JP2006228671A - Performance evaluation device and performance evaluation method for fuel cell - Google Patents

Performance evaluation device and performance evaluation method for fuel cell Download PDF

Info

Publication number
JP2006228671A
JP2006228671A JP2005044208A JP2005044208A JP2006228671A JP 2006228671 A JP2006228671 A JP 2006228671A JP 2005044208 A JP2005044208 A JP 2005044208A JP 2005044208 A JP2005044208 A JP 2005044208A JP 2006228671 A JP2006228671 A JP 2006228671A
Authority
JP
Japan
Prior art keywords
fuel cell
performance evaluation
separator
flow path
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044208A
Other languages
Japanese (ja)
Other versions
JP4816867B2 (en
Inventor
Shinya Kamata
慎矢 鎌田
Jiyouyuu Hakozaki
譲優 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005044208A priority Critical patent/JP4816867B2/en
Publication of JP2006228671A publication Critical patent/JP2006228671A/en
Application granted granted Critical
Publication of JP4816867B2 publication Critical patent/JP4816867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a performance evaluation device and a performance evaluation method for a fuel cell, capable of easily reproducing the inside phenomenon of the fuel cell based on actual operation. <P>SOLUTION: First and second separator main bodies 9a, 9b constituting a first and a second dummy separators 3a, 3b, together with a current collection electrode 10, are formed by a transparent material, and the collecting electrode 10 provided on one surface 6 side of the first and second separator bodies 9a, 9b are arranged with a space for the portion corresponding to the first and second separator body side gas passages 8a, 8b. A heater 16, consisting of an ITO film (transparent material), is arranged on the other surface 7 side. In a state of being warmed by the heater 16, the condition of water or the like flowing in the gas passages 8a, 8b can be observed through the heater 16 and the first and second separator bodies 9a, 9b. The phenomenon that occurs in the inside can be observed in the warmed state, and the performance evaluation of the fuel cell (unit cell) can be performed with high accuracy and ease. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池におけるセパレータ(集電体)に形成されるガス流路ひいては燃料電池の性能を評価するための燃料電池の性能評価装置及び性能評価方法に関する。   The present invention relates to a fuel cell performance evaluation device and a performance evaluation method for evaluating the performance of a gas flow path formed in a separator (current collector) in a fuel cell, and thus a fuel cell.

燃料電池は、一般に、セパレータ(集電体)で膜−電極アッセンブリを挟んで構成される単位セルを多数枚(例えば数十から数百枚)積層した構造となっている。そして、単位セルに設けられたガス流路を通して単位セルに燃料ガス(水素)及び酸化ガス(酸素、通常は空気)が供給され、これらが反応することにより電力を発生する。この電力発生(発電)過程で水が発生し、かつ発熱する。また、発電過程において、単位セル内では、水の流れや熱の移動等が相互に影響し、燃料ガス及び酸化ガスの流れの変化を招き、発電効率(性能)等に影響することになる。
このため、燃料電池の開発などを進める上で、上述した発電効率などに影響を及ぼす燃料ガス及び酸化ガスの流れ状況を容易に把握することが望まれている。
A fuel cell generally has a structure in which a large number (for example, several tens to several hundreds) of unit cells each having a membrane-electrode assembly sandwiched between separators (current collectors) are stacked. Then, a fuel gas (hydrogen) and an oxidizing gas (oxygen, usually air) are supplied to the unit cell through a gas flow path provided in the unit cell, and electric power is generated when these react. Water is generated and heat is generated during this power generation (power generation) process. Further, in the power generation process, the flow of water, the movement of heat, and the like influence each other in the unit cell, causing a change in the flow of the fuel gas and the oxidizing gas, thereby affecting the power generation efficiency (performance) and the like.
For this reason, it is desired to easily grasp the flow state of the fuel gas and the oxidizing gas that affect the above-described power generation efficiency and the like when developing a fuel cell.

