JP2012129148A - Fuel battery - Google Patents

Fuel battery Download PDF

Info

Publication number
JP2012129148A
JP2012129148A JP2010281798A JP2010281798A JP2012129148A JP 2012129148 A JP2012129148 A JP 2012129148A JP 2010281798 A JP2010281798 A JP 2010281798A JP 2010281798 A JP2010281798 A JP 2010281798A JP 2012129148 A JP2012129148 A JP 2012129148A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
pressure
pressure difference
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281798A
Other languages
Japanese (ja)
Other versions
JP5580724B2 (en
Inventor
Hideki Uematsu
秀樹 上松
Daisuke Komatsu
大祐 小松
Yasuo Okuyama
康生 奥山
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010281798A priority Critical patent/JP5580724B2/en
Publication of JP2012129148A publication Critical patent/JP2012129148A/en
Application granted granted Critical
Publication of JP5580724B2 publication Critical patent/JP5580724B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery in which the contact resistance in a fuel battery stack is reduced.SOLUTION: The fuel battery comprises: a fuel battery cell main body having first and second principal faces; a first gas chamber disposed on the side of the first principal face; a second gas chamber disposed on the side of the second principal face; a current collector put in contact with the first principal face, and having a hollow part; a supplying part operable to supply gas to the hollow part, and to change the contact condition of the current collector and the first principal face; a pressure difference detector operable to detect a pressure difference between a pressure in the hollow part and a pressure in the first gas chamber; and a control part operable to control the gas supply by the supplying part based on the pressure difference.

Description

本発明は,燃料電池に関する。   The present invention relates to a fuel cell.

燃料電池として,電解質に固体酸化物を用いた固体酸化物形燃料電池(SOFC)が知られている。SOFCは,例えば,板状の固体電解質体の各面に燃料極と空気極とを備えた燃料電池セル本体を多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガスおよび酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質体を介して化学反応させる。   As a fuel cell, a solid oxide fuel cell (SOFC) using a solid oxide as an electrolyte is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cell main bodies each provided with a fuel electrode and an air electrode are stacked on each surface of a plate-shaped solid electrolyte body. A fuel gas and an oxidant gas (for example, oxygen in the air) are supplied to the fuel electrode and the air electrode, respectively, to cause a chemical reaction through the solid electrolyte body.

ここで,起動時に燃料電池スタックの温度上昇を早めることができる技術が公開されている(特許文献1参照)。内部が空洞の中空集電板を用い,昇温時に,この空洞部に低圧力の流体を満たして,中空集電板を凹ませる。この結果,中空集電板の接触抵抗が高くなり,接触抵抗によるジュール熱が大きくなり,燃料電池スタックを素早く昇温できる。   Here, a technology that can accelerate the temperature rise of the fuel cell stack at the time of startup is disclosed (see Patent Document 1). A hollow current collector plate with a hollow inside is used, and when the temperature rises, the hollow current collector plate is recessed by filling the cavity with a low-pressure fluid. As a result, the contact resistance of the hollow collector plate is increased, the Joule heat due to the contact resistance is increased, and the temperature of the fuel cell stack can be quickly increased.

ところで,燃料電池の運転時(起動,発電,停止)において,温度サイクル,発電時の燃料電池スタックでの発熱による熱膨張収縮により,燃料電池スタック内での電気的接続状態が低下する場合がある。即ち,燃料電池スタック内,特に積層されている燃料電池セル本体間及び集電体と燃料電池セル本体間での物理的接触が劣化して,接触抵抗が増加し,燃料電池の発電効率の低下を招く可能性がある。   By the way, during the operation of the fuel cell (startup, power generation, shutdown), the electrical connection state in the fuel cell stack may be reduced due to thermal expansion and contraction due to temperature cycle and heat generation in the fuel cell stack during power generation. . That is, the physical contact within the fuel cell stack, particularly between the stacked fuel cell bodies and between the current collector and the fuel cell body deteriorates, the contact resistance increases, and the power generation efficiency of the fuel cell decreases. May be incurred.

この物理的接触を維持する方法として,燃料電池スタック内にセラミックバネ,耐熱鋼バネ等の弾性部材を付加して,集電体と燃料電池セル本体間に圧力を印加することが考えられる。しかし,弾性部材の追加による高コスト化,弾性部材のクリープ変形によるバネ性低下など耐久性に課題がある。
バネ等の押圧部材により燃料電池スタックを外部から加圧することも考えられる。しかし,燃料電池スタックを覆う断熱容器からの放熱量増加,押圧部材からの熱伝導による放熱量の増加などが課題である。
As a method of maintaining this physical contact, it is conceivable to add an elastic member such as a ceramic spring or a heat-resistant steel spring in the fuel cell stack and apply pressure between the current collector and the fuel cell body. However, there are problems in durability such as high cost by adding an elastic member and lowering of spring property due to creep deformation of the elastic member.
It is also conceivable to pressurize the fuel cell stack from the outside with a pressing member such as a spring. However, there are problems such as an increase in heat dissipation from the heat insulating container covering the fuel cell stack and an increase in heat dissipation due to heat conduction from the pressing member.

特開2006−164680号公報JP 2006-164680 A

本発明は,燃料電池スタック内での接触抵抗の低減を図った燃料電池を提供することを目的とする。   An object of the present invention is to provide a fuel cell in which the contact resistance in the fuel cell stack is reduced.

A.本発明の一態様に係る燃料電池は,第1,第2の主面を有し,かつ,前記第1の主面側に第1ガス室が,前記第2の主面側に第2ガス室が,それぞれ配置される燃料電池セル本体と,前記第1の主面と接触し,かつ中空部を有する集電体と,前記中空部にガスを供給し,前記集電体と前記第1の主面との接触状態を変化させる供給部と,前記中空部内の圧力と,前記第1ガス室内の圧力との圧力差を検出する圧力差検出部と,前記圧力差に基づいて,前記供給部によるガスの供給を制御する制御部と,を具備する。
第1ガス室と中空部の圧力差に基づいて,中空部へのガスの供給を制御することで,燃料電池セル本体と集電体の接触状態を適切な状態に保ち,接触抵抗の増大を防止できる。
A. A fuel cell according to an aspect of the present invention has first and second main surfaces, a first gas chamber on the first main surface side, and a second gas on the second main surface side. The chambers are respectively disposed in the fuel cell main body, the current collector in contact with the first main surface and having a hollow portion, gas is supplied to the hollow portion, and the current collector and the first Based on the pressure difference, the supply unit that changes the contact state with the main surface, the pressure difference detection unit that detects the pressure difference between the pressure in the hollow portion and the pressure in the first gas chamber, And a control unit for controlling gas supply by the unit.
By controlling the gas supply to the hollow part based on the pressure difference between the first gas chamber and the hollow part, the contact state between the fuel cell body and the current collector is maintained in an appropriate state, and the contact resistance is increased. Can be prevented.

(1)燃料電池が,前記集電体と前記燃料電池セル本体間での直流電圧損失を検出する損失検出部をさらに具備し,前記制御部が,前記圧力差および前記直流電圧損失に基づいて,ガスの供給を制御しても良い。
圧力差および直流電圧損失に基づいて,中空部へのガスの供給を制御することで,燃料電池セル本体と集電体の接触状態をより適切な状態に保つことができる。
(1) The fuel cell further includes a loss detection unit that detects a DC voltage loss between the current collector and the fuel cell body, and the control unit is based on the pressure difference and the DC voltage loss. , Gas supply may be controlled.
By controlling the gas supply to the hollow portion based on the pressure difference and the DC voltage loss, the contact state between the fuel cell body and the current collector can be maintained in a more appropriate state.

(2)前記供給部が,前記ガスを加圧する加圧ポンプと,前記加圧されたガスを前記中空部内へ供給する第1管路と,前記加圧されたガスを前記第1ガス室へ供給する第2管路と,前記第2管路に配置され,前記第1ガス室側から前記供給部へのガスの逆流を防止する逆止弁と,を備えても良い。
逆止弁での圧力損失により,第1ガス室と中空部間に圧力差を生じさせ,接触抵抗の増大を防止することができる。
(2) The supply unit pressurizes the gas, a first pipe for supplying the pressurized gas into the hollow portion, and the pressurized gas to the first gas chamber. You may provide the 2nd pipe line to supply, and the non-return valve which is arrange | positioned in the said 2nd pipe line and prevents the backflow of the gas from the said 1st gas chamber side to the said supply part.
Due to the pressure loss at the check valve, a pressure difference is generated between the first gas chamber and the hollow portion, and an increase in contact resistance can be prevented.

(3)前記供給部が,前記ガスを加圧する加圧ポンプと,前記加圧されたガスを前記中空部内へ供給する第1管路と,前記加圧されたガスを前記第1ガス室へ供給する第2管路と,前記第2管路に配置され,開度が調整可能なニードル弁と,を備えても良い。
ニードル弁を用いて第1ガス室と中空部間の圧力差を調節できる。
(3) The supply unit pressurizes the gas, a first pipe for supplying the pressurized gas into the hollow portion, and the pressurized gas to the first gas chamber. You may provide the 2nd pipe line to supply and the needle valve which is arrange | positioned at the said 2nd pipe line and the opening degree can be adjusted.
The pressure difference between the first gas chamber and the hollow portion can be adjusted using a needle valve.

