JP2000123854A - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell

Info

Publication number
JP2000123854A
JP2000123854A JP10292338A JP29233898A JP2000123854A JP 2000123854 A JP2000123854 A JP 2000123854A JP 10292338 A JP10292338 A JP 10292338A JP 29233898 A JP29233898 A JP 29233898A JP 2000123854 A JP2000123854 A JP 2000123854A
Authority
JP
Japan
Prior art keywords
cell
end plate
polymer electrolyte
solid polymer
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10292338A
Other languages
Japanese (ja)
Inventor
Shinji Kinoshita
伸二 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10292338A priority Critical patent/JP2000123854A/en
Publication of JP2000123854A publication Critical patent/JP2000123854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a fuel cell and reduce cost by eliminating a heating cooling water system and related piping constitution, and at the same time, satisfying conditions of optimum pressurization and optimum temperature control of a cell in a small capacity solid polymer electrolyte fuel cell having a single cell or several cells. SOLUTION: A piston 12 is pressed with a heating medium (for example, pressurized water 23) filled in a pressure compartment, or a heating medium (for example, packed sealed water) sealed in a pack is pressed by air pressure from the outer circumference of the pack through the heating medium, and fastening pressure of a cell is controlled in a specified value, and in addition, temperature of the cell is controlled in a specified value with a heater 20 for heat control installed in an end plate 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】この発明は、単セルもしくは
単セルを数個積層した比較的小容量の固体高分子電解質
型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relatively small-capacity solid polymer electrolyte fuel cell in which a single cell or several single cells are stacked.

【従来の技術】周知のとおり、固体高分子電解質型燃料
電池は、反応ガスとしての燃料ガス(例えば、水素)お
よび酸化剤ガス(例えば、空気)を燃料極および酸化剤
極に連続的に供給して、燃料のもつエネルギーを電気化
学的に電気エネルギーに変換するものであり、かかる燃
料電池は一般に図6ないし図8に示すような構成が採用
されている。最小発電単位であるセルの構成を、図6に
示す。膜電極複合体(MEA:MembraneElectrode Assembl
y)は、固体高分子からなる電解質膜1の両側に、貴金
属を含む触媒層2を接合して形成される。MEAの外側に
は、拡散層3と反応ガス供給路を有するセパレータ4を
配設している。従来の燃料電池の概略構成を図7および
図8に示す。図7に示すセル50のセパレータは、前述
のセル5におけるセパレータとは構成が一部異なり、図
7におけるセパレータは、一面に反応ガス流路81を有
し、他方の面に冷却加熱水流路82を有する。セル50
を挟んで両側に、集電板6およびセル締め付け用の端板
70が配設される。セルを複数個積層する場合には、セ
ル50を二つの集電板6の間に積層し、端板70で挟み
込んでセル締め付け手段90により締め付けて、燃料電
池のスタックを構成する。セルには、反応ガスである空
気を空気供給源15から供給し、排空気18として電池
外に排出する。また、反応ガスである水素は、水素供給
源16から供給し、排水素19として、電池外に排出す
る。各反応ガスの供給源15または16と各反応ガス流
路81との接続、セル内のガスの流し方などの詳細は、
説明を省略する。電池反応により得られた電気は、集電
板6から外部に取り出される。ところで、セルもしくは
積層セルを適正な荷重で締め付けるために、一般に、図
8に示すように、端板内で摺動可能なピストン12を端
板内に設ける構成が採用される。ピストンの反セル側に
は、該ピストン押圧用の空気圧力室(加圧室)75が設
けられ、図示しない空気加圧源の接続により、前記加圧
室を所定の圧力に保持するように加圧制御する。初期締
め付け状態から、セル構成部材の歪みが経時的に変化す
るが、前記構成によれば、前記変化にピストンが追随す
るので、固体高分子電解質膜および他のセル部材に好適
な適正締め付け圧を、経時的にも保持することができ
る。次に、従来方式の燃料電池の温度管理について、図
7により説明する。前述のように、セルは冷却加熱水路
82を有し、この水路に冷却加熱水系83の水をポンプ
84で循環することにより、温度管理を行う。冷却加熱
水系83は、図示しないラジエータ、ヒータ、温度調節
器などを備える。燃料電池の起動時は、冷却加熱水系8
3内のヒータにより、35℃程度までセルを昇温した
後、定格運転に移行する。固体高分子電解質型燃料電池
の最適運転温度は、70〜80℃程度であり、定格運転
時は、通常、前記ラジエータで循環水を冷却し、燃料電
池を冷却してセルを所望の温度に維持するように、温度
制御を行う。
2. Description of the Related Art As is well known, a solid polymer electrolyte fuel cell continuously supplies a fuel gas (eg, hydrogen) and an oxidant gas (eg, air) as reaction gases to a fuel electrode and an oxidant electrode. Then, the energy of the fuel is electrochemically converted into electric energy, and such a fuel cell generally adopts a configuration as shown in FIGS. FIG. 6 shows the configuration of the cell that is the minimum power generation unit. MEA (MembraneElectrode Assembl)
y) is formed by joining a catalyst layer 2 containing a noble metal to both sides of an electrolyte membrane 1 made of a solid polymer. Outside the MEA, a separator 4 having a diffusion layer 3 and a reaction gas supply path is provided. FIGS. 7 and 8 show a schematic configuration of a conventional fuel cell. The separator of the cell 50 shown in FIG. 7 is partially different from the separator of the cell 5 described above. The separator in FIG. 7 has a reaction gas flow path 81 on one surface and a cooling / heating water flow path 82 on the other surface. Having. Cell 50
The current collector plate 6 and the end plate 70 for fastening cells are arranged on both sides of the panel. When a plurality of cells are stacked, the cells 50 are stacked between the two current collecting plates 6, sandwiched between the end plates 70, and tightened by the cell tightening means 90 to form a fuel cell stack. Air, which is a reaction gas, is supplied to the cell from an air supply source 15, and is discharged outside the battery as exhaust air 18. Hydrogen, which is a reaction gas, is supplied from a hydrogen supply source 16 and discharged out of the battery as discharged hydrogen 19. For details such as the connection between the supply source 15 or 16 of each reaction gas and each reaction gas flow path 81 and the flow of gas in the cell,
Description is omitted. Electricity obtained by the battery reaction is taken out of the current collector plate 6 to the outside. By the way, in order to tighten a cell or a laminated cell with an appropriate load, a configuration is generally adopted in which a piston 12 slidable in an end plate is provided in the end plate as shown in FIG. An air pressure chamber (pressurizing chamber) 75 for pressing the piston is provided on the side opposite to the cell of the piston, and is connected to an air pressurizing source (not shown) so as to maintain the pressurizing chamber at a predetermined pressure. Pressure control. From the initial tightening state, the strain of the cell constituent member changes with time.According to the above configuration, since the piston follows the change, an appropriate tightening pressure suitable for the solid polymer electrolyte membrane and other cell members is set. , Can be maintained over time. Next, temperature management of a conventional fuel cell will be described with reference to FIG. As described above, the cell has the cooling and heating water passage 82, and the temperature of the cooling and heating water system 83 is controlled by circulating the water in the cooling and heating water system 83 by the pump 84. The cooling and heating water system 83 includes a radiator, a heater, a temperature controller, and the like (not shown). When the fuel cell is started, the cooling and heating water system 8
After the cell is heated up to about 35 ° C. by the heater in 3, the operation is shifted to the rated operation. The optimum operating temperature of a solid polymer electrolyte fuel cell is about 70 to 80 ° C. During rated operation, the circulating water is usually cooled by the radiator, and the fuel cell is cooled to maintain the cell at a desired temperature. Temperature control is performed as follows.

【発明が解決しようとする課題】上記のように、従来の
通常の固体高分子電解質型燃料電池においては、固体高
分子膜の適正加圧の観点から空気加圧制御が採用され、
この場合、端板からのセルの放熱があまり良好でないた
め、燃料電池の定格運転においては、水によるセルの直
接冷却が必要であった。一方、起動時や、低負荷運転で
あって放熱が電池の発熱量より大きい場合においては、
セルを適正温度に昇温するために加熱する必要があり、
燃料電池の温度管理上、必然的に、加熱冷却の両方が可
能な構成が必要であった。そのため、セパレータの構造
や加熱冷却に伴う必要部分の構成が複雑となり、燃料電
池の低コスト化の妨げとなっていた。特に、寿命評価な
どの試験用セルや計測器,表示器などの特殊電源などの
小容量の燃料電池(単セルや数セルの燃料電池)の場
合、加熱冷却の両方を可能とする構成部分の燃料電池全
体に占めるコスト割合が高くなるので、上記構成の簡素
化が特に望まれていた。この発明は、上記のような観点
からなされたもので、本発明の課題は、小容量の固体高
分子電解質型燃料電池の構成の簡素化と低コスト化を図
ることにある。
As described above, in a conventional ordinary solid polymer electrolyte fuel cell, air pressurization control is adopted from the viewpoint of proper pressurization of a solid polymer membrane.
In this case, since the heat radiation of the cell from the end plate is not so good, direct cooling of the cell with water was necessary in the rated operation of the fuel cell. On the other hand, at the time of start-up or when the load is low and the heat radiation is larger than the calorific value of the battery,
It is necessary to heat the cell to raise it to the proper temperature,
In order to control the temperature of the fuel cell, a configuration capable of both heating and cooling was required. For this reason, the structure of the separator and the configuration of necessary parts accompanying heating and cooling are complicated, which hinders cost reduction of the fuel cell. In particular, in the case of small-capacity fuel cells (single cells or several-cell fuel cells) such as test cells for life evaluation and special power supplies such as measuring instruments and indicators, components that can perform both heating and cooling Since the cost ratio of the entire fuel cell becomes high, the simplification of the above configuration has been particularly desired. SUMMARY OF THE INVENTION The present invention has been made from the above viewpoints, and an object of the present invention is to simplify the configuration of a small-capacity solid polymer electrolyte fuel cell and reduce the cost.

【課題を解決するための手段】前述の課題を解決するた
め、請求項1の発明では、ピストン12押圧用の加圧室
に充填した熱媒体(例えば、圧力水23)によりセルを
所定締め付け圧に制御するようになし、端板7に設けた
セル加熱制御用のヒータ20によりセルを所定の温度に
制御するようにしてなるるものとし、請求項2の発明で
は、加圧室のピストン12と端板7との間にパックに封
入した熱媒体(例えば、パック封入水24)を介挿し、
該パックの外周部からの空気圧により前記熱媒体を介し
てセルを所定締め付け圧に制御するようになし、端板7
に設けたセル加熱制御用のヒータ20によりセルを所定
の温度に制御するようにしてなるものとし、さらに、請
求項3の発明では、加圧室のピストン12と端板7との
間にパックに封入した熱媒体(例えば、パック封入水2
4a)を介挿し、該パックの外周部からの空気圧により
前記熱媒体を介してセルを所定締め付け圧に制御するよ
うになし、ピストンとパックとの間に配設したセル加熱
制御用のヒータ20aによりセルを所定の温度に制御す
るようにしてなるものとした。この構成により、従来の
空気加圧のための空気の熱絶縁層を、水またはその他の
液体に置き換えて、熱伝導を良好とすることができる。
これにより、電池の放熱能力が従来装置に比べて向上
し、小容量(単セルまたは数セル)の電池の場合、定常
運転や所定の過負荷運転においてすら冷却水による強制
冷却系が不要となる。ヒータによる加熱温度制御は従来
どおり必要であるが、単純なヒータを設ければよく、加
熱冷却水系と関連配管システムは不要となり、構成の簡
素化と低コスト化が可能となる。請求項4の発明は、セ
パレータを除く他のセル部材のセル締め付け圧力とセル
積層方向の圧縮歪み量との予備測定結果に基づいて、セ
ルを所定締め付け圧に制御するように締め付け手段を構
成し、端板7に設けたセル加熱制御用のヒータによりセ
ルを所定の温度に制御するようにしてなるもので、これ
により、前述と同様に、加熱冷却水系と関連配管システ
ムは不要となり、構成の簡素化と低コスト化が可能とな
る。請求項5の発明は、請求項1ないし4記載のいずれ
かのものにおいて、端板もしくはヒータは、放熱フィン
を備えるもので、これにより、燃料電池の放熱能力が向
上するので、所望の温度管理の温度範囲が拡大する。
In order to solve the above-mentioned problems, according to the first aspect of the present invention, the cells are fixed to a predetermined pressure by a heat medium (for example, pressure water 23) filled in a pressurizing chamber for pressing the piston 12. The temperature of the cell is controlled to a predetermined temperature by a heater 20 for controlling cell heating provided on the end plate 7. A heat medium (for example, pack filling water 24) sealed in the pack is inserted between the end plate 7 and the end plate 7.
The cells are controlled to a predetermined tightening pressure via the heat medium by the air pressure from the outer peripheral portion of the pack.
The cell is controlled to a predetermined temperature by a heater 20 for controlling cell heating provided in the pressure chamber. Further, in the invention according to the third aspect, a pack is provided between the piston 12 of the pressurizing chamber and the end plate 7. Heat medium (for example, pack filled water 2)
4a), the cells are controlled to a predetermined tightening pressure via the heat medium by the air pressure from the outer peripheral portion of the pack, and a heater 20a for cell heating control disposed between the piston and the pack. To control the cell at a predetermined temperature. With this configuration, it is possible to improve the heat conduction by replacing the conventional heat insulating layer of air for pressurizing air with water or another liquid.
Thereby, the heat radiation capacity of the battery is improved as compared with the conventional device, and in the case of a battery having a small capacity (single cell or several cells), a forced cooling system using cooling water is unnecessary even in a steady operation or a predetermined overload operation. . Although heating temperature control by a heater is required as in the past, a simple heater may be provided, and a heating / cooling water system and a related piping system are not required, so that the configuration can be simplified and the cost can be reduced. According to a fourth aspect of the present invention, a tightening means is configured to control the cell to a predetermined tightening pressure based on a preliminary measurement result of the cell tightening pressure of other cell members except for the separator and the amount of compressive strain in the cell stacking direction. The cell is controlled to a predetermined temperature by a heater for controlling cell heating provided on the end plate 7, whereby the heating / cooling water system and the related piping system become unnecessary as described above, Simplification and cost reduction are possible. According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the end plate or the heater is provided with a radiating fin, thereby improving a heat radiating ability of the fuel cell. Temperature range is expanded.

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。図1、図2、図3、図4およ
び図5は、それぞれ、請求項1、2、3、4および5の
発明に関わる実施例を示す構成図である。これらの図に
おいて、図7および図8の従来装置と同一部材について
は同一の符合を付して説明を省略する。図1は、圧力室
に圧力水23を充填することにより、従来の空気熱絶縁
層を水に置き換えて熱抵抗の低減を図る実施例を示す。
圧力水は図示しない水圧力源に接続され、ピストン12
を所定の圧力で押圧する。端板には、面状のヒータ20
が配設され、セルのセパレータ部に設けた熱電対21で
測定したセル温度の変化に基づき、適正なヒータ出力を
温度調節器22で制御する。この実施例では、電極面積
50cm2の単セルで15Wの発熱量があるケースにお
いて、セル温度を、40℃から80℃までの任意の温度
に管理することができた。図2は、図1における圧力水
23を、パック封入水24に置き換えた実施例を示す。
パック材としては、樹脂を用いる。この場合、パックの
外周部を図示しない空気圧力源からの空気により加圧
し、熱媒体であるパック水を介してセルを所定締め付け
圧に制御する。図1の場合には、水を直接加圧室に充填
するので、水に接触する構成部材の腐食の問題や水もれ
などの問題があるが、図2の場合は、これらの問題を解
消できるとともに、図1の実施例と同様のセルの温度管
理が可能となる。図3は、図2と同様にパック封入水2
4aを用い、ヒータ20aをパック封入水24aとピス
トン12との間に配設した実施例を示す。この場合も、
図1の実施例と同様のセルの温度管理が可能となる。図
4は、セパレータを除く他のセル部材のセル締め付け圧
力とセル積層方向の圧縮歪み量との予備測定結果(初期
値および経時変動の両者を含む結果)に基づいて、セル
を所定締め付け圧に制御するように締め付け手段を構成
し、端板70に設けたセル加熱制御用のヒータ20によ
りセルを所定の温度に制御するようにしてなるもので、
例えば、相対するセパレータの間隔、もしくは、2枚の
セパレータの積層高さ(即ち、相対する集電板の間隔)
などを所定の寸法になるようにネジ締め管理するように
図示しない治具を含めて締め付け手段を構成する。この
場合、セルを所定締め付け圧に制御する締め付け手段
が、若干複雑となるが、水などの熱媒体による加圧制御
手段を必要としないので、燃料電池の構成は全体として
簡略化される。図5は、図2の実施例に対して、さら
に、端板に放熱フィン26を設けた実施例を示す。この
実施例では、電極面積50cm2の単セルで15Wの発
熱量があるケースにおいて、セル温度を35℃から80
℃までの任意の温度にセル温度を管理することができ
た。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1, 2, 3, 4 and 5 are block diagrams showing an embodiment according to the first, second, third, fourth and fifth aspects of the present invention, respectively. In these drawings, the same members as those of the conventional device of FIGS. 7 and 8 are denoted by the same reference numerals, and description thereof is omitted. FIG. 1 shows an embodiment in which the pressure chamber 23 is filled with pressurized water 23 to reduce the thermal resistance by replacing the conventional air heat insulating layer with water.
The pressurized water is connected to a water pressure source (not shown),
At a predetermined pressure. The end plate has a planar heater 20.
Is provided, and an appropriate heater output is controlled by a temperature controller 22 based on a change in cell temperature measured by a thermocouple 21 provided in a separator portion of the cell. In this example, in a case where a single cell having an electrode area of 50 cm 2 has a calorific value of 15 W, the cell temperature could be controlled to an arbitrary temperature from 40 ° C. to 80 ° C. FIG. 2 shows an embodiment in which the pressure water 23 in FIG.
A resin is used as the packing material. In this case, the outer peripheral portion of the pack is pressurized by air from an air pressure source (not shown), and the cells are controlled to a predetermined tightening pressure via pack water as a heat medium. In the case of FIG. 1, since water is directly charged into the pressurizing chamber, there are problems such as corrosion of components that come into contact with water and problems such as water leakage. In the case of FIG. 2, these problems are solved. In addition to the above, the cell temperature can be controlled in the same manner as in the embodiment of FIG. FIG. 3 is a view similar to FIG.
4a shows an embodiment in which the heater 20a is disposed between the pack filling water 24a and the piston 12 using the heater 4a. Again,
The same temperature control of the cell as in the embodiment of FIG. 1 can be performed. FIG. 4 is a graph showing the results of preliminary measurement of the cell tightening pressure and the amount of compressive strain in the cell stacking direction of the other cell members except for the separator (results including both initial values and temporal fluctuations). A tightening means is configured to control the cell, and the cell is controlled to a predetermined temperature by the heater 20 for cell heating control provided on the end plate 70.
For example, the interval between opposed separators or the stacking height of two separators (that is, the interval between opposed current collector plates)
The fastening means is configured to include a jig (not shown) so as to manage the screw tightening so as to have a predetermined size. In this case, the tightening means for controlling the cells to a predetermined tightening pressure is slightly complicated, but since the pressurizing control means using a heat medium such as water is not required, the configuration of the fuel cell is simplified as a whole. FIG. 5 shows an embodiment in which a radiating fin 26 is provided on the end plate in addition to the embodiment shown in FIG. In this embodiment, in a case where a single cell having an electrode area of 50 cm 2 has a calorific value of 15 W, the cell temperature is increased from 35 ° C. to 80 ° C.
The cell temperature could be controlled at any temperature up to ° C.

【発明の効果】上記のとおり、請求項1ないし5の発明
によれば、従来の空気加圧のための空気の熱絶縁層を有
しない構成とする、あるいは、加圧手段の熱絶縁空気層
に相当する部分を水またはその他の液体に置き換えて熱
伝導を良好とする加圧手段を採用するものとした。その
ため、小容量(単セルまたは数セル)の電池の場合、従
来装置のような冷却水による強制冷却系が不要となり、
固体高分子電解質型燃料電池の構成の簡素化と低コスト
化が可能となる。
As described above, according to the first to fifth aspects of the present invention, the conventional heat insulating air layer for air pressurization is not provided, or the heat insulating air layer of the pressurizing means is provided. Is replaced by water or other liquid to employ a pressurizing means for improving heat conduction. Therefore, in the case of a battery having a small capacity (single cell or several cells), a forced cooling system using cooling water as in the conventional device is unnecessary,
The structure of the solid polymer electrolyte fuel cell can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係る発明の実施例を示す燃料電池の
構成図である。
FIG. 1 is a configuration diagram of a fuel cell showing an embodiment of the invention according to claim 1;

【図2】請求項2に係る発明の実施例を示す燃料電池の
構成図である。
FIG. 2 is a configuration diagram of a fuel cell showing an embodiment of the invention according to claim 2;

【図3】請求項3に係る発明の実施例を示す燃料電池の
構成図である。
FIG. 3 is a configuration diagram of a fuel cell showing an embodiment of the invention according to claim 3;

【図4】請求項4に係る発明の実施例を示す燃料電池の
構成図である。
FIG. 4 is a configuration diagram of a fuel cell showing an embodiment of the invention according to claim 4;

【図5】請求項5に係る発明の実施例を示す燃料電池の
構成図である。
FIG. 5 is a configuration diagram of a fuel cell showing an embodiment of the invention according to claim 5;

【図6】固体高分子電解質型燃料電池セルの一般的な構
成を示す図である。
FIG. 6 is a diagram showing a general configuration of a solid polymer electrolyte fuel cell.

【図7】従来の固体高分子電解質型燃料電池の概略構成
を示す図である。
FIG. 7 is a diagram showing a schematic configuration of a conventional solid polymer electrolyte fuel cell.

【図8】従来の固体高分子電解質型燃料電池の端板内の
構成の概略を示す図である。
FIG. 8 is a diagram schematically showing a configuration inside an end plate of a conventional solid polymer electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

5:セル、6:集電板、7:端板、12:ピストン、2
0,20a:ヒータ、23:圧力水、24,24a:パ
ック封入水、26:放熱フィン。
5: cell, 6: current collector, 7: end plate, 12: piston, 2
0, 20a: heater, 23: pressurized water, 24, 24a: pack filling water, 26: radiating fin.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜と燃料極と酸化剤極
と反応ガス供給路を有するセパレータとを備えた単セ
ル,もしくは該単セルを数個積層したセルと、このセル
を挟んで両側に順次配設した集電板およびセル締め付け
用の端板と、この端板中央部のセル側であって,前記集
電板を介してセルを加圧制御するために端板内で摺動可
能に設けられたピストンと,同ピストンの反セル側に設
けられた該ピストン押圧用の加圧室と、セル締め付け手
段と、を備えた固体高分子電解質型燃料電池において、
前記ピストン押圧用の加圧室に充填した水や油などの熱
媒体によりセルを所定締め付け圧に制御するようにな
し、前記端板に設けたセル加熱制御用のヒータによりセ
ルを所定の温度に制御するようにしてなることを特徴と
する固体高分子電解質型燃料電池。
1. A single cell including a solid polymer electrolyte membrane, a fuel electrode, an oxidizer electrode, and a separator having a reaction gas supply path, or a cell in which several single cells are stacked, and both sides of the cell And a plate for tightening the current collector plate and the cell, which are sequentially arranged in the end plate, and a slide in the end plate at the center of the end plate for controlling the pressure of the cell via the current collector plate. A solid polymer electrolyte fuel cell comprising: a piston provided so as to be able to press; a pressurizing chamber for pressing the piston provided on a side opposite to the cell; and a cell fastening means.
The cell is controlled to a predetermined tightening pressure by a heat medium such as water or oil filled in the piston pressurizing chamber, and the cell is heated to a predetermined temperature by a cell heating control heater provided on the end plate. A polymer electrolyte fuel cell characterized by being controlled.
【請求項2】 固体高分子電解質膜と燃料極と酸化剤極
と反応ガス供給路を有するセパレータとを備えた単セ
ル,もしくは該単セルを数個積層したセルと、このセル
を挟んで両側に順次配設した集電板およびセル締め付け
用の端板と、この端板中央部のセル側であって,前記集
電板を介してセルを加圧制御するために端板内で摺動可
能に設けられたピストンと,同ピストンの反セル側に設
けられた該ピストン押圧用の加圧室と、セル締め付け手
段と、を備えた固体高分子電解質型燃料電池において、
前記加圧室のピストンと端板との間にパックに封入した
熱媒体を介挿し、該パックの外周部からの空気圧により
前記熱媒体を介してセルを所定締め付け圧に制御するよ
うになし、前記端板に設けたセル加熱制御用のヒータに
よりセルを所定の温度に制御するようにしてなることを
特徴とする固体高分子電解質型燃料電池。
2. A single cell including a solid polymer electrolyte membrane, a fuel electrode, an oxidizer electrode, and a separator having a reaction gas supply passage, or a cell in which several single cells are stacked, and both sides of the cell And a plate for tightening the current collector plate and the cell, which are sequentially arranged in the end plate, and a slide in the end plate at the center of the end plate for controlling the pressure of the cell via the current collector plate. A solid polymer electrolyte fuel cell comprising: a piston provided so as to be able to press; a pressurizing chamber for pressing the piston provided on a side opposite to the cell; and a cell fastening means.
A heat medium sealed in a pack is inserted between the piston of the pressurizing chamber and the end plate, and the cells are controlled to a predetermined tightening pressure via the heat medium by air pressure from the outer periphery of the pack, A solid polymer electrolyte fuel cell, wherein the cells are controlled to a predetermined temperature by a heater for controlling cell heating provided on the end plate.
【請求項3】 固体高分子電解質膜と燃料極と酸化剤極
と反応ガス供給路を有するセパレータとを備えた単セ
ル,もしくは該単セルを数個積層したセルと、このセル
を挟んで両側に順次配設した集電板およびセル締め付け
用の端板と、この端板中央部のセル側であって,前記集
電板を介してセルを加圧制御するために端板内で摺動可
能に設けられたピストンと,同ピストンの反セル側に設
けられた該ピストン押圧用の加圧室と、セル締め付け手
段と、を備えた固体高分子電解質型燃料電池において、
前記加圧室のピストンと端板との間にパックに封入した
熱媒体を介挿し、該パックの外周部からの空気圧により
前記熱媒体を介してセルを所定締め付け圧に制御するよ
うになし、前記ピストンと前記パックとの間に配設した
セル加熱制御用のヒータによりセルを所定の温度に制御
するようにしてなることを特徴とする固体高分子電解質
型燃料電池。
3. A single cell including a solid polymer electrolyte membrane, a fuel electrode, an oxidizer electrode, and a separator having a reaction gas supply passage, or a cell in which several single cells are stacked, and both sides of the cell. And a plate for tightening the current collector plate and the cell, which are sequentially arranged in the end plate, and a slide in the end plate at the center of the end plate for controlling the pressure of the cell via the current collector plate. A solid polymer electrolyte fuel cell comprising: a piston provided so as to be able to press; a pressurizing chamber for pressing the piston provided on a side opposite to the cell; and a cell fastening means.
A heat medium sealed in a pack is inserted between the piston of the pressurizing chamber and the end plate, and the cells are controlled to a predetermined tightening pressure via the heat medium by air pressure from the outer periphery of the pack, A solid polymer electrolyte fuel cell, wherein cells are controlled at a predetermined temperature by a heater for controlling cell heating disposed between the piston and the pack.
【請求項4】 固体高分子電解質膜と燃料極と酸化剤極
と反応ガス供給路を有するセパレータとを備えた単セ
ル,もしくは該単セルを数個積層したセルと、このセル
を挟んで両側に順次配設した集電板およびセル締め付け
用の端板と、セル締め付け手段と、を備えた固体高分子
電解質型燃料電池において、前記セル締め付け手段は、
前記セパレータを除く他のセル部材のセル締め付け圧力
とセル積層方向の圧縮歪み量との予備測定結果に基づい
て、セルを所定締め付け圧に制御するようになし、前記
端板に設けたセル加熱制御用のヒータによりセルを所定
の温度に制御するようにしてなることを特徴とする固体
高分子電解質型燃料電池。
4. A single cell including a solid polymer electrolyte membrane, a fuel electrode, an oxidant electrode, and a separator having a reaction gas supply passage, or a cell in which several single cells are stacked, In a solid polymer electrolyte fuel cell including a current collector plate and an end plate for cell tightening, and a cell tightening unit, the cell tightening unit includes:
Based on the preliminary measurement results of the cell tightening pressure and the amount of compressive strain in the cell stacking direction of the other cell members except the separator, the cells are controlled to a predetermined tightening pressure, and the cell heating control provided on the end plate A solid polymer electrolyte fuel cell characterized in that the cell is controlled to a predetermined temperature by a heater for the fuel cell.
【請求項5】 請求項1ないし4のいずれかに記載の燃
料電池において、端板もしくはヒータは、放熱フィンを
備えたことを特徴とする固体高分子電解質型燃料電池。
5. The solid polymer electrolyte fuel cell according to claim 1, wherein the end plate or the heater includes a radiation fin.
JP10292338A 1998-10-14 1998-10-14 Solid polymer electrolyte fuel cell Pending JP2000123854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10292338A JP2000123854A (en) 1998-10-14 1998-10-14 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10292338A JP2000123854A (en) 1998-10-14 1998-10-14 Solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2000123854A true JP2000123854A (en) 2000-04-28

Family

ID=17780514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10292338A Pending JP2000123854A (en) 1998-10-14 1998-10-14 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2000123854A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686080B2 (en) * 2000-04-18 2004-02-03 Plug Power Inc. Fuel cell systems
WO2004109822A2 (en) * 2003-06-06 2004-12-16 Utc Fuel Cells, Llc. Maintaining pem fuel cell performance with sub-freezing boot strap starts
JP2005259547A (en) * 2004-03-12 2005-09-22 Kemitsukusu:Kk Fuel cell and its driving system
JP2006513534A (en) * 2003-01-15 2006-04-20 バラード パワー システムズ インコーポレイティド Fuel cell stack with passive end cell heater
JP2006228671A (en) * 2005-02-21 2006-08-31 Toyota Motor Corp Performance evaluation device and performance evaluation method for fuel cell
JP2006309953A (en) * 2005-04-26 2006-11-09 Toppan Printing Co Ltd Electrode, battery and its manufacturing method
WO2008120478A1 (en) * 2007-03-29 2008-10-09 Sony Corporation Fuel cell
KR100974594B1 (en) 2003-12-30 2010-08-06 현대자동차주식회사 Method of controling fuel cell stack temperature and system thereof
US7887962B2 (en) 2001-04-24 2011-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
JP2012129148A (en) * 2010-12-17 2012-07-05 Ngk Spark Plug Co Ltd Fuel battery
CN113161574A (en) * 2020-01-22 2021-07-23 中国科学院大连化学物理研究所 Fuel cell heating system and control method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686080B2 (en) * 2000-04-18 2004-02-03 Plug Power Inc. Fuel cell systems
US7887962B2 (en) 2001-04-24 2011-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
JP2006513534A (en) * 2003-01-15 2006-04-20 バラード パワー システムズ インコーポレイティド Fuel cell stack with passive end cell heater
JP4724423B2 (en) * 2003-01-15 2011-07-13 ビーディーエフ アイピー ホールディングス リミテッド Fuel cell stack with passive end cell heater
WO2004109822A2 (en) * 2003-06-06 2004-12-16 Utc Fuel Cells, Llc. Maintaining pem fuel cell performance with sub-freezing boot strap starts
WO2004109822A3 (en) * 2003-06-06 2005-03-10 Utc Fuel Cells Llc Maintaining pem fuel cell performance with sub-freezing boot strap starts
KR100974594B1 (en) 2003-12-30 2010-08-06 현대자동차주식회사 Method of controling fuel cell stack temperature and system thereof
JP2005259547A (en) * 2004-03-12 2005-09-22 Kemitsukusu:Kk Fuel cell and its driving system
JP2006228671A (en) * 2005-02-21 2006-08-31 Toyota Motor Corp Performance evaluation device and performance evaluation method for fuel cell
JP2006309953A (en) * 2005-04-26 2006-11-09 Toppan Printing Co Ltd Electrode, battery and its manufacturing method
WO2008120478A1 (en) * 2007-03-29 2008-10-09 Sony Corporation Fuel cell
US8679692B2 (en) 2007-03-29 2014-03-25 Sony Corporation Fuel cell having enhanced heat dissipation
JP2012129148A (en) * 2010-12-17 2012-07-05 Ngk Spark Plug Co Ltd Fuel battery
CN113161574A (en) * 2020-01-22 2021-07-23 中国科学院大连化学物理研究所 Fuel cell heating system and control method thereof
CN113161574B (en) * 2020-01-22 2024-05-10 中国科学院大连化学物理研究所 Fuel cell heating system and control method thereof

Similar Documents

Publication Publication Date Title
US6866955B2 (en) Cooling system for a fuel cell stack
US20080102327A1 (en) Fuel cell and method for cold-starting such a fuel cell
JP3614822B2 (en) Fuel cell
US8535842B2 (en) Combustion-thawed fuel cell
CN105591119B (en) End plate, fuel cell and fuel cell system for fuel cell
US7232582B2 (en) Fuel cell
WO2007128202A1 (en) A fuel cell pile without terminal plates suitable for low temperature operation
US20020058165A1 (en) Mehtod for cold-starting a fuel cell battery and fuel cell battery suitable therefor
JP2000123854A (en) Solid polymer electrolyte fuel cell
US8394545B2 (en) Fuel cell system and operating method thereof
JP7130705B2 (en) Manufacturing method of fuel cell stack
US20080050627A1 (en) Fuel cell stack and hydrogen supply including a positive temperature coefficient ceramic heater
JP3493896B2 (en) Fuel cell and fuel cell system
JP2007294330A (en) Fuel cell high in heat utilization efficiency
JPH1032016A (en) Fastening and heating device of fuel cell
JP4533604B2 (en) Low temperature startup method for fuel cells
US8778550B2 (en) Battery of fuel cells
JPS6386270A (en) Stacked structure type fuel cell
KR20130017960A (en) Fuel cell stack
US20230124636A1 (en) Fuel cell unit
JP2005353561A (en) Fuel cell
JP2007115463A (en) Fuel cell system
CN112768739A (en) Structure for improving weak sheet of end plate of fuel cell stack
US20050112436A1 (en) Methods and devices for heating or cooling fuel cell systems
JP2005100701A (en) Fuel cell stack