なお、燃料電池の性能評価に関連して、特許文献1には固体高分子形燃料電池の電極性能評価装置が示されている。
特許文献1の固体高分子形燃料電池の電極性能評価装置は、膜−電極接合体(MEA)の両面を挟持する1対の集電体と、膜−電極接合体に印加する電圧の波形と掃引速度を制御する波形関数発生部と、集電体間に流れる電流を測定する電流測定部と、を備え、集電体に挟持された膜−電極接合体の静電容量を測定し、測定値に基づいて電極性能を評価するようにしている。
特開2004−220786号公報
In connection with the performance evaluation of the fuel cell, Patent Document 1 discloses an electrode performance evaluation apparatus for a polymer electrolyte fuel cell.
An electrode performance evaluation apparatus for a polymer electrolyte fuel cell of Patent Document 1 includes a pair of current collectors sandwiching both surfaces of a membrane-electrode assembly (MEA), and a waveform of a voltage applied to the membrane-electrode assembly. A waveform function generator that controls the sweep speed and a current measurement unit that measures the current flowing between the current collectors, and measures and measures the capacitance of the membrane-electrode assembly sandwiched between the current collectors The electrode performance is evaluated based on the value.
Japanese Patent Laid-Open No. 2004-220786

しかしながら、特許文献1の従来技術では、発電性能などに直接影響を及ぼす燃料ガス、酸化ガス及び水などの流体の流れ状況を把握するものではなく、上記要望に応えるものになっていないというのが実情であった。   However, the conventional technology of Patent Document 1 does not grasp the flow state of fluids such as fuel gas, oxidant gas, and water that directly affect the power generation performance, and does not meet the above demand. It was a fact.

また、燃料電池ではガス(酸素、水素)の流れのみならず、温度も性能に大きく影響する。すなわち、仮に、燃料電池の開発などを進めるために燃料ガス及び酸化ガス等の流体の流れ状況を把握するべく燃料電池を模擬するように性能評価装置(模擬燃料電池)を構成したとしても、この性能評価装置では、露点温度が下がり、模擬燃料電池のセルへ供給する加湿ガス〔バブラー等を通して水蒸気を含ませたガス〕中の水分が結露し、みかけの水量が増える。このため、この性能評価装置では、実際の燃料電池(単位セル)を適切には模擬し得るものではなく、上記要望(燃料ガス及び酸化ガスの流れ状況を容易に把握すること)に適切には応えられないというのが実情である。   Further, in the fuel cell, not only the flow of gas (oxygen, hydrogen) but also the temperature greatly affects the performance. That is, even if the performance evaluation device (simulated fuel cell) is configured to simulate the fuel cell so as to grasp the flow state of the fluid such as the fuel gas and the oxidizing gas in order to proceed with the development of the fuel cell, etc. In the performance evaluation device, the dew point temperature decreases, moisture in the humidified gas (gas containing water vapor through a bubbler or the like) supplied to the cells of the simulated fuel cell condenses, and the apparent amount of water increases. For this reason, in this performance evaluation apparatus, an actual fuel cell (unit cell) cannot be appropriately simulated, and is appropriate for the above-mentioned demand (to easily grasp the flow state of the fuel gas and the oxidizing gas). The fact is that we cannot respond.

本発明は、上記事情に鑑みてなされたものであり、実運転に即して燃料電池の内部現象を容易に再現できる燃料電池の性能評価装置及び性能評価方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell performance evaluation apparatus and a performance evaluation method that can easily reproduce internal phenomena of a fuel cell in accordance with actual operation.

請求項1記載の燃料電池の性能評価装置に係る発明は、ガス流路が形成されたセパレータで、膜−電極アッセンブリを挟むようにして構成される燃料電池の単位セルにおける前記セパレータに代えて模擬セパレータを設け、該模擬セパレータは、前記膜−電極アッセンブリ側に臨む一面側に前記ガス流路を形成した透明材料からなるセパレータ本体と、該セパレータ本体の前記一面側に、前記ガス流路に対応する部分を空けるように配置された集電電極とを備え、前記セパレータ本体の前記一面側と反対の他面側における前記ガス流路形成領域に対向する部分には、通電されて温度調整可能な透明材料からなるヒータを配置したことを特徴とする。   The invention relating to the fuel cell performance evaluation apparatus according to claim 1 is a separator in which a gas flow path is formed, and a simulated separator is used instead of the separator in the unit cell of the fuel cell configured to sandwich the membrane-electrode assembly. The simulated separator includes a separator body made of a transparent material in which the gas flow path is formed on one surface facing the membrane-electrode assembly side, and a portion corresponding to the gas flow path on the one surface side of the separator body. A transparent material capable of adjusting the temperature by energizing a portion facing the gas flow path forming region on the other surface side opposite to the one surface side of the separator body. The heater which consists of is arrange | positioned.

請求項2記載の発明は、請求項1記載の燃料電池の性能評価装置において、前記集電電極は、透明材料からなることを特徴とする。
請求項3記載の燃料電池の性能評価方法に係る発明は、請求項1又は2に記載の燃料電池の性能評価装置を用い、ヒータによる温度調整を行いつつ、前記セパレータ本体及び前記ヒータを通して、ガス流路を流れる流体を観察し、観察結果に基づいて燃料電池の性能を評価することを特徴とする。
According to a second aspect of the present invention, in the fuel cell performance evaluation apparatus according to the first aspect, the current collecting electrode is made of a transparent material.
According to a third aspect of the present invention, there is provided a fuel cell performance evaluation method using the fuel cell performance evaluation apparatus according to the first or second aspect, wherein the gas is passed through the separator body and the heater while adjusting the temperature with the heater. The present invention is characterized in that the fluid flowing through the flow path is observed and the performance of the fuel cell is evaluated based on the observation result.

請求項1から3に記載の発明によれば、ヒータで保温した状態で、ガス流路において生じている現象を、ヒータ及びセパレータ本体を通して観察できる。
請求項2に記載の発明によれば、ヒータで保温した状態で、ガス流路を含むガス流路形成領域及び膜−電極アッセンブリにおいて生じている現象を、ヒータ、セパレータ本体及び透明材料からなる集電電極を通して観察できる。
According to the first to third aspects of the present invention, a phenomenon occurring in the gas flow path can be observed through the heater and the separator body while being kept warm by the heater.
According to the second aspect of the present invention, the phenomenon occurring in the gas flow path forming region including the gas flow path and the membrane-electrode assembly in a state where the temperature is maintained by the heater is a phenomenon that includes the heater, the separator body, and the transparent material. It can be observed through the electrode.

以下、本発明の第1実施の形態に係る燃料電池の性能評価装置を図1及び図2に基づいて説明する。
図1において、1は、燃料電池自動車に搭載される燃料電池(以下、便宜上、適宜、実燃料電池という。)の単位セル(以下、便宜上、適宜、実セルという。)を模擬して構成される性能評価装置であり、実セルひいては実燃料電池の性能評価を行うために用いられ、この性能評価を通じて燃料電池の現象解明・設計・シミュレーション開発に利用し得るようになっている。性能評価装置1は、実燃料電池に用いられている膜−電極アッセンブリ2(MEA:Membrane-Electrode Assembly )を、実燃料電池のセパレータに相当する模擬セパレータ3で挟み、かつ、膜−電極アッセンブリ2及び両模擬セパレータ3間に実燃料電池に用いられている拡散層4を介在させて構成され、実燃料電池における単位セルに相当したものになっている。
Hereinafter, a fuel cell performance evaluation apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, reference numeral 1 is configured to simulate a unit cell (hereinafter referred to as an actual cell as appropriate for convenience) of a fuel cell (hereinafter referred to as an actual fuel cell as appropriate for convenience) mounted on a fuel cell vehicle. It is used to evaluate the performance of actual cells and, in turn, actual fuel cells. Through this performance evaluation, it can be used for elucidating, designing, and developing simulations of fuel cells. The performance evaluation apparatus 1 includes a membrane-electrode assembly 2 (MEA: Membrane-Electrode Assembly) used in an actual fuel cell sandwiched between simulated separators 3 corresponding to the separator of the actual fuel cell, and the membrane-electrode assembly 2. The diffusion layer 4 used in the actual fuel cell is interposed between the simulated separators 3 and corresponds to a unit cell in the actual fuel cell.

図1上側、下側の模擬セパレータ3、3を、以下、それぞれ第1、第2模擬セパレータ3a,3bという。性能評価装置1は、第1、第2模擬セパレータ3a,3b側について略同等に構成されている。まず、第1模擬セパレータ3a側の構成を説明する。
第1模擬セパレータ3aは、膜−電極アッセンブリ2側に臨む一面6側に1条のガス流路(以下、第1セパレータ本体側ガス流路という。)8aを形成した石英などの透明材料からなる略矩形のセパレータ本体(以下、第1セパレータ本体という。)9aと、第1セパレータ本体9aの前記一面6側に配置された集電電極10とを備えている。集電電極10は、薄膜の金属材料で構成されている。第1セパレータ本体9aの4つの側面部のうち図1紙面手前側、紙面向う(図1では見えていない)側のものを第1、第2側面部11a,12aといい、図1右側、左側のものを第3、第4側面部13a,14aという。また、第1セパレータ本体9aの前記一面6の反対側を他面7側という。
The upper and lower simulated separators 3 and 3 in FIG. 1 are hereinafter referred to as first and second simulated separators 3a and 3b, respectively. The performance evaluation device 1 is configured substantially equivalently on the first and second simulated separators 3a and 3b sides. First, the configuration on the first simulated separator 3a side will be described.
The first simulated separator 3a is made of a transparent material such as quartz in which one gas flow path (hereinafter referred to as a first separator main body side gas flow path) 8a is formed on one surface 6 facing the membrane-electrode assembly 2 side. A substantially rectangular separator main body (hereinafter referred to as a first separator main body) 9a and a collecting electrode 10 disposed on the one surface 6 side of the first separator main body 9a are provided. The current collecting electrode 10 is made of a thin metal material. Of the four side surfaces of the first separator main body 9a, those on the front side in FIG. 1 and on the side facing the paper (not visible in FIG. 1) are referred to as first and second side surfaces 11a and 12a. These are referred to as third and fourth side surfaces 13a and 14a. The opposite side of the first surface 6 of the first separator body 9a is referred to as the other surface 7 side.

第1セパレータ本体側ガス流路8aは、凹状とされて第1側面部11aから第2側面部12aに向けて延びて形成されており、酸素ガス(O2)を通すようになっている。
集電電極10は、第1セパレータ本体側ガス流路8aに対応する部分を空けるように第3、第4側面部13a,14a側にそれぞれ配置されており、第1セパレータ本体側ガス流路8aを覆わないようにしている。
The first separator main body side gas flow path 8a is formed in a concave shape so as to extend from the first side surface portion 11a toward the second side surface portion 12a, and allows oxygen gas (O 2 ) to pass therethrough.
The current collecting electrode 10 is disposed on each of the third and fourth side surface portions 13a and 14a so as to open a portion corresponding to the first separator main body side gas flow path 8a, and the first separator main body side gas flow path 8a. Is not covered.

第1セパレータ本体9aの他面7側における第1セパレータ本体側ガス流路8aの形成領域に対向する部分には、通電されて温度調整可能な透明材料〔この例ではITO(インジリウム・スズ酸化物)〕からなる薄膜のヒータ16が配置されている。ヒータ16の第3、第4側面部13a,14a側には、ヒータ16に通電するための電極(以下、ヒータ用電極という。)17が配置されている。   A portion of the other surface 7 side of the first separator body 9a facing the formation region of the first separator body-side gas flow path 8a is provided with a transparent material [in this example, ITO (Indylium Tin Oxide] ] Is a thin film heater 16. Electrodes (hereinafter referred to as heater electrodes) 17 for energizing the heater 16 are disposed on the third and fourth side surface portions 13 a and 14 a of the heater 16.

次に、性能評価装置1の第2模擬セパレータ3b側の構成について、上述した第1模擬セパレータ3a側の構成を適宜参照して説明する。
第2模擬セパレータ3bは、膜−電極アッセンブリ2側に臨む一面6側に1条のガス流路(以下、第2セパレータ本体側ガス流路という。)8bを形成した石英などの透明材料からなる略矩形の第2セパレータ本体9bと、第2セパレータ本体9bの前記一面6側に配置され、第1模擬セパレータ3a側の前記集電電極10と同等に構成される集電電極10と、を備えている。第2セパレータ本体9bの4つの側面部について、第1セパレータ本体9aに対応させて第1〜第4側面部11b〜14bといい、また、第2セパレータ本体9bの前記一面6の反対側を他面7側という。
Next, the configuration of the performance evaluation apparatus 1 on the second simulated separator 3b side will be described with reference to the above-described configuration of the first simulated separator 3a as appropriate.
The second simulated separator 3b is made of a transparent material such as quartz in which a single gas flow path (hereinafter referred to as a second separator main body side gas flow path) 8b is formed on the surface 6 side facing the membrane-electrode assembly 2 side. A substantially rectangular second separator body 9b, and a collecting electrode 10 disposed on the one surface 6 side of the second separator body 9b and configured to be equivalent to the collecting electrode 10 on the first simulated separator 3a side. ing. The four side surfaces of the second separator main body 9b are referred to as first to fourth side surface portions 11b to 14b corresponding to the first separator main body 9a, and the other side of the one surface 6 of the second separator main body 9b is the other side. It is called the surface 7 side.