(4)前記供給部が,前記ガスを加圧する加圧ポンプと,前記加圧されたガスを前記中空部内へ供給する第1管路と,前記加圧されたガスを前記第1ガス室へ供給する第2管路と,前記第1管路に配置され,前記加圧されたガスの前記中空部内への供給を調節する第1の弁と,前記第1管路に配置され,前記中空部内からガスを排出する第2の弁と,を有し,前記圧力差が所定値より小さい場合に,前記制御部が,前記第1の弁を開状態とし,前記圧力差が前記所定値より大きい場合に,前記制御部が,前記第2の弁を開状態としても良い。
第1,第2の弁を用いて第1ガス室と中空部間の圧力差をより広範囲に調節できる。
(4) The supply unit pressurizes the gas, a first pipe for supplying the pressurized gas into the hollow portion, and the pressurized gas to the first gas chamber. A second pipe to be supplied; a first valve arranged in the first pipe for adjusting the supply of the pressurized gas into the hollow part; and arranged in the first pipe and the hollow A second valve for discharging gas from the inside, and when the pressure difference is smaller than a predetermined value, the control unit opens the first valve, and the pressure difference is less than the predetermined value. If larger, the control unit may open the second valve.
Using the first and second valves, the pressure difference between the first gas chamber and the hollow portion can be adjusted over a wider range.

(5)前記供給部が, 前記第2管路に配置され,前記燃料電池セル本体側から前記供給部へのガスの逆流を防止する逆止弁と,前記第1の弁よりも上流側の圧力と,前記逆止弁よりも上流側の圧力との差を検出する第2の圧力差検出部をさらに備え,前記第2の圧力差が前記圧力差より小さい場合に,前記制御部が前記加圧ポンプを動作させて前記ガスを加圧させても良い。
第2の圧力差が前記圧力差より小さい場合に,加圧ポンプを動作させることで,加圧ポンプの不要な動作を低減できる。
(5) The supply unit is disposed in the second pipe line, and includes a check valve that prevents a backflow of gas from the fuel cell body side to the supply unit, and an upstream side of the first valve. A second pressure difference detector that detects a difference between the pressure and a pressure upstream of the check valve, and when the second pressure difference is smaller than the pressure difference, the controller The gas may be pressurized by operating a pressure pump.
When the second pressure difference is smaller than the pressure difference, unnecessary operation of the pressure pump can be reduced by operating the pressure pump.

(6)前記第1ガス室には,空気,燃料ガスのいずれが供給されても良い。
空気極,燃料極のいずれの側に,中空部を有する集電体を配置しても良い。
(6) Either air or fuel gas may be supplied to the first gas chamber.
You may arrange | position the electrical power collector which has a hollow part in any side of an air electrode and a fuel electrode.

B.本発明の一態様に係る燃料電池は,順に積層される空気極層,固体電解質層,および燃料極層を有する燃料電池セル本体と,前記空気極層と接触し,かつ変形可能な第1の集電電極が配置される第1の主面と,第2の主面と,を有する,第1の弾性部材と,前記第2の主面上に積層され,かつ開口を有するフレーム部材と,前記フレーム部材に積層され,前記第2の主面,前記開口との間に空間を形成する第3の主面と,前記空間と連通してガスを供給するガス導入口と,を有する板状部材と,前記燃料極層と接触し,かつ潰れ変形可能な複数の第2の集電電極が配置される第4の面を有する,第2の弾性部材と,を具備する。 B. A fuel cell according to an aspect of the present invention includes a fuel cell body having an air electrode layer, a solid electrolyte layer, and a fuel electrode layer, which are sequentially stacked, and a deformable first electrode that is in contact with the air electrode layer and is deformable. A first elastic member having a first main surface on which a collecting electrode is disposed and a second main surface; a frame member laminated on the second main surface and having an opening; A plate-like shape laminated on the frame member and having a third main surface that forms a space between the second main surface and the opening, and a gas inlet that communicates with the space and supplies gas. A second elastic member having a fourth surface on which a plurality of second current collecting electrodes that are in contact with the fuel electrode layer and are capable of being crushed and deformed are disposed.

本発明によれば,燃料電池スタック内での接触抵抗の低減を図った燃料電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell which aimed at reduction of the contact resistance in a fuel cell stack can be provided.

第1実施形態に係る燃料電池スタック10を表す斜視図である。1 is a perspective view illustrating a fuel cell stack 10 according to a first embodiment. 第1実施形態に係る燃料電池スタック10を表す一部断面図である。1 is a partial cross-sectional view illustrating a fuel cell stack 10 according to a first embodiment. 第1実施形態に係る燃料電池セル100(1)の内部構造を示す図である。It is a figure which shows the internal structure of the fuel battery cell 100 (1) which concerns on 1st Embodiment. 第1実施形態に係るインターコネクタ111(1)を分解した状態を表す平面図である。It is a top view showing the state which disassembled interconnector 111 (1) concerning a 1st embodiment. 比較例に係る燃料電池スタック10xを表す一部断面図である。It is a partial cross section showing fuel cell stack 10x concerning a comparative example. 比較例に係る燃料電池セル100xの内部構造を示す図である。It is a figure which shows the internal structure of the fuel battery cell 100x which concerns on a comparative example. 比較例に係るインターコネクタ111xを分解した状態を表す平面図である。It is a top view showing the state which decomposed | disassembled the interconnector 111x which concerns on a comparative example. 電圧損失の測定結果を表すグラフである。It is a graph showing the measurement result of a voltage loss. 第1実施形態に係る燃料電池1の全体構成を表す模式図である。It is a schematic diagram showing the whole structure of the fuel cell 1 which concerns on 1st Embodiment. 第2実施形態に係る燃料電池1aの全体構成を表す模式図である。It is a schematic diagram showing the whole structure of the fuel cell 1a which concerns on 2nd Embodiment. 燃料電池1aの動作手順の一例を表すフロー図である。It is a flowchart showing an example of the operation | movement procedure of the fuel cell 1a. 第3実施形態に係る燃料電池1bの全体構成を表す模式図である。It is a schematic diagram showing the whole structure of the fuel cell 1b which concerns on 3rd Embodiment. 燃料電池1bの動作手順の一例を表すフロー図である。It is a flowchart showing an example of the operation | movement procedure of the fuel cell 1b.

以下,図面を参照して,本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
本実施形態の固体酸化物形燃料電池は,燃料ガスと酸化剤ガスの供給を受けて発電する装置である。
(First embodiment)
The solid oxide fuel cell according to the present embodiment is a device that generates power upon receipt of fuel gas and oxidant gas.

燃料ガスとしては,水素,還元剤となる炭化水素,水素と炭化水素との混合ガス,及びこれらのガスを所定温度の水中を通過させ加湿した燃料ガス,これらのガスに水蒸気を混合させた燃料ガス等が挙げられる。炭化水素は特に限定されず,例えば,天然ガス,ナフサ,石炭ガス化ガス等が挙げられる。   The fuel gas includes hydrogen, hydrocarbon as a reducing agent, mixed gas of hydrogen and hydrocarbon, fuel gas obtained by passing these gases through water at a predetermined temperature, and fuel obtained by mixing these gases with water vapor. Gas etc. are mentioned. The hydrocarbon is not particularly limited, and examples thereof include natural gas, naphtha, and coal gasification gas.

酸化剤ガスとしては,酸素と他の気体との混合ガス等(例えば,空気)が挙げられる。更に,この混合ガスには80体積%以下の窒素及びアルゴン等の不活性ガスが含有されていてもよい。   Examples of the oxidant gas include a mixed gas of oxygen and another gas (for example, air). Further, the mixed gas may contain 80% by volume or less of an inert gas such as nitrogen and argon.

A.燃料電池スタック10の構造
固体酸化物形燃料電池は,燃料電池スタック10を有する。まず,燃料電池スタック10の構造を先に説明する。図1,図2は,燃料電池スタック10の斜視図および一部断面図である。
A. Structure of Fuel Cell Stack 10 The solid oxide fuel cell has a fuel cell stack 10. First, the structure of the fuel cell stack 10 will be described first. 1 and 2 are a perspective view and a partial cross-sectional view of the fuel cell stack 10.

燃料電池スタック10は,発電単位である平板形の複数個の燃料電池セル100(100(1)〜100(5))が積層されてなる。燃料電池セル100(1)〜100(5)が上下に積層され,インターコネクタ(集電体)111(1)〜111(6)を介して電気的に接続される。なお,図2では,5つの燃料電池セル100(1)〜100(5)が積層されるが,積層される燃料電池セル100の個数は5つに限られない。   The fuel cell stack 10 is formed by laminating a plurality of flat plate-shaped fuel cells 100 (100 (1) to 100 (5)) which are power generation units. The fuel cells 100 (1) to 100 (5) are stacked one above the other and are electrically connected via interconnectors (current collectors) 111 (1) to 111 (6). In FIG. 2, five fuel cells 100 (1) to 100 (5) are stacked, but the number of fuel cells 100 stacked is not limited to five.

図2に示すように,燃料電池セル100(1)にガス導入部材80が接続され,インターコネクタ111(1)の内部空間81に圧力調整用ガスが供給される。この結果,内部空間81の体積が増加して,燃料電池スタック10内に圧力が印加され,燃料電池スタック10内での接触抵抗の低減が可能となる。
本実施形態では,インターコネクタ111(2)〜111(6)は,内部空間81に対応する構成要素を有しない。但し,インターコネクタ111(2)〜111(6)が,内部空間81に対応する構成要素を有しても良い。
As shown in FIG. 2, the gas introduction member 80 is connected to the fuel cell 100 (1), and the pressure adjusting gas is supplied to the internal space 81 of the interconnector 111 (1). As a result, the volume of the internal space 81 is increased, pressure is applied in the fuel cell stack 10, and the contact resistance in the fuel cell stack 10 can be reduced.
In the present embodiment, the interconnectors 111 (2) to 111 (6) do not have components corresponding to the internal space 81. However, the interconnectors 111 (2) to 111 (6) may have components corresponding to the internal space 81.

図3に燃料電池セル100(1)の内部構造を示す。図3に示すように,燃料電池セル100(1)は,いわゆる燃料極支持膜形タイプの燃料電池セルであり,上下一対の金属製のインターコネクタ111(1),111(2)の間に,燃料電池セル本体120が配置される。燃料電池セル本体120とインターコネクタ111(1),111(2)の間に,燃料ガス室113,酸化剤ガス室114が配置される。   FIG. 3 shows the internal structure of the fuel cell 100 (1). As shown in FIG. 3, the fuel cell 100 (1) is a so-called fuel electrode support membrane type fuel cell, and is interposed between a pair of upper and lower metal interconnectors 111 (1) and 111 (2). , The fuel cell body 120 is disposed. A fuel gas chamber 113 and an oxidant gas chamber 114 are disposed between the fuel cell body 120 and the interconnectors 111 (1) and 111 (2).

燃料電池セル本体120は,燃料極(アノード)121,固体電解質層122,反応防止層123,空気極(カソード)124が順に積層されて構成される。   The fuel cell main body 120 is configured by laminating a fuel electrode (anode) 121, a solid electrolyte layer 122, a reaction preventing layer 123, and an air electrode (cathode) 124 in this order.

燃料極121の材料としては,例えば,Ni及びFe等の金属と,Sc,Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック,CeO系セラミック等のセラミックのうちの少なくとも1種との混合物などが挙げられる。また,Pt,Au,Ag,Pd,Ir,Ru,Rh,Ni及びFe等の金属が挙げられる。 Examples of the material of the fuel electrode 121 include ZrO 2 ceramics such as zirconia stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y, CeO 2 ceramics, and the like. The mixture with at least 1 sort (s) of ceramics etc. are mentioned. Moreover, metals, such as Pt, Au, Ag, Pd, Ir, Ru, Rh, Ni, and Fe, are mentioned.

固体電解質層122の材料としては,例えばZrO系セラミック,LaGaO3系セラミック,BaCeO系セラミック,SrCeO系セラミック,SrZrO系セラミック,及びCaZrO系セラミック等が挙げられる。 Examples of the material for the solid electrolyte layer 122 include ZrO 2 ceramics, LaGaO 3 ceramics, BaCeO 3 ceramics, SrCeO 3 ceramics, SrZrO 3 ceramics, and CaZrO 3 ceramics.

反応防止層123は,固体電解質層122と空気極124との反応を防止するものであり,例えば,CeOの一部のCeが希土類元素などにより置換されたCeO系酸化物を用いることができる。 The reaction prevention layer 123 prevents the reaction between the solid electrolyte layer 122 and the air electrode 124. For example, a CeO 2 oxide in which a part of Ce in CeO 2 is substituted with a rare earth element or the like is used. it can.

空気極124の材料としては,例えば,各種の金属,金属の酸化物,金属の複酸化物等を用いることができる。   Examples of the material of the air electrode 124 include various metals, metal oxides, metal double oxides, and the like.

燃料電池セル本体120の外周縁部にフレーム130が接続される。フレーム130は,燃料極フレーム131,セパレータ132(の外周縁部),空気極フレーム133から構成される。燃料極フレーム131,セパレータ132,空気極フレーム133は,いずれも四角枠状である。セパレータ132は,燃料電池セル本体120に接合され,燃料ガス室113,酸化剤ガス室114間でのガスの移動を遮断する。   A frame 130 is connected to the outer peripheral edge of the fuel cell body 120. The frame 130 includes a fuel electrode frame 131, a separator 132 (outer peripheral edge thereof), and an air electrode frame 133. The fuel electrode frame 131, the separator 132, and the air electrode frame 133 are all rectangular frame shapes. The separator 132 is joined to the fuel cell body 120 and blocks gas movement between the fuel gas chamber 113 and the oxidant gas chamber 114.

フレーム130は,固定部材61〜68がそれぞれ貫通する貫通孔71〜78を備える。なお,図3では貫通孔73,74のみを表している。フレーム130は,貫通孔73,74にそれぞれ接続され,燃料ガス室113に連通する連通孔134,135を有する。また,フレーム130は,貫通孔75,76にそれぞれ接続され,酸化剤ガス室114に連通する図示しない連通孔を有する。   The frame 130 includes through holes 71 to 78 through which the fixing members 61 to 68 pass, respectively. In FIG. 3, only the through holes 73 and 74 are shown. The frame 130 is connected to the through holes 73 and 74, and has communication holes 134 and 135 that communicate with the fuel gas chamber 113. The frame 130 has a communication hole (not shown) that is connected to the through holes 75 and 76 and communicates with the oxidant gas chamber 114.

インターコネクタ111(2)と燃料極フレーム131間,空気極フレーム133とインターコネクタ111(1)間それぞれに,スペーサ141,142が配置される。スペーサ141は,マイカ等の絶縁体で構成され,インターコネクタ111(2)と燃料極フレーム131間を電気的に絶縁する。スペーサ142は,マイカ等の絶縁体で構成され,空気極フレーム133とインターコネクタ111(1)間を電気的に絶縁する。   Spacers 141 and 142 are disposed between the interconnector 111 (2) and the fuel electrode frame 131 and between the air electrode frame 133 and the interconnector 111 (1), respectively. The spacer 141 is made of an insulator such as mica, and electrically insulates between the interconnector 111 (2) and the fuel electrode frame 131. The spacer 142 is made of an insulator such as mica, and electrically insulates between the air electrode frame 133 and the interconnector 111 (1).

インターコネクタ111(2)と燃料極121間,空気極124とインターコネクタ111(1)間それぞれに,燃料極集電電極151,空気極集電電極152が配置される。燃料極集電電極151は,インターコネクタ111(2)と燃料極121間を電気的に接続する。空気極集電電極152は,空気極124とインターコネクタ111(1)間を電気的に接続する。   A fuel electrode current collecting electrode 151 and an air electrode current collecting electrode 152 are disposed between the interconnector 111 (2) and the fuel electrode 121 and between the air electrode 124 and the interconnector 111 (1), respectively. The fuel electrode collecting electrode 151 electrically connects the interconnector 111 (2) and the fuel electrode 121. The air electrode current collecting electrode 152 electrically connects the air electrode 124 and the interconnector 111 (1).

燃料極集電電極151は,多孔質の金属(例えば,Ni)から構成され,多孔質集電電極として機能する。燃料極集電電極151は,多孔質のため,潰れ易く,後述のように,予備プレス等により,変形する(潰れる)。
一方,空気極集電電極152は,非多孔質(多孔質でない)の金属(例えばステンレス)から構成され,予備プレス時での潰れは事実上無視できる。なお,空気極集電電極152を多孔質とすることも可能であり,この場合,予備プレス時に潰れによる変形が可能となる。
The fuel electrode current collecting electrode 151 is made of a porous metal (for example, Ni) and functions as a porous current collecting electrode. Since the fuel electrode current collecting electrode 151 is porous, it is easily crushed and, as will be described later, is deformed (collapsed) by a preliminary press or the like.
On the other hand, the air electrode current collecting electrode 152 is made of a non-porous (not porous) metal (for example, stainless steel), and the collapse at the time of preliminary pressing can be virtually ignored. The air electrode collecting electrode 152 can be made porous, and in this case, deformation due to crushing is possible at the time of preliminary pressing.

固定部材61〜68は,燃料電池スタック10を積層方向に貫く。固定部材61〜68は,燃料電池スタック10の周縁に沿って配置され,燃料電池スタック10を積層方向に押圧して一体に固定する部材であり,それぞれ,ボルト61b〜68b及びナット61a〜68aから構成される。   The fixing members 61 to 68 penetrate the fuel cell stack 10 in the stacking direction. The fixing members 61 to 68 are members that are arranged along the periphery of the fuel cell stack 10 and press the fuel cell stack 10 in the stacking direction to fix them together. The fixing members 61 to 68 are respectively bolts 61b to 68b and nuts 61a to 68a. Composed.

ボルト61b〜68bは,燃料電池1を積層方向に貫く貫通孔71〜78に貫挿され,ナット61a〜68aにより固定される。   Bolts 61b to 68b are inserted into through holes 71 to 78 that penetrate fuel cell 1 in the stacking direction, and are fixed by nuts 61a to 68a.

この内,貫通孔71〜76の内径は,ボルト61b〜66bの軸の外径より大きく設定されているので,貫通孔71〜76の内周面とボルト61b〜66bの外周面に挟まれた筒状の空間が,燃料ガスや酸化剤ガスの流路となる。   Among these, the inner diameters of the through holes 71 to 76 are set larger than the outer diameters of the shafts of the bolts 61b to 66b, so that they are sandwiched between the inner peripheral surfaces of the through holes 71 to 76 and the outer peripheral surfaces of the bolts 61b to 66b. The cylindrical space is a flow path for fuel gas and oxidant gas.

固定部材61,62はそれぞれ,陽極,陰極の電極として用いられる。また,貫通孔73,74は燃料ガスの導入,排出に用いられる。貫通孔75,76は酸化剤ガスの導入,排出に用いられる。固定部材67,68は,固定用のみに用いられる。   The fixing members 61 and 62 are used as anode and cathode electrodes, respectively. The through holes 73 and 74 are used for introducing and discharging fuel gas. The through holes 75 and 76 are used for introducing and discharging the oxidizing gas. The fixing members 67 and 68 are used only for fixing.

固定部材63〜66はそれぞれ,燃料ガス,空気(酸化剤ガス)の導入または排出が可能なように,ナット側に開口を有する。なお,固定部材61,62は,電極として,固定部材67,68は,固定用のみに使用するので,ガスの流通を考慮することなく,通常のナットを使用できる。   Each of the fixing members 63 to 66 has an opening on the nut side so that fuel gas and air (oxidant gas) can be introduced or discharged. Since the fixing members 61 and 62 are used as electrodes and the fixing members 67 and 68 are used only for fixing, ordinary nuts can be used without considering gas flow.

燃料ガスは,貫通孔73とボルト63b間から燃料ガス室113に流入して,発電に用いられ,貫通孔74とボルト64b間を通過して,燃料電池スタック10外に排出される。
酸化剤ガス(空気)は,貫通孔75とボルト65b間から酸化剤ガス室114に流入して,発電に用いられ,貫通孔76とボルト66b間を通過して,燃料電池スタック10外に排出される。
The fuel gas flows into the fuel gas chamber 113 from between the through hole 73 and the bolt 63b, is used for power generation, passes between the through hole 74 and the bolt 64b, and is discharged out of the fuel cell stack 10.
The oxidant gas (air) flows into the oxidant gas chamber 114 from between the through hole 75 and the bolt 65b, is used for power generation, passes between the through hole 76 and the bolt 66b, and is discharged out of the fuel cell stack 10. Is done.

B.インターコネクタ111(1)の詳細
インターコネクタ111(1)は,板状部材111a,フレーム部材111b,弾性部材111cから構成される。
B. Details of the interconnector 111 (1) The interconnector 111 (1) includes a plate-like member 111a, a frame member 111b, and an elastic member 111c.

図4は,板状部材111a,フレーム部材111b,弾性部材111cを表す平面図である。
板状部材111aは,略矩形板状であり,貫通孔71〜78,ガス導入口82を有する。ガス導入口82にガス導入部材80が接続され,インターコネクタ111(1)の内部に圧力調整用ガスが供給される。
FIG. 4 is a plan view showing the plate-like member 111a, the frame member 111b, and the elastic member 111c.
The plate-like member 111 a is substantially rectangular and has through holes 71 to 78 and a gas inlet 82. A gas introduction member 80 is connected to the gas introduction port 82, and a pressure adjusting gas is supplied into the interconnector 111 (1).

フレーム部材111bは,略矩形板状であり,貫通孔71〜78,開口83を有する。開口83と,板状部材111aの下面,弾性部材111cの上面の間にインターコネクタ111(1)の内部空間81が形成される。   The frame member 111 b has a substantially rectangular plate shape, and has through holes 71 to 78 and an opening 83. An internal space 81 of the interconnector 111 (1) is formed between the opening 83 and the lower surface of the plate-like member 111a and the upper surface of the elastic member 111c.

弾性部材111cは,弾性変形可能な略矩形板状であり,貫通孔71〜78を有し,中央に空気極集電電極152が配置される。ガス導入口82を通じて,内部空間81に圧力調整用ガスが供給される。内部空間81でのガス圧を変化させることで,弾性部材111cが変形する。この結果,空気極集電電極152が上下に移動し,空気極集電電極152と空気極124間の接触状態(接触抵抗)が変化する。なお,弾性部材111cを含むインターコネクタ111(1)は,通電性を有するため,空気極集電電極152と同様に,集電部材としても機能する。   The elastic member 111c has a substantially rectangular plate shape that can be elastically deformed, has through holes 71 to 78, and an air electrode current collecting electrode 152 is disposed at the center. Pressure adjusting gas is supplied to the internal space 81 through the gas inlet 82. By changing the gas pressure in the internal space 81, the elastic member 111c is deformed. As a result, the air electrode current collecting electrode 152 moves up and down, and the contact state (contact resistance) between the air electrode current collecting electrode 152 and the air electrode 124 changes. Note that the interconnector 111 (1) including the elastic member 111 c has electrical conductivity, and thus functions as a current collecting member similarly to the air electrode current collecting electrode 152.

以上のように,本実施形態では,インターコネクタ111(1)(集電体)に内部空間81(中空部)を設け,空気極集電電極152が取り付けられた弾性部材111cを弾性変形可能な材料(例えば,稼働可能な板厚の金属板)にて構成する。内部空間81にガスを導入して燃料電池スタック10の内部に対し正圧となるよう加圧し,空気極集電電極152(集電部)を燃料電池セル本体120に押し付ける。この結果,燃料電池スタック10内(燃料極集電電極151,空気極集電電極152,インターコネクタ111間)での物理的接触不良による電気抵抗の増加を防止できる。   As described above, in this embodiment, the internal space 81 (hollow part) is provided in the interconnector 111 (1) (current collector), and the elastic member 111c to which the air electrode current collecting electrode 152 is attached can be elastically deformed. It is composed of a material (for example, a metal plate having an operable thickness). A gas is introduced into the internal space 81 to pressurize the fuel cell stack 10 so as to have a positive pressure, and the air electrode current collecting electrode 152 (current collector) is pressed against the fuel cell body 120. As a result, an increase in electrical resistance due to poor physical contact in the fuel cell stack 10 (between the fuel electrode current collecting electrode 151, the air electrode current collecting electrode 152, and the interconnector 111) can be prevented.

C.比較例に係る燃料電池スタック10x
比較例に係る燃料電池スタック10xを説明する。図5は,比較例に係る燃料電池スタック10xを表す一部断面図である。図6は,比較例に係る燃料電池セル100xの内部構造を示す図である。図7は,比較例に係るインターコネクタ111xを分解した状態を表す平面図である。比較例に係る図5〜図7はそれぞれ,第1の実施形態に係る図2〜図4と対応する。
C. Fuel cell stack 10x according to a comparative example
A fuel cell stack 10x according to a comparative example will be described. FIG. 5 is a partial cross-sectional view showing a fuel cell stack 10x according to a comparative example. FIG. 6 is a diagram showing an internal structure of the fuel cell 100x according to the comparative example. FIG. 7 is a plan view illustrating a state in which the interconnector 111x according to the comparative example is disassembled. 5 to 7 according to the comparative example correspond to FIGS. 2 to 4 according to the first embodiment, respectively.

燃料電池スタック10xは,燃料電池セル100x(燃料電池セル100(1)に対応)のインターコネクタ111xが内部空間81に対応する空間を有しない。即ち,図6,図7に示すように,インターコネクタ111xは板状部材111ax,弾性部材111cxから構成され,フレーム部材111bに対応する構成を有しない。   In the fuel cell stack 10 x, the interconnector 111 x of the fuel cell 100 x (corresponding to the fuel cell 100 (1)) does not have a space corresponding to the internal space 81. That is, as shown in FIGS. 6 and 7, the interconnector 111x is composed of a plate-like member 111ax and an elastic member 111cx, and does not have a configuration corresponding to the frame member 111b.

この結果,図5に示すように,発電,温度サイクルにより燃料電池セル本体120が上に凸に変形した場合,例えば,空気極集電電極152,燃料電池セル本体120,インターコネクタ111間で接触不良が発生し易くなる。   As a result, as shown in FIG. 5, when the fuel cell body 120 is deformed upward due to power generation and temperature cycle, for example, contact is made between the air electrode current collector electrode 152, the fuel cell body 120, and the interconnector 111. Defects are likely to occur.

D.実施例と比較例の比較
(1)実施例に係るインターコネクタ111(1)
インターコネクタ111(1)の具体例を示す。
例えば,次のようにインターコネクタ111(1)を構成できる。
・板状部材111a: 厚さ10mmのSUS(ステンレススチール)
・フレーム部材111b: 厚さ1mmのSUS
・弾性部材111c: 厚さ1mmのSUS
板状部材111a,フレーム部材111b,弾性部材111cは,ロウ付けにて接合しても良いし,マイカなどのシール部材を間に挟んだ積層構造としても良い。
D. Comparison between Example and Comparative Example (1) Interconnector 111 (1) according to Example
A specific example of the interconnector 111 (1) is shown.
For example, the interconnector 111 (1) can be configured as follows.
Plate member 111a: 10 mm thick SUS (stainless steel)
Frame member 111b: SUS with a thickness of 1 mm
Elastic member 111c: SUS with a thickness of 1 mm
The plate-like member 111a, the frame member 111b, and the elastic member 111c may be joined by brazing, or may have a laminated structure with a sealing member such as mica interposed therebetween.

(2)比較例に係るインターコネクタ111x
例えば,次のようにインターコネクタ111xを構成できる。
・板状部材111ax: 厚さ10mmのSUS
・弾性部材111cx: 厚さ1mmのSUS
板状部材111ax,弾性部材111cxは,ロウ付けにて接合しても良いし,マイカなどのシール部材を間に挟んだ積層構造としても良い。
(2) Interconnector 111x according to a comparative example
For example, the interconnector 111x can be configured as follows.
Plate member 111ax: SUS with a thickness of 10 mm
Elastic member 111cx: SUS with a thickness of 1 mm
The plate-like member 111ax and the elastic member 111cx may be joined by brazing, or may have a laminated structure with a sealing member such as mica interposed therebetween.

(3)実施例と比較例のインターコネクタ111(1),111xの電気特性の比較
図8は,温度サイクルを繰り返し行ったときの最上段セル(燃料電池セル100(1))の直流抵抗成分による電圧損失(電圧ロス)を示すグラフである。グラフE0〜E4はそれぞれ,実施例に係るインターコネクタでの0〜4回目の温度サイクルでの電圧損失を表す。グラフC0〜C4はそれぞれ,比較例に係るインターコネクタでの0〜4回目の温度サイクルでの電圧損失を表す。
(3) Comparison of electrical characteristics of interconnectors 111 (1) and 111x of Example and Comparative Example FIG. 8 shows the DC resistance component of the uppermost cell (fuel cell 100 (1)) when the temperature cycle is repeated. It is a graph which shows the voltage loss (voltage loss) by. Graphs E0 to E4 respectively represent voltage losses in the 0th to 4th temperature cycles in the interconnector according to the example. Graphs C0 to C4 represent voltage losses in the 0th to 4th temperature cycles of the interconnector according to the comparative example, respectively.

「室温→高温(700℃)→室温」を温度サイクルの一サイクルとし,発電時の燃料電池スタックからの電流を電流60Aとして,電圧損失を測定した。   “Room temperature → high temperature (700 ° C.) → room temperature” was defined as one cycle of the temperature cycle, and the current from the fuel cell stack during power generation was defined as current 60 A, and voltage loss was measured.

実施例では電圧損失は0.1V程度と小さく,サイクルを4まで繰り返しても電圧損失は初期値とほぼ同一に保たれた(ほぼ一定)。これに対して,比較例では温度サイクルを繰り返すことで,電圧損失は,初期値の約0.1Vから0.8Vを越えるまで増加した。燃料電池スタックの開回路電圧(1V程度)に対して,電圧損失が0.8Vを超えることから,比較例では燃料電池スタックの発電特性が大きく低下していることが分かる。   In the example, the voltage loss was as small as about 0.1 V, and the voltage loss was kept almost the same as the initial value (substantially constant) even when the cycle was repeated up to 4. On the other hand, in the comparative example, the voltage loss increased from the initial value of about 0.1 V to over 0.8 V by repeating the temperature cycle. Since the voltage loss exceeds 0.8 V with respect to the open circuit voltage (about 1 V) of the fuel cell stack, it can be seen that the power generation characteristics of the fuel cell stack are greatly deteriorated in the comparative example.

E.燃料電池1の全体構成
図9は,燃料電池1の全体構成を表す模式図である。
燃料電池1は,燃料電池スタック10,空気ブロワ91,逆止弁92,流量計93,差圧計94を有する。
E. FIG. 9 is a schematic diagram showing the overall configuration of the fuel cell 1.
The fuel cell 1 includes a fuel cell stack 10, an air blower 91, a check valve 92, a flow meter 93, and a differential pressure gauge 94.

既述のように,燃料電池スタック10は,内部空間81を備えるインターコネクタ111(1)を有し,インターコネクタ111(1)への圧力調整用ガスの供給により,燃料電池スタック10内での物理的接触状態を調節できる。   As described above, the fuel cell stack 10 includes the interconnector 111 (1) having the internal space 81, and the supply of the pressure adjusting gas to the interconnector 111 (1) allows the fuel cell stack 10 The physical contact state can be adjusted.

空気ブロワ91は,燃料電池スタック10に酸化剤ガスおよび圧力調整用ガスとしての空気を供給する。即ち,空気ブロワ91は,逆止弁92,流量計93を経由して,燃料電池スタック10の燃料電池セル100(燃料電池セル100(1)〜100(5))の空気室114に酸化剤ガスとしての空気を供給する。また,空気ブロワ91は,燃料電池スタック10の燃料電池セル100(1)のインターコネクタ111(1)内に圧力調整用ガスとしての空気を供給する。   The air blower 91 supplies the fuel cell stack 10 with air as an oxidant gas and a pressure adjusting gas. That is, the air blower 91 passes through the check valve 92 and the flow meter 93 to the air chamber 114 of the fuel cell 100 (fuel cells 100 (1) to 100 (5)) of the fuel cell stack 10. Supply air as gas. The air blower 91 supplies air as pressure adjusting gas into the interconnector 111 (1) of the fuel cell 100 (1) of the fuel cell stack 10.

空気ブロワ91は,中空部(内部空間81)にガスを供給し,集電体(インターコネクタ111(1))と第1の主面(燃料電池セル本体120の上面)との接触状態を変化させる供給部として機能する。空気ブロワ91は,ガスを加圧する加圧ポンプとしても機能する。   The air blower 91 supplies gas to the hollow portion (inner space 81), and changes the contact state between the current collector (interconnector 111 (1)) and the first main surface (the upper surface of the fuel cell body 120). Functions as a supply unit. The air blower 91 also functions as a pressurizing pump that pressurizes the gas.

逆止弁92は,燃料電池セル100の空気室114から空気ブロワ91への空気の逆流を防止するための弁である。逆止弁92が空気室114側に配置され,インターコネクタ111(1)側に配置されていないことで,空気室114とインターコネクタ111(1)の内部空間81との間に圧力差が生じる(逆止弁92での圧力損失)。即ち,内部空間81の圧力が空気室114の圧力より大きくなる。
差圧計94は,内部空間81と空気室114の圧力差を測定する測定器であり,中空部(内部空間81)内の圧力と,第1ガス室(空気室114)内の圧力との圧力差を検出する圧力差検出部として機能する。
The check valve 92 is a valve for preventing a backflow of air from the air chamber 114 of the fuel battery cell 100 to the air blower 91. Since the check valve 92 is disposed on the air chamber 114 side and not on the interconnector 111 (1) side, a pressure difference is generated between the air chamber 114 and the internal space 81 of the interconnector 111 (1). (Pressure loss at check valve 92). That is, the pressure in the internal space 81 is greater than the pressure in the air chamber 114.
The differential pressure gauge 94 is a measuring instrument that measures a pressure difference between the internal space 81 and the air chamber 114, and is a pressure between the pressure in the hollow portion (internal space 81) and the pressure in the first gas chamber (air chamber 114). It functions as a pressure difference detector that detects the difference.

本実施形態では,逆止弁92での圧力損失によって,内部空間81と空気室114の圧力差を生じさせ,インターコネクタ111(1)の弾性部材111cを変形させて空気極124に押しつける。この結果,物理的接触不良による電気抵抗の上昇を低減できる。   In the present embodiment, the pressure loss in the check valve 92 causes a pressure difference between the internal space 81 and the air chamber 114, and the elastic member 111 c of the interconnector 111 (1) is deformed and pressed against the air electrode 124. As a result, an increase in electrical resistance due to physical contact failure can be reduced.

加圧にガスを用いることで,金属製バネ等の弾性部材を用いた場合と比較して,クリープ変形を原因としたバネ性の低下が防止され,耐久信頼性が高くなる。   By using gas for pressurization, the spring property is prevented from being deteriorated due to creep deformation, and durability reliability is improved as compared with the case of using an elastic member such as a metal spring.

内部空間81と空気室114の圧力差(差圧α)を変化させることで,所望な押し付ける力を得ることができる。例えば,後述のように,物理的接触不良により発電特性の低下が生じたとき,圧力差αを高めて,弾性部材111cから空気極124への押し付け力を増加させ,発電特性の回復を図ることができる。
ここで,空気ブロワ91からの空気の流量を増加させることで,圧力差αを高めることができる。これは,逆止弁92で発生する圧力損失がガス(空気)の流量に依存する現象を利用したものである。即ち,空気の流量を増加させることで,逆止弁92での圧力損失は大きくなり,圧力差αが増加する。
A desired pressing force can be obtained by changing the pressure difference (differential pressure α) between the internal space 81 and the air chamber 114. For example, as described later, when power generation characteristics are deteriorated due to poor physical contact, the pressure difference α is increased to increase the pressing force from the elastic member 111c to the air electrode 124, thereby restoring the power generation characteristics. Can do.
Here, the pressure difference α can be increased by increasing the flow rate of air from the air blower 91. This utilizes a phenomenon in which the pressure loss generated in the check valve 92 depends on the flow rate of gas (air). That is, by increasing the air flow rate, the pressure loss at the check valve 92 increases and the pressure difference α increases.

(第2の実施の形態)
本発明の第2の実施形態を説明する。
図10は,本発明の第2の実施形態に係る燃料電池1aの全体構成を表す模式図である。
燃料電池1aは,燃料電池スタック10,空気ブロワ91,流量計93,差圧計94,ニードル弁95,コントローラ96を有する。
(Second Embodiment)
A second embodiment of the present invention will be described.
FIG. 10 is a schematic diagram showing the overall configuration of the fuel cell 1a according to the second embodiment of the present invention.
The fuel cell 1a includes a fuel cell stack 10, an air blower 91, a flow meter 93, a differential pressure gauge 94, a needle valve 95, and a controller 96.

コントローラ96は,差圧計94で測定されたインターコネクタ111(1)の内部空間81と空気室114の圧力差(差圧α)に基づいて,ニードル弁95の開度を制御し,物理的接触不良による電気抵抗の上昇を低減できる。
実際に流れる空気の流量の値(実測値)を計測し,この実測値が発電量に対して理論上算出された空気の流量の値(理論値)になるように,空気ブロワ91が制御される。一方,ニードル弁95を制御して圧力差αを変化させる。このように,圧力差αによって弾性部材111cの変形度合いを調整し,燃料電池セル本体120の反りに追従させることができる。
The controller 96 controls the opening degree of the needle valve 95 based on the pressure difference (differential pressure α) between the internal space 81 of the interconnector 111 (1) and the air chamber 114 measured by the differential pressure gauge 94, and makes physical contact. An increase in electrical resistance due to defects can be reduced.
The air blower 91 is controlled so that the actual air flow value (actual value) is measured and the actual air flow value theoretically calculated for the amount of power generation (theoretical value). The On the other hand, the needle valve 95 is controlled to change the pressure difference α. In this way, the degree of deformation of the elastic member 111c can be adjusted by the pressure difference α to follow the warp of the fuel cell body 120.

図11は,燃料電池1aの動作手順の一例を表すフロー図である。
コントローラ96は,差圧αが規定値の範囲内か否かを判断し(ステップS111,S112),次のようにニードル弁95を制御する。
FIG. 11 is a flowchart showing an example of the operation procedure of the fuel cell 1a.
The controller 96 determines whether or not the differential pressure α is within a specified value range (steps S111 and S112), and controls the needle valve 95 as follows.

(1)差圧αが規定範囲内の場合(ステップS112,S113)
差圧αが規定範囲内であれば(β≦α≦γ),原則として,ニードル弁95の開度はそのまま保たれる。なお,空気流量,発電量を確認し,場合により,空気流量等の調節のため,空気ブロワ91,ニードル弁95が制御される(ステップS113)。
(1) When the differential pressure α is within a specified range (steps S112 and S113)
If the differential pressure α is within the specified range (β ≦ α ≦ γ), in principle, the opening degree of the needle valve 95 is maintained as it is. Note that the air blower 91 and the needle valve 95 are controlled in order to confirm the air flow rate and the power generation amount, and to adjust the air flow rate and the like in some cases (step S113).

(2)差圧αが規定範囲より小さい場合(ステップS121〜S124)
差圧αが規定範囲より小さい場合(α<β),ニードル弁95の開度が低減される(ステップS124)。もし,ニードル弁95の開度が下限値であれば(ステップS122),表示装置,音声出力装置等により,エラー状態であることが表示される(ステップS124)。このとき,燃料電池1aでの発電を停止しても良い。
(2) When the differential pressure α is smaller than the specified range (steps S121 to S124)
When the differential pressure α is smaller than the specified range (α <β), the opening degree of the needle valve 95 is reduced (step S124). If the opening degree of the needle valve 95 is the lower limit value (step S122), an error state is displayed by a display device, a voice output device, etc. (step S124). At this time, the power generation in the fuel cell 1a may be stopped.

(3)差圧αが規定範囲より大きい場合(ステップS131〜S133)
差圧αが規定範囲より大きい場合(α>γ),ニードル弁95の開度が増加される(ステップS132)。もし,ニードル弁95の開度が上限値であれば(ステップS131),表示装置,音声出力装置等により,エラー状態であることが表示される(ステップS133)。
(3) When the differential pressure α is larger than the specified range (steps S131 to S133)
When the differential pressure α is larger than the specified range (α> γ), the opening degree of the needle valve 95 is increased (step S132). If the opening degree of the needle valve 95 is the upper limit value (step S131), an error state is displayed by a display device, a voice output device or the like (step S133).

(第3の実施の形態)
本発明の第2の実施形態を説明する。
図12は,本発明の第3の実施形態に係る燃料電池1bの全体構成を表す模式図である。
燃料電池1bは,燃料電池スタック10,空気ブロワ91a,逆止弁92,流量計93,差圧計94,コントローラ96,加圧用ポンプ91b,圧力計97a,97b,電磁弁98a,98b,リレー99a,99b,電気測定器Mを有する。
(Third embodiment)
A second embodiment of the present invention will be described.
FIG. 12 is a schematic diagram showing the overall configuration of a fuel cell 1b according to the third embodiment of the present invention.
The fuel cell 1b includes a fuel cell stack 10, an air blower 91a, a check valve 92, a flow meter 93, a differential pressure gauge 94, a controller 96, a pressure pump 91b, pressure gauges 97a and 97b, electromagnetic valves 98a and 98b, a relay 99a, 99b, having an electrical measuring instrument M.

空気ブロワ91aは,燃料電池スタック10に酸化剤ガスとしての空気を供給する。即ち,空気ブロワ91aは,逆止弁92,流量計93を経由して,燃料電池スタック10の燃料電池セル100(燃料電池セル100(1)〜100(5))の空気室114に酸化剤ガスとしての空気を供給する。   The air blower 91 a supplies air as an oxidant gas to the fuel cell stack 10. That is, the air blower 91 a passes through the check valve 92 and the flow meter 93 to the air chamber 114 of the fuel cell 100 (fuel cells 100 (1) to 100 (5)) of the fuel cell stack 10. Supply air as gas.

加圧用ポンプ91bは,燃料電池スタック10に圧力調整用ガスとしての空気を供給するものであり,ガスを加圧する加圧ポンプとして機能する。即ち,加圧用ポンプ91bは,電磁弁98aを経由して,燃料電池スタック10の燃料電池セル100(1)のインターコネクタ111(1)内に圧力調整用ガスとしての空気を供給する。   The pressurizing pump 91b supplies air as a pressure adjusting gas to the fuel cell stack 10, and functions as a pressurizing pump that pressurizes the gas. That is, the pressurizing pump 91b supplies air as a pressure adjusting gas into the interconnector 111 (1) of the fuel cell 100 (1) of the fuel cell stack 10 via the electromagnetic valve 98a.

圧力計97a,97bはそれぞれ,空気ブロワ91a,加圧用ポンプ91bでの圧力を測定する測定器である。圧力計97a,97bを併せて,第1の弁よりも上流側の圧力と,逆止弁よりも上流側の圧力との差を検出する第2の圧力差検出部として機能する。   The pressure gauges 97a and 97b are measuring instruments that measure the pressure in the air blower 91a and the pressurizing pump 91b, respectively. The pressure gauges 97a and 97b together function as a second pressure difference detection unit that detects the difference between the pressure upstream of the first valve and the pressure upstream of the check valve.

電磁弁98aは,加圧用ポンプ91bからインターコネクタ111(1)への空気の流量を調節するものであり,加圧されたガスの中空部内への供給を調節する第1の弁として機能する。
電磁弁98bは,インターコネクタ111(1)から外部への空気の流出を調節するものであり,中空部内からガスを排出する第2の弁として機能する。電磁弁98a,98bによって,インターコネクタ111(1)内の圧力を調節できる。
The electromagnetic valve 98a adjusts the flow rate of air from the pressurizing pump 91b to the interconnector 111 (1), and functions as a first valve that adjusts the supply of pressurized gas into the hollow portion.
The electromagnetic valve 98b adjusts the outflow of air from the interconnector 111 (1) to the outside, and functions as a second valve that discharges gas from the hollow portion. The pressure in the interconnector 111 (1) can be adjusted by the electromagnetic valves 98a and 98b.

リレー99a,99bは,コントローラ96によって制御され,電磁弁98a,98bの開度を調節する。   The relays 99a and 99b are controlled by the controller 96 and adjust the opening degree of the electromagnetic valves 98a and 98b.

第2の実施形態の燃料電池1aにおいては,ニードル弁95のみで圧力を調節している。これに対して,燃料電池1bでは,電磁弁98a,98bを用いることで,より広範囲での差圧の調節が可能となる。   In the fuel cell 1a of the second embodiment, the pressure is adjusted only by the needle valve 95. On the other hand, in the fuel cell 1b, the differential pressure can be adjusted in a wider range by using the electromagnetic valves 98a and 98b.

電気測定器Mは,燃料電池スタック10からの出力電圧や直流損失を測定する測定器であり,集電体と前記燃料電池セル本体間での直流電圧損失を検出する損失検出部として機能する。この詳細は,後述する。   The electrical measuring instrument M is a measuring instrument that measures the output voltage and DC loss from the fuel cell stack 10, and functions as a loss detector that detects DC voltage loss between the current collector and the fuel cell body. Details of this will be described later.

図13は,燃料電池1bの動作手順の一例を表すフロー図である。
コントローラ96は,差圧が規定値の範囲内か否かを判断し(ステップS211,S212),次のようにニードル弁95を制御する。
FIG. 13 is a flowchart showing an example of the operation procedure of the fuel cell 1b.
The controller 96 determines whether or not the differential pressure is within a specified value range (steps S211 and S212), and controls the needle valve 95 as follows.

(1)差圧αが規定範囲内の場合(ステップS212〜S218)
差圧が規定範囲内であれば,原則として,電磁弁98a,98bの開度はそのまま保たれる。
(1) When the differential pressure α is within a specified range (steps S212 to S218)
If the differential pressure is within the specified range, in principle, the opening degree of the solenoid valves 98a and 98b is maintained as it is.

ここで,スタック電圧(燃料電池スタック10からの出力電圧)が所定範囲外のとき(ステップS213),直流電圧損失(直流抵抗(IR抵抗),例えば,後述の抵抗値R1)が測定される(ステップS214)。直流電圧損失が規定値より以上であれば,差圧の設定値β,γが変更される(ステップS215,S217)。なお,ステップS213(スタック電圧の測定,所定範囲との比較)を省略することも,場合により可能である。この詳細は後述する。   Here, when the stack voltage (output voltage from the fuel cell stack 10) is outside the predetermined range (step S213), the DC voltage loss (DC resistance (IR resistance), for example, resistance value R1 described later) is measured ( Step S214). If the DC voltage loss is greater than the specified value, the differential pressure set values β and γ are changed (steps S215 and S217). Note that step S213 (stack voltage measurement, comparison with a predetermined range) may be omitted in some cases. Details of this will be described later.

差圧αが規定範囲内にも拘わらず,直流電圧損失が大きいことは,燃料電池スタック10の状態が初期状態から変化し,規定範囲内の差圧では不足であることを意味する。このため,差圧αの規定値β,γ(規定範囲)をより大きくする。例えば,次のように,現在の規定値β0,γ0に正の一定値aを加算し,新たな規定値β1,γ1とする。
β1=β0+a
γ1=γ0+a
A large DC voltage loss even though the differential pressure α is within the specified range means that the state of the fuel cell stack 10 changes from the initial state, and the differential pressure within the specified range is insufficient. For this reason, the specified values β and γ (specified range) of the differential pressure α are increased. For example, as described below, a positive constant value a is added to the current specified values β0 and γ0 to obtain new specified values β1 and γ1.
β1 = β0 + a
γ1 = γ0 + a

新たな規定値β1,γ1は,次にステップS212が繰り返されるときに,差圧が規定範囲か否かを判断するために用いられる。一般に,燃料電池スタック10の運転時間が長くなると,燃料電池スタック10の内部状態が変化し,直流電圧損失の増大を防止するために,より大きな差圧が必要となる可能性がある。   The new specified values β1 and γ1 are used to determine whether or not the differential pressure is within the specified range when step S212 is repeated next time. In general, when the operating time of the fuel cell stack 10 becomes longer, the internal state of the fuel cell stack 10 changes, and a larger differential pressure may be required to prevent an increase in DC voltage loss.

差圧が上限値以上であれば(ステップS216),表示装置,音声出力装置等により,エラー状態であることが表示される(ステップS218)。このとき,燃料電池1bでの発電を停止しても良い。   If the differential pressure is greater than or equal to the upper limit value (step S216), an error state is displayed by the display device, the audio output device, etc. (step S218). At this time, the power generation in the fuel cell 1b may be stopped.

この上限値は,燃料電池スタック10内での物理的接触状態を調節するための差圧の上限を規定するものであり,差圧の規定範囲(β,γ)とは別個に規定される。ステップS217での差圧の規定値(規定範囲)の変更が繰り返され,差圧の規定範囲が上昇し続けることを防止するためである(歯止め)。即ち,このときには,差圧の規定値β,γは,上限値よりも大きいことになる。   This upper limit value defines the upper limit of the differential pressure for adjusting the physical contact state in the fuel cell stack 10, and is defined separately from the differential pressure range (β, γ). This is for preventing the prescribed value range (differential range) of the differential pressure from being changed repeatedly in step S217 and preventing the prescribed range of differential pressure from continuing to rise (stop). That is, at this time, the prescribed values β and γ of the differential pressure are larger than the upper limit value.

直流電圧損失(直流抵抗)は,カレントインターラプション法により測定できる。
発電状態の燃料電池に負荷が接続され,このときの電流α(A),電圧V1(V)とする。燃料電池への負荷の接続を解除し,電流を0(A)とする。接続を解除してから,短時間(数十マイクロ秒程度)経過したときの電圧V2(V)を計測する。このとき,次の式(1)で抵抗値R1を算出する。
R1=(V2−V1)/α
DC voltage loss (DC resistance) can be measured by the current interruption method.
A load is connected to the fuel cell in the power generation state, and the current α (A) and voltage V1 (V) at this time are used. Disconnect the load from the fuel cell and set the current to 0 (A). The voltage V2 (V) when a short time (about several tens of microseconds) has elapsed since the connection was released is measured. At this time, the resistance value R1 is calculated by the following equation (1).
R1 = (V2-V1) / α

この抵抗値R1は電子など緩和速度の早い因子に起因する抵抗,つまりオーミックな直流抵抗(IR抵抗)である。抵抗値R1を測定することで接触抵抗の増加の可能性を判定できる。即ち,直流電圧損失(直流抵抗)を抵抗値R1によって定義できる。   This resistance value R1 is a resistance caused by a factor having a high relaxation rate such as electrons, that is, an ohmic DC resistance (IR resistance). The possibility of increase in contact resistance can be determined by measuring the resistance value R1. That is, the DC voltage loss (DC resistance) can be defined by the resistance value R1.

ステップS214,S215の前に,ステップS213(スタック電圧の測定,所定範囲との比較)を配置しているのは,カレントインターラプション法での測定が負荷の接続解除を必要とするからである。即ち,スタック電圧を測定することで,直流損失の測定に起因する負荷の接続解除の低減を図っている。   Step S213 (stack voltage measurement, comparison with a predetermined range) is placed before steps S214 and S215 because measurement using the current interruption method requires disconnection of the load. . That is, by measuring the stack voltage, the load disconnection due to the measurement of DC loss is reduced.

逆に言えば,一時的な負荷の接続解除等が問題でなければ,ステップS213を省略しても差し支えない。また,負荷の接続解除が不要な手法を用いた場合でも,ステップS213を省略できる。   In other words, step S213 may be omitted if temporary load disconnection is not a problem. Even when a method that does not require disconnection of the load is used, step S213 can be omitted.

(2)差圧αが規定範囲より小さい場合(ステップS221〜S224)
差圧αが規定範囲より小さい場合(α<β)(ステップS221),電磁弁98aの開度が増加される(ステップS223)。もし,「圧力A<圧力B+差圧」であれば(ステップS222),加圧用ポンプ91bがONされ(ステップS224),加圧用ポンプ91bの圧力を増加してから,電磁弁98aの開度が増加される(ステップS223)。
(2) When the differential pressure α is smaller than the specified range (steps S221 to S224)
When the differential pressure α is smaller than the specified range (α <β) (step S221), the opening degree of the electromagnetic valve 98a is increased (step S223). If “pressure A <pressure B + differential pressure” (step S222), the pressurizing pump 91b is turned on (step S224), and after the pressure of the pressurizing pump 91b is increased, the opening of the solenoid valve 98a is increased. Increased (step S223).

(3)差圧αが規定範囲より大きい場合(ステップS221,S225)
差圧αが規定範囲より大きい場合(α>γ)(ステップS221),電磁弁98bの開度が増加される(ステップS225)。
(3) When the differential pressure α is larger than the specified range (steps S221 and S225)
When the differential pressure α is larger than the specified range (α> γ) (step S221), the opening degree of the electromagnetic valve 98b is increased (step S225).

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

(1)第1の実施形態において,コントローラを付加し,差圧計94で測定された差圧に基づいて,空気ブロア91による空気の供給を制御しても良い。 (1) In the first embodiment, a controller may be added to control the air supply by the air blower 91 based on the differential pressure measured by the differential pressure gauge 94.

(2)上記実施形態では,空気極124側(空気室114側)に内部空間81を有するインターコネクタ111(1)を配置している。これに対して,燃焼極121側(燃焼ガス室113側)にインターコネクタ111(1)を配置しても良い。例えば,燃料電池セル100(1)内において,燃料電池セル本体120の上下を逆さまの状態になるようにする。 (2) In the above embodiment, the interconnector 111 (1) having the internal space 81 is disposed on the air electrode 124 side (air chamber 114 side). On the other hand, the interconnector 111 (1) may be disposed on the combustion electrode 121 side (combustion gas chamber 113 side). For example, the fuel cell body 120 is turned upside down in the fuel cell 100 (1).

(3)上記実施形態では,内部空間81を有するインターコネクタ111(1)は,最上段のみに配置される。これに対して,内部空間を有するインターコネクタを最上段以外に(例えば,中段や最下段)配置しても良い。また,内部空間を有するインターコネクタを複数配置しても良い。 (3) In the above embodiment, the interconnector 111 (1) having the internal space 81 is disposed only in the uppermost stage. On the other hand, an interconnector having an internal space may be arranged other than the uppermost stage (for example, the middle stage or the lowermost stage). A plurality of interconnectors having an internal space may be arranged.

1 燃料電池
10 燃料電池スタック
100 燃料電池セル
111(1),111(2) インターコネクタ
111a 板状部材
111ax 板状部材
111b フレーム部材
111c 弾性部材
113 燃料ガス室
114 酸化剤ガス室
120 燃料電池セル本体
121 燃料極
122 固体電解質層
123 反応防止層
124 空気極
130 フレーム
131 燃料極フレーム
132 セパレータ
133 空気極フレーム
134,135 連通孔
141,142 スペーサ
151 燃料極集電電極
152 空気極集電電極
61-68 固定部材
61a-68a ナット
61b-68b ボルト
71-78 貫通孔
80 ガス導入部材
81 内部空間
82 ガス導入口
83 開口
91 空気ブロワ
91a 空気ブロワ
91b 加圧用ポンプ
92 逆止弁
93 流量計
94 差圧計
95 ニードル弁
96 コントローラ
97a,97b 圧力計
98a,98b 電磁弁
99a,99b リレー
M 電気測定器
DESCRIPTION OF SYMBOLS 1 Fuel cell 10 Fuel cell stack 100 Fuel cell 111 (1), 111 (2) Interconnector 111a Plate member 111ax Plate member 111b Frame member 111c Elastic member 113 Fuel gas chamber 114 Oxidant gas chamber 120 Fuel cell body 121 Fuel Electrode 122 Solid Electrolyte Layer 123 Reaction Prevention Layer 124 Air Electrode 130 Frame 131 Fuel Electrode Frame 132 Separator 133 Air Electrode Frame 134, 135 Communication Holes 141, 142 Spacer 151 Fuel Electrode Current Collecting Electrode 152 Air Electrode Current Collecting Electrode 61-68 Fixing member 61a-68a Nut 61b-68b Bolt 71-78 Through hole 80 Gas introduction member 81 Internal space 82 Gas introduction port 83 Opening 91 Air blower 91a Air blower 91b Pressurizing pump 92 Check valve 93 Flow meter 94 Differential pressure gauge 95 Needle Valve 96 Controller 97a, 97b Pressure gauge 98a, 98b Solenoid valve 99a, 99b Relay M Electrical measuring instrument

Claims (8)

第1,第2の主面を有し,かつ,前記第1の主面側に第1ガス室が,前記第2の主面側に第2ガス室が,それぞれ配置される燃料電池セル本体と,
前記第1の主面と接触し,かつ中空部を有する集電体と,
前記中空部にガスを供給し,前記集電体と前記第1の主面との接触状態を変化させる供給部と,
前記中空部内の圧力と,前記第1ガス室内の圧力との圧力差を検出する圧力差検出部と,
前記圧力差に基づいて,前記供給部によるガスの供給を制御する制御部と,
を具備することを特徴とする燃料電池。
A fuel cell body having first and second main surfaces, and a first gas chamber disposed on the first main surface side and a second gas chamber disposed on the second main surface side, respectively. When,
A current collector in contact with the first main surface and having a hollow portion;
A supply section for supplying gas to the hollow section and changing a contact state between the current collector and the first main surface;
A pressure difference detector that detects a pressure difference between the pressure in the hollow portion and the pressure in the first gas chamber;
A control unit for controlling the supply of gas by the supply unit based on the pressure difference;
A fuel cell comprising:
前記集電体と前記燃料電池セル本体間での直流電圧損失を検出する損失検出部をさらに具備し,
前記制御部が,前記圧力差および前記直流電圧損失に基づいて,ガスの供給を制御する
ことを特徴とする請求項1に記載の燃料電池。
A loss detection unit for detecting a DC voltage loss between the current collector and the fuel cell body;
2. The fuel cell according to claim 1, wherein the control unit controls gas supply based on the pressure difference and the DC voltage loss.
前記供給部が,
前記ガスを加圧する加圧ポンプと,
前記加圧されたガスを前記中空部内へ供給する第1管路と,
前記加圧されたガスを前記第1ガス室へ供給する第2管路と,
前記第2管路に配置され,前記第1ガス室側から前記供給部へのガスの逆流を防止する逆止弁と,を備える,
ことを特徴とする請求項1または2に記載の燃料電池。
The supply section is
A pressurizing pump for pressurizing the gas;
A first conduit for supplying the pressurized gas into the hollow portion;
A second conduit for supplying the pressurized gas to the first gas chamber;
A check valve disposed in the second pipe line and preventing a backflow of gas from the first gas chamber side to the supply unit,
The fuel cell according to claim 1 or 2, wherein
前記供給部が,
前記ガスを加圧する加圧ポンプと,
前記加圧されたガスを前記中空部内へ供給する第1管路と,
前記加圧されたガスを前記第1ガス室へ供給する第2管路と,
前記第2管路に配置され,開度が調整可能なニードル弁と,を備える,
ことを特徴とする請求項1または2に記載の燃料電池。
The supply section is
A pressurizing pump for pressurizing the gas;
A first conduit for supplying the pressurized gas into the hollow portion;
A second conduit for supplying the pressurized gas to the first gas chamber;
A needle valve that is disposed in the second pipe and whose opening is adjustable;
The fuel cell according to claim 1 or 2, wherein
前記供給部が,
前記ガスを加圧する加圧ポンプと,
前記加圧されたガスを前記中空部内へ供給する第1管路と,
前記加圧されたガスを前記第1ガス室へ供給する第2管路と,
前記第1管路に配置され,前記加圧されたガスの前記中空部内への供給を調節する第1の弁と,
前記第1管路に配置され,前記中空部内からガスを排出する第2の弁と,を有し,
前記圧力差が所定値より小さい場合に,前記制御部が,前記第1の弁を開状態とし,
前記圧力差が前記所定値より大きい場合に,前記制御部が,前記第2の弁を開状態とする,
ことを特徴とする請求項1または2に記載の燃料電池。
The supply section is
A pressurizing pump for pressurizing the gas;
A first conduit for supplying the pressurized gas into the hollow portion;
A second conduit for supplying the pressurized gas to the first gas chamber;
A first valve disposed in the first conduit for regulating the supply of the pressurized gas into the hollow portion;
A second valve that is disposed in the first pipe and discharges gas from the hollow portion;
When the pressure difference is smaller than a predetermined value, the control unit opens the first valve,
When the pressure difference is larger than the predetermined value, the control unit opens the second valve;
The fuel cell according to claim 1 or 2, wherein
前記供給部が,
前記第2管路に配置され,前記燃料電池セル本体側から前記供給部へのガスの逆流を防止する逆止弁と,
前記第1の弁よりも上流側の圧力と,前記逆止弁よりも上流側の圧力との差を検出する第2の圧力差検出部をさらに備え,
前記第2の圧力差が前記圧力差より小さい場合に,前記制御部が前記加圧ポンプを動作させて前記ガスを加圧させる
ことを特徴とする請求項5に記載の燃料電池。
The supply section is
A check valve disposed in the second pipe line to prevent a backflow of gas from the fuel cell body side to the supply part;
A second pressure difference detection unit for detecting a difference between a pressure upstream of the first valve and a pressure upstream of the check valve;
The fuel cell according to claim 5, wherein when the second pressure difference is smaller than the pressure difference, the control unit operates the pressurizing pump to pressurize the gas.
前記第1ガス室には,空気が供給されている
ことを特徴とする請求項1〜6のいずれか1項に記載の燃料電池。
The fuel cell according to any one of claims 1 to 6, wherein air is supplied to the first gas chamber.
前記第1ガス室には,燃料ガスが供給されている
ことを特徴とする請求項1〜6のいずれか1項に記載の燃料電池。
The fuel cell according to any one of claims 1 to 6, wherein fuel gas is supplied to the first gas chamber.
JP2010281798A 2010-12-17 2010-12-17 Fuel cell Expired - Fee Related JP5580724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281798A JP5580724B2 (en) 2010-12-17 2010-12-17 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281798A JP5580724B2 (en) 2010-12-17 2010-12-17 Fuel cell

Publications (2)

Publication Number Publication Date
JP2012129148A true JP2012129148A (en) 2012-07-05
JP5580724B2 JP5580724B2 (en) 2014-08-27

Family

ID=46645945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281798A Expired - Fee Related JP5580724B2 (en) 2010-12-17 2010-12-17 Fuel cell

Country Status (1)

Country Link
JP (1) JP5580724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050023A (en) * 2017-11-02 2019-05-10 한국전기연구원 Performance measuring device for Hybrid capacitor cell
WO2024095014A1 (en) * 2022-11-03 2024-05-10 Ceres Intellectual Property Company Limited Electrochemical cell unit with flat separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220363A (en) * 1988-12-20 1990-09-03 Asea Brown Boveri Ag Apparatus for converting energy existing in material as chemical potential into electric energy
JPH0668898A (en) * 1992-06-18 1994-03-11 Honda Motor Co Ltd Fuel cell separator and in-stack tightening of fuel cell
JPH10233223A (en) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell stack fastening device
JPH117975A (en) * 1997-06-19 1999-01-12 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fastening control device for fuel cell
JP2000123854A (en) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2000149978A (en) * 1998-11-16 2000-05-30 Aisin Seiki Co Ltd Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220363A (en) * 1988-12-20 1990-09-03 Asea Brown Boveri Ag Apparatus for converting energy existing in material as chemical potential into electric energy
JPH0668898A (en) * 1992-06-18 1994-03-11 Honda Motor Co Ltd Fuel cell separator and in-stack tightening of fuel cell
JPH10233223A (en) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell stack fastening device
JPH117975A (en) * 1997-06-19 1999-01-12 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fastening control device for fuel cell
JP2000123854A (en) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2000149978A (en) * 1998-11-16 2000-05-30 Aisin Seiki Co Ltd Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190050023A (en) * 2017-11-02 2019-05-10 한국전기연구원 Performance measuring device for Hybrid capacitor cell
KR102364517B1 (en) * 2017-11-02 2022-02-18 한국전기연구원 Performance measuring device for Hybrid capacitor cell
WO2024095014A1 (en) * 2022-11-03 2024-05-10 Ceres Intellectual Property Company Limited Electrochemical cell unit with flat separator

Also Published As

Publication number Publication date
JP5580724B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5313667B2 (en) Solid electrolyte fuel cell stack
JP5819099B2 (en) Solid oxide fuel cell
KR20140044898A (en) Fuel cell and fuel cell stack
DK2701225T3 (en) Fuel cell and fuel cell stack
JP6854926B2 (en) Water electrolysis or co-electrolysis reactor (SOEC) or fuel cell (SOFC) for pressurization operation with a clamp system suitable for pressurization operation
JP2017218668A (en) Electrochemical type hydrogen pump
CN110670088A (en) Electrochemical hydrogen pump
EP1868259A1 (en) Separator unit and fuel cell stack
JP5580724B2 (en) Fuel cell
Leah et al. Low-cost, redox-stable, low-temperature SOFC developed by Ceres Power for multiple applications: Latest development update
JP2012028092A (en) Method of manufacturing fuel cell stack
JP2013030359A (en) Fuel cell device
JP2008010311A (en) Method of operating fuel cell
JP2019210543A (en) Electrochemical type pump
WO2007148793A1 (en) Solid state electrolyte fuel cell stack
JP7236675B2 (en) Solid oxide fuel cell and electrochemical cell
JP5722742B2 (en) Fuel cell
JP6407069B2 (en) Fuel cell stack
JPWO2020095836A1 (en) Electrochemical hydrogen pump
WO2023233842A1 (en) Compression device, operation method for compression device, and manufacturing method for compression device
JP6979636B1 (en) Compressor
WO2016204017A1 (en) Fuel cell stack and method for manufacturing fuel cell stack
JP7236676B2 (en) Solid oxide fuel cell and electrochemical cell
US20220328858A1 (en) Solid oxide cell stack with a pressure difference between anode and cathode compartments
JP2018147714A (en) Electrochemical reaction single cell and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5580724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees