becomes low. Further, the Ti-based powder may be produced by any manufacturing method such as hydrodehydrogenated powder and gas atomized powder.

【0008】被覆する金属としてはTiよりも炭素、酸
素等の元素との結合が弱いNi、Co、Cu、Ag、A
uを用い、これらをTi系粉末表面に0.05〜5μm
の厚さ被覆することにより、Ti粉末中への炭素、酸素
の侵入を抑制することが可能となる。被覆の厚さが0.
05μm未満では、Ti系粉末表面に均一な被覆を施す
ことができず、炭素、酸素が侵入し、低炭素量、低酸素
量の焼結体は製造できない。また、厚さ5μmを超える
被覆では、合金元素含有量の増加により材料の延性が低
下し、本発明の効果はなくなる。
The metal to be coated is Ni, Co, Cu, Ag, A, which has a weaker bond with elements such as carbon and oxygen than Ti.
and u on the surface of Ti-based powder in an amount of 0.05 to 5 μm
By coating with the above thickness, it becomes possible to suppress the intrusion of carbon and oxygen into the Ti powder. The coating thickness is 0.
When the thickness is less than 05 μm, a uniform coating cannot be applied to the surface of the Ti-based powder, carbon and oxygen infiltrate, and a sintered body having a low carbon content and a low oxygen content cannot be manufactured. Further, in a coating having a thickness of more than 5 μm, the ductility of the material decreases due to the increase in the content of alloying elements, and the effect of the present invention is lost.

【0009】Ti系粉末表面上へのNi、Co、Cu、
Ag、Auの群から選ばれた1種以上の金属粉の被覆方
法は機械的複合法、メッキ法等、いずれの方法でもよ
い。機械的複合法では次のようにする。アトライタ−、
ボ−ルミル、振動ミル、オングミル等の粉砕機を用い、
これらの粉砕機にTi系粉末および被覆粉末を投入し、
15分から120分の被覆処理を施す。処理雰囲気は酸
化防止のため、真空中、N2雰囲気あるいはAr等の不
活性ガス雰囲気で行なうことが好ましい。添加する被覆
粉末は単一種でも複数種でもよい。メッキ法では無電解
メッキ、電解メッキ等いずれでもよい。
Ni, Co, Cu on the surface of the Ti-based powder,
The coating method of at least one metal powder selected from the group consisting of Ag and Au may be any method such as a mechanical composite method and a plating method. The mechanical composite method is as follows. Attritor,
Using a crusher such as a ball mill, a vibration mill, an ong mill,
Put the Ti-based powder and the coating powder into these crushers,
A coating treatment is applied for 15 to 120 minutes. In order to prevent oxidation, the processing atmosphere is preferably a vacuum, N 2 atmosphere or an inert gas atmosphere such as Ar. The coating powder to be added may be a single type or a plurality of types. The plating method may be electroless plating, electrolytic plating, or the like.

【0010】有機バインダ−は金属粉末射出成形法に用
いられている、公知のバインダ−を使用することができ
る。混練は例えば加圧ニ−ダ−、プラストミル、ロ−ル
ミル、バンバリ−ミキサ−、単軸スクリュ−混練機、2
軸スクリュ−混練機などせん断作用により混練が行なう
ことができる混練機を使用することができるが、これら
2種以上を組み合わせて混練してもよい。混練順序は特
に制限はなくいずれの順序でもよい。粉末とすべてのバ
インダ−成分を同時に混練しても良いし、すべてのバイ
ンダ−成分を先に混練後、粉末を投入して混練しても良
い。また、粉末とバインダ−のある成分を先に混練し、
後から残りのバインダ−成分を加えても良い。ただし、
混練時の各混練機での最大のせん断応力2×105Pa
以下となるような条件で混練を行なう。好ましいせん断
応力は1×103Paから2×105Paである。1×1
3Pa未満のせん断応力では粉末とバインダ−を均一
に混練することができない。2×105Paを超えるせ
ん断応力を作用させると、Ti系粉末の被覆が剥離し、
炭素ならびに酸素の侵入を抑制できなくなり、炭素量な
らびに酸素量の低い焼結体は製造できなくなる。混練時
のせん断応力は以下のように定義される方法により測定
した。すなわち、所定の混練温度、混練時間でコンパウ
ンドを混練し、混練時に発生するせん断速度とキャピラ
リ−レオメ−タ−で測定された混練温度での粘度との積
を混練時のせん断応力とした。
As the organic binder, a known binder used in the metal powder injection molding method can be used. The kneading is performed by, for example, a pressure kneader, a plastomill, a roll mill, a Banbury mixer, a single-screw kneader or a kneader.
A kneader capable of kneading by a shearing action such as an axial screw kneader can be used, but two or more kinds of them may be combined and kneaded. The kneading order is not particularly limited and may be any order. The powder and all binder components may be kneaded at the same time, or all the binder components may be kneaded first, and then the powder may be added and kneaded. Further, the powder and the component having the binder are kneaded first,
The remaining binder component may be added later. However,
Maximum shearing stress at each kneader during kneading 2 × 10 5 Pa
Kneading is performed under the following conditions. The preferred shear stress is 1 × 10 3 Pa to 2 × 10 5 Pa. 1 x 1
If the shear stress is less than 0 3 Pa, the powder and the binder cannot be uniformly kneaded. When a shear stress exceeding 2 × 10 5 Pa is applied, the Ti-based powder coating peels off,
Intrusion of carbon and oxygen cannot be suppressed, and a sintered body having a low carbon content and a low oxygen content cannot be manufactured. The shear stress during kneading was measured by the method defined as follows. That is, the compound was kneaded at a predetermined kneading temperature and kneading time, and the product of the shear rate generated during kneading and the viscosity at the kneading temperature measured by a capillary rheometer was taken as the shear stress during kneading.

【0011】成形は一般的な熱可塑性プラスチック用射
出成形機を用いて行なうことができる。射出方式はプラ
ンジャ式、プランジャプリプラ式、スクリュプリプラ
式、インラインスクリュ式のいずれでもよい。ただし、
予備可塑化段階あるいは射出時にコンパウンドに作用す
る最大のせん断応力が2×105Pa以下となるような
条件で射出成形を行なう。これを超えるせん断応力を作
用させると、Ti系粉末の被覆が剥離し、炭素ならびに
酸素の侵入を抑制できなくなり、炭素量ならびに酸素量
の低い焼結体は製造できなくなる。射出成形におけるせ
ん断応力は以下のように定義される方法により測定し
た。すなわち、キャピラリ−レオメ−タ−で測定した射
出成形温度でのコンパウンドの粘度と予備可塑化段階あ
るいは射出時に発生するせん断速度との積をせん断応力
とした。
The molding can be carried out using a general injection molding machine for thermoplastics. The injection method may be any of a plunger type, a plunger pre-plastic type, a screw pre-plastic type, and an in-line screw type. However,
Injection molding is performed under the conditions that the maximum shear stress acting on the compound during the pre-plasticizing step or during injection is 2 × 10 5 Pa or less. When a shearing stress exceeding this is applied, the Ti-based powder coating peels off and it becomes impossible to suppress the intrusion of carbon and oxygen, making it impossible to produce a sintered body having a low carbon content and a low oxygen content. Shear stress in injection molding was measured by the method defined as follows. That is, the product of the viscosity of the compound at the injection molding temperature measured by a capillary rheometer and the shear rate generated during the preplasticizing step or during injection was taken as the shear stress.

【0012】脱脂は酸化を防ぐために、非酸化性雰囲気
中あるいは減圧中で熱分解法により脱脂するのが望まし
い。焼結は非酸化性雰囲気あるいは真空中で行なう。
Degreasing is preferably carried out by a thermal decomposition method in a non-oxidizing atmosphere or under reduced pressure in order to prevent oxidation. Sintering is performed in a non-oxidizing atmosphere or vacuum.

【0013】実施例1 (1)機械的複合法による実施例 それぞれ表1に示した平均粒径のTi粉末と被覆材とな
るNi、Co、Cu、Ag、Auの群から選ばれた1種
以上の金属粉末を高速回転ボ−ルミル(アトライタ−)
に投入し、N2雰囲気中で回転数300rpmで60分
間複合化処理を施した。粉砕ボ−ルにはWCを用い、水
冷しながら処理を行なった。被覆粉末の添加量を調整す
ることにより、被覆材の厚さが0.03〜5.8μmま
での被覆粉末を作製した。被覆材の厚さは複合化処理を
施した粉末を樹脂に埋め込み、研磨を行なった後、走査
型電子顕微鏡(SEM)による粉末断面の観察結果から
求めた。次に、これらの被覆粉末を熱可塑性樹脂、ワッ
クス、可塑剤からなる有機バインダ−と加圧ニ−ダ−に
より表1に示した最大せん断応力で混練し、金属粉末射
出成形用コンパウンドを作製した。射出成形機によっ
て、このコンパウンドから55×10×3mmの抗折力
試験片を表1に示した最大せん断応力で成形した。成形
体は窒素中で450℃まで48時間で昇温することによ
り脱脂を行ない、続いてアルゴンガス中で1200℃で
2時間保持し、焼結を行なった。
Example 1 (1) Example by Mechanical Composite Method One kind selected from the group consisting of Ti powder having the average particle size shown in Table 1 and Ni, Co, Cu, Ag and Au to be a coating material. High-speed rotating ball mill (attritor) for the above metal powders
And subjected to a composite treatment at a rotation speed of 300 rpm for 60 minutes in an N 2 atmosphere. WC was used as the crushing ball, and the treatment was performed while cooling with water. By adjusting the addition amount of the coating powder, a coating powder having a coating material thickness of 0.03 to 5.8 μm was produced. The thickness of the coating material was determined from the results of observing the cross section of the powder with a scanning electron microscope (SEM) after embedding the composite-treated powder in a resin and polishing the resin. Next, these coated powders were kneaded with an organic binder composed of a thermoplastic resin, a wax and a plasticizer and a pressure kneader at the maximum shear stress shown in Table 1 to prepare a metal powder injection molding compound. . Using an injection molding machine, a bending strength test piece of 55 × 10 × 3 mm was molded from this compound at the maximum shear stress shown in Table 1. The molded body was degreased by raising the temperature to 450 ° C. in nitrogen for 48 hours, and then held in argon gas at 1200 ° C. for 2 hours to perform sintering.

【0014】比較材として、Ti粉末と同様の被覆用粉
末をV型ブレンダ−で混合し、同様に混練、成形、脱
脂、焼結を行ない、焼結体を作製した。
As a comparative material, a coating powder similar to Ti powder was mixed with a V-type blender, and similarly kneaded, molded, degreased and sintered to prepare a sintered body.

【0015】以上の焼結体に対する炭素量、酸素量の分
析結果および抗折力、硬度の測定結果を表1、表2に示
す。本発明の方法による焼結体は、比較材に比べ、炭素
量、酸素量とも低い値を示す。また、合金被覆を施した
焼結体についても、その効果が現われている。この酸素
量の低下にともない、抗折力は高い値を示し、逆に硬度
は低い値を示し、Ti粉末に被覆を施すことにより脆性
が改善されている。
Tables 1 and 2 show the results of analysis of the amount of carbon and oxygen, and the results of measurement of transverse rupture strength and hardness of the above sintered body. The sintered body produced by the method of the present invention has lower carbon and oxygen values than the comparative material. Further, the effect is also exhibited in the sintered body coated with the alloy. With the decrease in the oxygen content, the transverse rupture strength shows a high value and the hardness shows a low value on the contrary, and the brittleness is improved by coating the Ti powder.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例2 メッキ法による実施例 種々の平均粒径のTi粉末にNi、Co、Cu、Ag、
Auの群から選ばれた1種以上の金属の無電解メッキを
施した。用いたメッキ液を表3に示す。メッキ時間を変
化させることにより、メッキ厚さ0.03〜6μmまで
のメッキ粉末を作製した。メッキ厚さはメッキを施した
粉末を樹脂に埋め込み、研磨を行なった後、走査型電子
顕微鏡(SEM)による粉末断面の観察結果から求め
た。次に、これらの被覆粉末を熱可塑性樹脂、ワック
ス、可塑剤からなる有機バインダ−と加圧ニ−ダ−によ
り表4の最大せん断応力で混練し、金属粉末射出成形用
コンパウンドを作製した。インラインスクリュ式の射出
成形機によって、このコンパウンドから55×10×3
mmの抗折力試験片を表4の最大せん断応力で成形し
た。成形体は窒素中450℃まで48時間で昇温するこ
とにより脱脂を行ない、続いてアルゴンガス中で120
0℃で2時間保持し、焼結を行なった。
Example 2 Example of plating method Ni, Co, Cu, Ag, and Ti powders having various average particle diameters were used.
Electroless plating of one or more metals selected from the group of Au was applied. Table 3 shows the plating solution used. By changing the plating time, a plating powder having a plating thickness of 0.03 to 6 μm was produced. The plating thickness was determined by observing the cross section of the powder with a scanning electron microscope (SEM) after embedding the plated powder in a resin and polishing the resin. Next, these coated powders were kneaded with an organic binder composed of a thermoplastic resin, a wax and a plasticizer and a pressure kneader at the maximum shear stress shown in Table 4 to prepare a metal powder injection molding compound. 55 × 10 × 3 from this compound by inline screw type injection molding machine
A bending strength test piece of mm was molded at the maximum shear stress shown in Table 4. The molded body was degreased by raising the temperature to 450 ° C. in nitrogen for 48 hours, and then to 120 ° C. in argon gas.
Sintering was performed by holding at 0 ° C for 2 hours.

【0019】比較材として、表4に示した最大せん断応
力で混練、成形したものを同様に脱脂、焼結した。
As comparative materials, those kneaded and molded at the maximum shear stress shown in Table 4 were similarly degreased and sintered.

【0020】以上の焼結体に対する炭素量、酸素量の分
析結果および抗折力、硬度の測定結果を表4、表5に示
す。本発明の方法による焼結体は、比較材に比べ、炭素
量、酸素量とも低い値を示す。また、合金被覆を施した
焼結体についても、その効果が現われている。この酸素
量の低下にともない、抗折力は高い値を示し、逆に硬度
は低い値を示し、Ti粉末に被覆を施すことにより脆性
が改善されている。
Tables 4 and 5 show the results of analysis of the amounts of carbon and oxygen, and the results of the measurement of transverse rupture strength and hardness of the above sintered bodies. The sintered body produced by the method of the present invention has lower carbon and oxygen values than the comparative material. Further, the effect is also exhibited in the sintered body coated with the alloy. With the decrease in the oxygen content, the transverse rupture strength shows a high value and the hardness shows a low value on the contrary, and the brittleness is improved by coating the Ti powder.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【発明の効果】以上詳しく説明したように、本発明は金
属粉末射出成形用Ti粉末の表面上に、Ni、Co、C
u、AgおよびAuの群から選ばれた1種以上の金属粉
を機械的複合法によって0.05〜5μmの厚さに被覆
し、混練、成形、脱脂、焼結することを特徴とし、ま
た、金属粉末射出成形用粉末とTi系粉末の表面上に、
Ni、Co、Cu、AgおよびAuの群から選ばれた1
種以上の金属粉を機械的複合法またはメッキ法によって
0.05〜5μmの厚さの層に被覆したTi系粉末とバ
インダ−とを、最大せん断応力2×105Pa以下で混
練し、かつ、最大せん断応力2×105Pa以下で射出
成形し、脱脂、焼結することを特徴とする。
As described in detail above, the present invention provides Ni, Co, C on the surface of Ti powder for metal powder injection molding.
u, Ag, and Au, one or more metal powders selected from the group are coated by a mechanical composite method to a thickness of 0.05 to 5 μm, and kneading, molding, degreasing, and sintering, and , On the surface of metal powder injection molding powder and Ti-based powder,
1 selected from the group of Ni, Co, Cu, Ag and Au
A Ti-based powder obtained by coating a metal powder of at least one kind in a layer having a thickness of 0.05 to 5 μm by a mechanical composite method or a plating method and a binder are kneaded at a maximum shear stress of 2 × 10 5 Pa or less, and Injection molding, degreasing and sintering at a maximum shear stress of 2 × 10 5 Pa or less.

【0025】本発明により、被覆する金属粉末としてT
iより炭素、酸素の元素との結合の弱い金属を表面に被
覆するか若しくはこのTi粒子と有機バインダ−との混
練時の最大せん断応力を2×105Pa以下にすること
により、金属粉末射出成形法による炭素量、酸素量の低
いTi系合金焼結体を製造することが可能となり、Ti
系合金の問題点である脆性改善に大きく寄与するもので
ある。
According to the present invention, T is used as a metal powder for coating.
Metal powder injection by coating the surface with a metal having a weaker bond with carbon or oxygen than i or by setting the maximum shear stress at the time of kneading the Ti particles and the organic binder to 2 × 10 5 Pa or less. It becomes possible to manufacture a Ti-based alloy sintered body having a low carbon content and a low oxygen content by the molding method.
It greatly contributes to the improvement of brittleness, which is a problem of the system alloys.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ti粉末の表面上に、Ni、Co、C
u、AgおよびAuの群から選ばれた1種以上の金属粉
を機械的複合法によって0.05〜5μmの厚さに被覆
し、混練、成形、脱脂、焼結することを特徴とする金属
粉末射出成形法によるTi系合金焼結体の製造方法。
1. Ni, Co, C on the surface of Ti powder
A metal characterized by coating at least one metal powder selected from the group consisting of u, Ag and Au to a thickness of 0.05 to 5 μm by a mechanical composite method, and kneading, molding, degreasing and sintering. A method for producing a Ti-based alloy sintered body by a powder injection molding method.
【請求項2】 Ti系粉末の表面上に、Ni、Co、C
u、AgおよびAuの群から選ばれた1種以上の金属粉
を機械的複合法またはメッキ法によって0.05〜5μ
mの厚さの層に被覆したTi系粉末とバインダ−とを、
最大せん断応力2×105Pa以下で混練し、かつ、最
大せん断応力2×105Pa以下で射出成形し、脱脂、
焼結することを特徴とする金属粉末射出成形法によるT
i系合金焼結体の製造方法。
2. Ni, Co, C on the surface of the Ti-based powder
One or more metal powders selected from the group consisting of u, Ag, and Au are added in an amount of 0.05 to 5 μm by a mechanical composite method or a plating method.
A Ti-based powder and a binder coated in a layer having a thickness of m
Maximum shear stress 2 × kneaded by a 10 5 Pa or less, and then injection-molded at a maximum shear stress 2 × 10 5 Pa or less, degreasing,
T by a metal powder injection molding method characterized by sintering
A method for manufacturing an i-based alloy sintered body.
JP5045932A 1993-02-10 1993-02-10 Production of ti alloy sintered compact by injection-molding of metal powder Pending JPH06240381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5045932A JPH06240381A (en) 1993-02-10 1993-02-10 Production of ti alloy sintered compact by injection-molding of metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5045932A JPH06240381A (en) 1993-02-10 1993-02-10 Production of ti alloy sintered compact by injection-molding of metal powder

Publications (1)

Publication Number Publication Date
JPH06240381A true JPH06240381A (en) 1994-08-30

Family

ID=12733044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5045932A Pending JPH06240381A (en) 1993-02-10 1993-02-10 Production of ti alloy sintered compact by injection-molding of metal powder

Country Status (1)

Country Link
JP (1) JPH06240381A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024373A1 (en) * 2002-09-10 2004-03-25 Umicore Ni-coated ti powders
KR100725209B1 (en) * 2005-12-07 2007-06-04 박영석 Powder injection molding method for forming article comprising titanium and titanium coating method
CN107012352A (en) * 2017-03-31 2017-08-04 宝鸡文理学院 A kind of preparation method of porous titanium or titanium alloy
CN110512109A (en) * 2019-09-20 2019-11-29 西安稀有金属材料研究院有限公司 A kind of preparation method of graphene enhancing titanium composite material
CN113293339A (en) * 2021-05-27 2021-08-24 海安县鹰球粉末冶金有限公司 Preparation method of titanium alloy composite material by metal injection molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024373A1 (en) * 2002-09-10 2004-03-25 Umicore Ni-coated ti powders
KR100725209B1 (en) * 2005-12-07 2007-06-04 박영석 Powder injection molding method for forming article comprising titanium and titanium coating method
WO2007066969A1 (en) * 2005-12-07 2007-06-14 Mtig Co., Ltd Power injection molding method for forming article comprising titanium and titanium coating method
CN107012352A (en) * 2017-03-31 2017-08-04 宝鸡文理学院 A kind of preparation method of porous titanium or titanium alloy
CN110512109A (en) * 2019-09-20 2019-11-29 西安稀有金属材料研究院有限公司 A kind of preparation method of graphene enhancing titanium composite material
CN110512109B (en) * 2019-09-20 2021-09-03 西安稀有金属材料研究院有限公司 Preparation method of graphene reinforced titanium-based composite material
CN113293339A (en) * 2021-05-27 2021-08-24 海安县鹰球粉末冶金有限公司 Preparation method of titanium alloy composite material by metal injection molding

Similar Documents

Publication Publication Date Title
US5897830A (en) P/M titanium composite casting
EP1548138A1 (en) Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
EP2564956A1 (en) Fabrication method of alloy parts by metal injection molding
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
JP5165895B2 (en) Abrasion resistant material
Hussain et al. Hardness and wear analysis of Cu/Al2O3 composite for application in EDM electrode
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
El-Eskandarany et al. Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature
Xue et al. Effect of boron on the microstructure and mechanical properties of Ti-6Al-4V produced by laser directed energy deposition after heat treatment
JPH06240381A (en) Production of ti alloy sintered compact by injection-molding of metal powder
JP2014169471A (en) Ni-BASED INTERMETALLIC COMPOUND SINTERED BODY, AND PRODUCING METHOD THEREFOR
CN117210727A (en) Aluminum alloy powder containing in-situ authigenic submicron TiC (N) particles and application thereof
JP2796917B2 (en) Composite sintered alloy for non-ferrous metal melts with excellent corrosion resistance and wear resistance
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
JPH07289566A (en) Orthodontic parts made of titanium
JP3898387B2 (en) High rigidity steel
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
Chol et al. Microstructure and Property of Sintered M4 High Speed Steels with regard to Evolution of Carbides and Carbonitrides
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH06145704A (en) Production of ti alloy by metal powder injection molding method
JP7429432B2 (en) Pressure sintered body and its manufacturing method
JP3397811B2 (en) Watch exterior parts
KR20050024000A (en) A copper/amorphous composite material using copper-coated amorphous powder and preparation method thereof