第2セパレータ本体9bの一面6側における第3、第4側面部13b,14b間の中央部分には、水素ガス(H2)を通すための凹状のガス流路(以下、第2セパレータ本体側ガス流路という。)8bが形成されている。第2セパレータ本体側ガス流路8bは、第1側面部11bから第2側面部12bに向けて延びて形成されている。
集電電極10は、第2セパレータ本体側ガス流路8bに対応する部分を空けるように第3、第4側面部13b,14b側にそれぞれ配置されており、第2セパレータ本体側ガス流路8bを覆わないようにしている。
A concave gas flow path (hereinafter referred to as the second separator main body side) through which hydrogen gas (H 2 ) is passed in the central portion between the third and fourth side surface portions 13b and 14b on the one surface 6 side of the second separator main body 9b. (Referred to as gas flow path) 8b is formed. The second separator main body side gas flow path 8b is formed extending from the first side surface portion 11b toward the second side surface portion 12b.
The collector electrode 10 is disposed on each of the third and fourth side surface portions 13b and 14b so as to open a portion corresponding to the second separator main body side gas flow path 8b, and the second separator main body side gas flow path 8b. Is not covered.

第2セパレータ本体9bの他面7側における第2セパレータ本体側ガス流路8bの形成領域に対向する部分には、通電されて温度調整可能な透明材料〔この例ではITO(インジリウム・スズ酸化物)〕からなる薄膜のヒータ16が配置されている。ヒータ16の第3、第4側面部13b,14b側には、ヒータ16に通電するためのヒータ用電極17が配置されている。   A portion of the second separator main body 9b facing the formation region of the second separator main body side gas flow path 8b on the other surface 7 side has a transparent material [in this example, ITO (Indyllium Tin Oxide] ] Is a thin film heater 16. A heater electrode 17 for energizing the heater 16 is disposed on the third and fourth side surface portions 13 b and 14 b of the heater 16.

この性能評価装置1では、実燃料電池の場合と同様に、第1、第2セパレータ本体側ガス流路8a,8bを通して供給される酸素ガス及び水素ガスが反応して、電力を発生し、この電力発生(発電)過程で水を発生する。発電過程で発生した水並びに酸素ガス及び水素ガス中に含まれて凝固した水は第1、第2セパレータ本体側ガス流路8a,8bを通して排出される。   In this performance evaluation apparatus 1, as in the case of an actual fuel cell, the oxygen gas and hydrogen gas supplied through the first and second separator main body side gas flow paths 8a and 8b react to generate electric power. Water is generated during the power generation (power generation) process. Water generated in the power generation process and water solidified in oxygen gas and hydrogen gas are discharged through the first and second separator main body side gas flow paths 8a and 8b.

また、この性能評価装置1では、ヒータ16ヘの通電を制御して温度管理し、発生する熱が外部に排出されないように保温するようにしている。そして、このように保温することにより、実際の燃料電池が発電時に生じる温度を維持し、実際の燃料電池で生じる酸素ガス、水素ガス及び水の流れ状況を含む内部現象に近づけて、精度高い性能評価を行えるようにしている。保温温度は、ヒータ16の電気抵抗を変えて調整するようにしている。   Further, in this performance evaluation apparatus 1, temperature control is performed by controlling energization to the heater 16 so as to keep the generated heat from being discharged outside. And by keeping the temperature in this way, the temperature generated by the actual fuel cell during power generation is maintained, and it is close to internal phenomena including the flow situation of oxygen gas, hydrogen gas, and water generated in the actual fuel cell, and high performance is achieved. The evaluation is made possible. The heat insulation temperature is adjusted by changing the electric resistance of the heater 16.

上述したように構成した性能評価装置1では、第1セパレータ本体側ガス流路8aを流れる水を、第1セパレータ本体9a及びヒータ16を通して観察でき、かつ第2セパレータ本体側ガス流路8bを流れる水を、第2セパレータ本体9b及びヒータ16を通して観察できる。すなわち、性能評価装置1は、第1、第2セパレータ本体9bにおける水の流れを可視化するものになっていることにより、水の流れる状況、ひいては水の流れに対応したガス(酸素ガス及び水素ガス)の供給状況(流れ状況)の把握、さらには、水及びガスの流れに対応する燃料電池(単位セル)の性能評価を容易に行うことができる。   In the performance evaluation apparatus 1 configured as described above, the water flowing through the first separator main body side gas flow path 8a can be observed through the first separator main body 9a and the heater 16, and flows through the second separator main body side gas flow path 8b. Water can be observed through the second separator body 9 b and the heater 16. That is, the performance evaluation device 1 visualizes the flow of water in the first and second separator main bodies 9b, so that the gas (oxygen gas and hydrogen gas) corresponding to the water flow state and eventually the water flow. ) Supply status (flow status), and further, performance evaluation of the fuel cell (unit cell) corresponding to the flow of water and gas can be easily performed.

また、上述した水及びガスの流れ状況の把握は、保温された状態で行うので、実燃料電池における状況を略再現した状態で行える。このため、上述した可視化に伴う水及びガスの流れ状況の把握並びに燃料電池(単位セル)の性能評価の容易化に加えて、単位セルひいては燃料電池の性能評価をより精度高く行えることになる。
さらに、このように単位セルひいては燃料電池の性能評価を容易に、かつ精度高く行えることにより、第1、第2セパレータ本体側ガス流路8a,8bの最適形状や大きさ、酸素ガス及び水素ガスの供給量等の設定などに用いることができ、燃料電池の開発に活用することができる。
In addition, since the water and gas flow conditions described above are grasped while being kept warm, the situation in the actual fuel cell can be substantially reproduced. For this reason, in addition to grasping the flow state of water and gas accompanying the above-mentioned visualization and facilitating the performance evaluation of the fuel cell (unit cell), the performance evaluation of the unit cell and thus the fuel cell can be performed with higher accuracy.
Furthermore, the performance evaluation of the unit cell and thus the fuel cell can be performed easily and with high accuracy, so that the optimum shape and size of the first and second separator main body side gas passages 8a and 8b, oxygen gas and hydrogen gas can be obtained. It can be used for setting the supply amount of fuel, and can be used for the development of fuel cells.

本発明者は、ヒータ16を用いて温度調整を行い、異なる温度〔第1〜第4温度T1〜T4(T1<T2<T3<T4)〕に設定して、性能評価装置1が発生する電圧V及び電流Iを測定し、図2に示すように、温度に対応した第1〜第4電圧−電流特性A1〜A4を得た。
図2で示されるように、温度によってこの性能評価装置1の電圧−電流特性(ひいては性能)は変化するが、このことは実燃料電池にも言えることである。そして、この性能評価装置1は、保温された状態で水及びガスの流れ状況を観察するので、単位セルひいては燃料電池の性能評価をより精度高く行えることになる。
The inventor adjusts the temperature using the heater 16 and sets different temperatures [first to fourth temperatures T1 to T4 (T1 <T2 <T3 <T4)] to generate a voltage generated by the performance evaluation apparatus 1. V and current I were measured, and as shown in FIG. 2, first to fourth voltage-current characteristics A1 to A4 corresponding to temperature were obtained.
As shown in FIG. 2, the voltage-current characteristic (and hence the performance) of the performance evaluation device 1 varies depending on the temperature, and this is also true for an actual fuel cell. And since this performance evaluation apparatus 1 observes the flow condition of water and gas in the state kept warm, the performance evaluation of a unit cell and a fuel cell can be performed with higher accuracy.

次に、本発明の第2実施の形態に係る燃料電池の性能評価装置1Aを、図3に基づき、図1を参照して説明する。
図3の性能評価装置1A(第2実施の形態)は、図1の性能評価装置1(第1実施の形態)に比して、図1の集電電極10に代えて、ITO(透明材料)の薄膜からなる集電電極(以下、便宜上、透明集電電極という。)10Aを設けたこと、及びこれに伴い第1、第2模擬セパレータ3a,3bに代わる第1、第2模擬セパレータ3Aa,3Abを設けたことが異なっている。
Next, a fuel cell performance evaluation apparatus 1A according to a second embodiment of the present invention will be described with reference to FIG. 1 based on FIG.
The performance evaluation apparatus 1A (second embodiment) in FIG. 3 is replaced with ITO (transparent material) instead of the current collecting electrode 10 in FIG. 1 as compared with the performance evaluation apparatus 1 (first embodiment) in FIG. ) And a first simulated separator 3Aa that replaces the first and second simulated separators 3a, 3b. , 3Ab is different.

この性能評価装置1Aによれば、透明集電電極10Aを通して、この透明集電電極10Aに対面した拡散層4表面の状況を観察することができる。第1実施の形態の性能評価装置1では、観察範囲は第1、第2セパレータ本体側ガス流路8a,8b部分に制約され、集電電極10に対面した拡散層4表面の状況を観察することができなかった。これに対し、この第2実施の形態の性能評価装置1Aでは、その観察が可能となるので、より精度高く単位セル内の現象を把握することができる。   According to this performance evaluation apparatus 1A, the state of the surface of the diffusion layer 4 facing the transparent collector electrode 10A can be observed through the transparent collector electrode 10A. In the performance evaluation apparatus 1 of the first embodiment, the observation range is restricted to the first and second separator body side gas flow paths 8a and 8b, and the state of the surface of the diffusion layer 4 facing the current collecting electrode 10 is observed. I couldn't. On the other hand, the performance evaluation apparatus 1A according to the second embodiment makes it possible to observe the phenomenon, so that the phenomenon in the unit cell can be grasped with higher accuracy.

上記各実施の形態では、第1、第2セパレータ本体側ガス流路8a,8bが1条である場合を例にしたが、本発明はこれに限られず、複数条設けるようにしてもよい。また、第1、第2セパレータ本体側ガス流路8a,8bは、直線状に延びる形状を例にしたが、これに限らず、屈曲したり、湾曲した形状であってもよい。   In each of the above embodiments, the case where the first and second separator main body side gas flow paths 8a and 8b are one line is taken as an example. However, the present invention is not limited to this, and a plurality of lines may be provided. In addition, the first and second separator main body side gas flow paths 8a and 8b are exemplified by shapes extending linearly, but are not limited thereto, and may be bent or curved.

本発明の第1実施の形態に係る燃料電池の性能評価装置を模式的に示す斜視図である。1 is a perspective view schematically showing a fuel cell performance evaluation apparatus according to a first embodiment of the present invention. 図1の性能評価装置が発生する電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic which the performance evaluation apparatus of FIG. 1 generate | occur | produces. 本発明の第2実施の形態に係る燃料電池の性能評価装置を模式的に示す斜視図である。It is a perspective view which shows typically the performance evaluation apparatus of the fuel cell which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1、1A…性能評価装置、2…膜−電極アッセンブリ、3a、3b…第1、第2模擬セパレータ、8a、8b…第1、第2セパレータ本体側ガス流路、9a、9b…第1、第2セパレータ本体、10…集電電極、10A…透明集電電極。   DESCRIPTION OF SYMBOLS 1, 1A ... Performance evaluation apparatus, 2 ... Membrane-electrode assembly, 3a, 3b ... 1st, 2nd simulation separator, 8a, 8b ... 1st, 2nd separator main body side gas flow path, 9a, 9b ... 1st, Second separator body, 10 ... current collecting electrode, 10A ... transparent current collecting electrode.

Claims (3)

ガス流路が形成されたセパレータで、膜−電極アッセンブリを挟むようにして構成される燃料電池の単位セルにおける前記セパレータに代えて模擬セパレータを設け、
該模擬セパレータは、前記膜−電極アッセンブリ側に臨む一面側に前記ガス流路を形成した透明材料からなるセパレータ本体と、該セパレータ本体の前記一面側に、前記ガス流路に対応する部分を空けるように配置された集電電極とを備え、
前記セパレータ本体の前記一面側と反対の他面側における前記ガス流路形成領域に対向する部分には、通電されて温度調整可能な透明材料からなるヒータを配置したことを特徴とする燃料電池の性能評価装置。
In the separator in which the gas flow path is formed, a simulated separator is provided instead of the separator in the unit cell of the fuel cell configured to sandwich the membrane-electrode assembly,
The simulated separator has a separator body made of a transparent material in which the gas flow path is formed on one surface facing the membrane-electrode assembly side, and a portion corresponding to the gas flow path is formed on the one surface side of the separator body. And a collecting electrode arranged as follows,
A fuel cell comprising a heater made of a transparent material that is energized and adjustable in temperature at a portion facing the gas flow path formation region on the other surface side opposite to the one surface side of the separator body. Performance evaluation device.
前記集電電極は、透明材料からなることを特徴とする請求項1記載の燃料電池の性能評価装置。   2. The fuel cell performance evaluation apparatus according to claim 1, wherein the current collecting electrode is made of a transparent material. 請求項1又は2に記載の燃料電池の性能評価装置を用い、ヒータによる温度調整を行いつつ、前記セパレータ本体及び前記ヒータを通して、ガス流路を流れる流体を観察し、観察結果に基づいて燃料電池の性能を評価することを特徴とする燃料電池の性能評価方法。


3. The fuel cell performance evaluation apparatus according to claim 1 or 2, wherein the fluid flowing through the gas flow path is observed through the separator body and the heater while adjusting the temperature with a heater, and the fuel cell is based on the observation result. A method for evaluating the performance of a fuel cell, comprising evaluating the performance of the fuel cell.


JP2005044208A 2005-02-21 2005-02-21 Fuel cell performance evaluation apparatus and performance evaluation method Expired - Fee Related JP4816867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044208A JP4816867B2 (en) 2005-02-21 2005-02-21 Fuel cell performance evaluation apparatus and performance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044208A JP4816867B2 (en) 2005-02-21 2005-02-21 Fuel cell performance evaluation apparatus and performance evaluation method

Publications (2)

Publication Number Publication Date
JP2006228671A true JP2006228671A (en) 2006-08-31
JP4816867B2 JP4816867B2 (en) 2011-11-16

Family

ID=36989842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044208A Expired - Fee Related JP4816867B2 (en) 2005-02-21 2005-02-21 Fuel cell performance evaluation apparatus and performance evaluation method

Country Status (1)

Country Link
JP (1) JP4816867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159388A1 (en) * 2009-12-29 2011-06-30 Korea Advanced Institute Of Science And Technology Visualization Apparatus for PEMFC Stack
KR101052353B1 (en) 2009-11-04 2011-07-27 한국과학기술원 Thermal management fuel cell visualization device
US8647789B2 (en) 2009-12-29 2014-02-11 Korean Advanced Institute Of Science And Technology Visualization apparatus for large area PEMFC

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314999A (en) * 1992-05-06 1993-11-26 Mitsubishi Electric Corp Fuel cell
JP2000123854A (en) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2001076747A (en) * 1999-08-31 2001-03-23 Micro:Kk Solid polymer fuel cell
JP2002313380A (en) * 2001-04-13 2002-10-25 Aisin Seiki Co Ltd Method and device for evaluating draining characteristics of solid polymer electrolyte fuel cell
JP2003241108A (en) * 2002-02-21 2003-08-27 Tokai Hit:Kk Apparatus for managing inspection sample temperature for microscope observation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314999A (en) * 1992-05-06 1993-11-26 Mitsubishi Electric Corp Fuel cell
JP2000123854A (en) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2001076747A (en) * 1999-08-31 2001-03-23 Micro:Kk Solid polymer fuel cell
JP2002313380A (en) * 2001-04-13 2002-10-25 Aisin Seiki Co Ltd Method and device for evaluating draining characteristics of solid polymer electrolyte fuel cell
JP2003241108A (en) * 2002-02-21 2003-08-27 Tokai Hit:Kk Apparatus for managing inspection sample temperature for microscope observation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052353B1 (en) 2009-11-04 2011-07-27 한국과학기술원 Thermal management fuel cell visualization device
US20110159388A1 (en) * 2009-12-29 2011-06-30 Korea Advanced Institute Of Science And Technology Visualization Apparatus for PEMFC Stack
KR101165961B1 (en) * 2009-12-29 2012-07-18 한국과학기술원 Visualization apparatus for PEMFC stack
US8647789B2 (en) 2009-12-29 2014-02-11 Korean Advanced Institute Of Science And Technology Visualization apparatus for large area PEMFC

Also Published As

Publication number Publication date
JP4816867B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5154946B2 (en) Integrated current collector and electrical component plate for fuel cell stack
Leah et al. Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600° C
Costamagna et al. Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC)
Taniguchi et al. Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material
Milewski et al. A reduced order model of molten carbonate fuel cell: A proposal
JP6144180B2 (en) Fuel cell humidification control method
JP4816867B2 (en) Fuel cell performance evaluation apparatus and performance evaluation method
Jung et al. Experimental evaluation of an ambient forced-feed air-supply PEM fuel cell
JP5474839B2 (en) Fuel cell current density distribution measuring device
Ghezel-Ayagh et al. Review of Progress in Solid Oxide Fuel Cells at FuelCell Energy
Laurencin et al. Impact of cell design and operating conditions on the performances of SOFC fuelled with methane
Leah et al. Low-cost, redox-stable, low-temperature SOFC developed by Ceres Power for multiple applications: Latest development update
JP4447272B2 (en) Fuel cell evaluation system
Lu et al. Numerical study of a flat-tube high power density solid oxide fuel cell: Part II: Cell performance and stack optimization
Hou et al. A transient semi-empirical voltage model of a fuel cell stack
CN114551937B (en) Performance detection system and method for fuel cell
Ghezel-Ayagh et al. review of Progress in solid oxide fuel cell at FuelCell energy
Hua et al. Modeling and experimental study of PEM fuel cell transient response for automotive applications
Nakajima Electrochemical impedance spectroscopy study of the mass transfer in an anode-supported microtubular solid oxide fuel cell
JP2010225433A (en) Fuel cell
JP2006310152A (en) Evaluation cell for solid polymer fuel cell and manufacturing method for separator for the cell
JP2007095573A (en) Fuel cell and evaluation method of fuel cell
JP2008176944A (en) Inspection method of fuel cell
Grondin et al. Optimization of SOFC interconnect design using multiphysic computation
Li et al. An easy-to-approach and comprehensive model for planar type SOFCs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees