JPH10233223A - Fuel cell stack fastening device - Google Patents

Fuel cell stack fastening device

Info

Publication number
JPH10233223A
JPH10233223A JP9033478A JP3347897A JPH10233223A JP H10233223 A JPH10233223 A JP H10233223A JP 9033478 A JP9033478 A JP 9033478A JP 3347897 A JP3347897 A JP 3347897A JP H10233223 A JPH10233223 A JP H10233223A
Authority
JP
Japan
Prior art keywords
pressure
bellows
stack
cylinder
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9033478A
Other languages
Japanese (ja)
Inventor
Takashi Nakane
隆 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9033478A priority Critical patent/JPH10233223A/en
Publication of JPH10233223A publication Critical patent/JPH10233223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a simplified device which requires operation only at the time of a transition period of pressurizing a pressure vessel with only a pressure reducing device attached by decompressing the internal pressure of a bellows until the internal pressure of the pressure vessel reaches a prescribed pressure, and after that, releasing it to be atmospheric pressure. SOLUTION: A pressure adjusting device 7 and a compressed air source 8 are connected to a pressure vessel 5, and the internal pressure of the pressure vessel 5 is adjusted from atmospheric pressure to the operating pressure of a prescribed fuel cell. The pressure in the vessel 5 rises at a constant rate from the atmospheric pressure at the time of starting-up, and when it reaches prescribed operating pressure, the pressure is maintained. The pressure of a bellows 20 is adjusted so as to generate constant fastening force by a difference ΔPa from the pressure in the vessel 5 as negative pressure to generate constant fastening force even at the time of starting-up. After the pressure in the vessel 5 becomes ΔPa, the pressure of the bellows 20 is made into the atmospheric pressure. The decompression adjustment for the bellows 20 is required only at the time of the transition period. At the time of stationary operation, only opening to the atmosphere is required, thus, it is possible to eliminate pressure adjusting operation for reduction in maintenance cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池を積層し
てなるスタックを締付ける燃料電池スタック締付装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell stack tightening device for tightening a fuel cell stack.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率で環境
への影響が少ないなど、従来の発電装置にない特徴を有
しており、水力、火力、原子力に続く発電システムとし
て注目を集め、現在鋭意研究が進められている。
2. Description of the Related Art Molten carbonate fuel cells have features not found in conventional power generators, such as high efficiency and low environmental impact, and have attracted attention as power generation systems following hydro, thermal and nuclear power. Currently, intensive research is underway.

【0003】図9は溶融炭酸塩型燃料電池の構成を示す
模式図である。燃料電池は単セルでは低電圧(0.8
V)であるので、実用上はセパレータを介し多段に積層
した電池として用いる。この積層電池をスタックと呼
ぶ。単セル40は、多孔質のタイルよりなる電解質板4
1と、この一方の面に設けられたカソード(空気極)4
2と、他方の面に設けられたアノード(燃料極)43
と、カソード42にはカソードガスを流す流路を形成
し、アノード43にはアノードガスを流す流路を形成
し、隣接のセルと分離するセパレータ44とから構成さ
れている。
FIG. 9 is a schematic diagram showing a configuration of a molten carbonate fuel cell. The fuel cell has a low voltage (0.8
V), the battery is practically used as a multi-tiered battery with a separator interposed therebetween. This stacked battery is called a stack. The single cell 40 includes an electrolyte plate 4 made of a porous tile.
1 and a cathode (air electrode) 4 provided on one surface thereof
2 and an anode (fuel electrode) 43 provided on the other surface
The cathode 42 has a flow path for flowing a cathode gas, and the anode 43 has a flow path for flowing an anode gas.

【0004】図10は従来のスタック締付け方法を示
す。スタック1は上板2と下板3で挟まれ上板2の上面
には気密性のベローズ11が設けられ、ベローズ11の
上面にはベローズ押え板12が取付けられ、このベロー
ズ押え板12と上板2と下板3に押えボルト4を通し、
ベローズ11が膨張するとスタック1が締付けられるよ
うになっている。スタック1、上下板2,3、ベローズ
11、ベローズ押え板12は圧力容器5内に格納されて
いる。圧力容器5には加圧管6によって圧力調整装置7
と圧縮空気源8が接続されている。ベローズ11にはベ
ローズ加圧管13を介してベローズ圧力調整装置14が
接続されており、このベローズ圧力調整装置14にはガ
ス供給管15によりガスボンベ16が接続されている。
FIG. 10 shows a conventional stack tightening method. The stack 1 is sandwiched between an upper plate 2 and a lower plate 3, and an airtight bellows 11 is provided on an upper surface of the upper plate 2, and a bellows holding plate 12 is mounted on an upper surface of the bellows 11. Pass the holding bolt 4 through the plate 2 and the lower plate 3,
When the bellows 11 expands, the stack 1 is tightened. The stack 1, the upper and lower plates 2 and 3, the bellows 11, and the bellows holding plate 12 are stored in the pressure vessel 5. A pressure adjusting device 7 is connected to the pressure vessel 5 by a pressurizing pipe 6.
And the compressed air source 8 are connected. A bellows pressure adjusting device 14 is connected to the bellows 11 via a bellows pressurizing tube 13, and a gas cylinder 16 is connected to the bellows pressure adjusting device 14 by a gas supply pipe 15.

【0005】燃料電池運転時は圧力容器5内の圧力は大
気圧から所定の圧力、例えば5ataまで順次昇圧し、
その5ataを持続する。この圧力に応じてベローズ1
1内の圧力を調整し一定の圧力でスタック1を締付け
る。図11は圧力容器5とベローズ11内の圧力の変化
を示す。P1は圧力容器内の圧力を示し、P2はベロー
ズ11内の圧力を示す。ベローズ圧力調整装置14は差
圧ΔP=P2−P1が一定になるように常に調整する。
[0005] During operation of the fuel cell, the pressure in the pressure vessel 5 is sequentially increased from atmospheric pressure to a predetermined pressure, for example, 5 data.
The 5ata is maintained. Bellows 1 according to this pressure
Adjust the pressure in 1 and tighten the stack 1 at a constant pressure. FIG. 11 shows changes in pressure in the pressure vessel 5 and the bellows 11. P1 indicates the pressure in the pressure vessel, and P2 indicates the pressure in the bellows 11. The bellows pressure adjusting device 14 constantly adjusts the pressure difference ΔP = P2−P1 to be constant.

【0006】[0006]

【発明が解決しようとする課題】このようにベローズ圧
力調整装置14は常に圧力を調整するので、万一ガスボ
ンベ16の圧力低下や圧力調整装置14への電源喪失な
どにより圧力調整が適正に行われなくなった場合、締付
け圧力異常から燃料電池スタック1が破壊される恐れが
ある。このような破壊を防止するために、ガスボンベ1
6を多数並列接続にして定期的にボンベの一次圧力の点
検や、ベローズ圧力調整装置14用にバックアップ電源
を用意するなどの対策が講じられてきた。しかし、ボン
ベ一次圧力点検作業やボンベ交換作業はかなりの作業時
間の負担となり、ボンベ代などの運転費用、装置の冗長
化やバックアップ電源等の設備製作費用はかなりの額に
なり発電プラントの経済性を悪化させていた。
As described above, since the bellows pressure adjusting device 14 constantly adjusts the pressure, the pressure is properly adjusted due to the pressure drop of the gas cylinder 16 or the loss of the power supply to the pressure adjusting device 14. When the fuel cell stack 1 runs out, the fuel cell stack 1 may be broken due to an abnormal tightening pressure. To prevent such destruction, a gas cylinder 1
6 has been connected in parallel, measures have been taken such as periodically checking the primary pressure of the cylinder and preparing a backup power supply for the bellows pressure regulator 14. However, the primary pressure inspection work and the replacement work of the cylinders require a considerable amount of work time, and the operating costs such as the cost of the cylinders, the equipment production costs such as equipment redundancy and backup power supply become considerable and the economics of the power plant Was getting worse.

【0007】本発明は上述の問題に鑑みてなされたもの
で、圧力容器内圧と大気圧との差圧によりスタックの締
付けを行い設備費や運転及び維持費の少ない燃料電池ス
タック締付装置を提供することを目的とする。
The present invention has been made in view of the above-described problems, and provides a fuel cell stack tightening apparatus that tightens a stack by using a differential pressure between the pressure in a pressure vessel and the atmospheric pressure, thereby reducing equipment costs, operation and maintenance costs. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、燃料電池を積層してなるスタ
ックをほぼ中央部で挟む上板および下板と、この上下板
の間に設けられ上下端がそれぞれ上下板と結合しており
上下方向に伸縮する気密なベローズと、スタックおよび
ベローズとこれらを挟む上下板を格納する圧力容器と、
この圧力容器内を加圧する加圧装置と、前記ベローズに
接続されベローズ内を減圧しまたは大気開放する減圧装
置と、を備える。
In order to achieve the above object, according to the first aspect of the present invention, an upper plate and a lower plate sandwiching a stack formed by stacking fuel cells at a substantially central portion are provided between the upper and lower plates. Airtight bellows whose upper and lower ends are respectively connected to the upper and lower plates and expands and contracts in the vertical direction, and a pressure vessel that stores the stack and the bellows and the upper and lower plates sandwiching these,
The pressure vessel includes a pressure device for pressurizing the inside of the pressure vessel, and a pressure reducing device connected to the bellows for reducing the pressure inside the bellows or opening the inside of the bellows to the atmosphere.

【0009】上下板の間にはスタックとベローズが設け
られ、ベローズの内圧を圧力容器の内圧より低くするこ
とにより上下板は引き付けられスタックは締付けられ
る。圧力容器内圧が低いときはベローズ内圧を負圧とし
差圧を所定以上とし一定値以上の締付け力を発生させ、
圧力容器内圧が高くなればベローズを大気圧として一定
値以上の締付け力を確保できる。これにより圧力容器内
圧が所定圧になるまではベローズの内圧を減圧するが、
それ以降は解放して大気圧にすればよいので、圧力の調
整をする必要はない。またベローズには加圧装置は必要
なく減圧装置でよく、しかも圧力容器を加圧してゆく過
渡期のみ動作するだけなので装置も簡単になり、運転や
維持も簡単になる。
A stack and a bellows are provided between the upper and lower plates. When the internal pressure of the bellows is made lower than the internal pressure of the pressure vessel, the upper and lower plates are attracted and the stack is tightened. When the internal pressure of the pressure vessel is low, the internal pressure of the bellows is set to a negative pressure, the differential pressure is set to a predetermined value, and a tightening force of a certain value or more is generated.
If the pressure inside the pressure vessel increases, the bellows can be set to the atmospheric pressure to secure a tightening force of a certain value or more. This reduces the internal pressure of the bellows until the internal pressure of the pressure vessel reaches the predetermined pressure,
After that, the pressure can be adjusted to atmospheric pressure without any need for pressure adjustment. Further, the bellows need not have a pressurizing device and may be a depressurizing device. Further, since the bellows only operates during the transitional period in which the pressure vessel is pressurized, the device becomes simple, and the operation and maintenance are also simplified.

【0010】請求項2の発明では、燃料電池を積層して
なるスタックをほぼ中央部で挟む上板および下板と、こ
の上下板の間に設けられ上下端がそれぞれ上下板と結合
しており上下方向に伸縮する気密なベローズと、スタッ
クおよびベローズとこれらを挟む上下板を格納する圧力
容器と、この圧力容器内を加圧する加圧装置と、前記ベ
ローズに接続されベローズ内を大気開放するベローズ開
放管と、前記上板と格納容器に固定されたばね支持材と
の間に設けられ上板を介してスタックを押圧するばね
と、を備える。
According to the second aspect of the present invention, an upper plate and a lower plate sandwiching a stack formed by stacking fuel cells at a substantially central portion, and upper and lower ends provided between the upper and lower plates are respectively connected to the upper and lower plates. An airtight bellows which expands and contracts, a pressure vessel which stores the stack and the bellows and upper and lower plates sandwiching them, a pressurizing device which pressurizes the inside of the pressure vessel, and a bellows opening pipe which is connected to the bellows and opens the inside of the bellows to the atmosphere. And a spring provided between the upper plate and a spring supporting member fixed to the storage container, and pressing the stack via the upper plate.

【0011】本発明は、請求項1の発明が減圧装置を用
いて、圧力容器加圧時の過渡期の締付け力を確保したの
に対し、ばねを用いて過渡期の締付け力を確保したもの
である。上下板の間にはスタックとベローズが設けら
れ、ベロースの内圧を大気圧とし、圧力容器の内圧を高
くしてゆくに従い上下板は引き付けられスタックは締付
けられる。圧力容器内圧が低いときは一定値以上の締付
け力が発生しないので、ばねにより一定値の締付け力を
与える。圧力容器内圧が高くなれば大気圧との差圧に応
じた締付け力が加算される。これによりベローズは過渡
期および定常時を問わず何の操作も必要なく、装置も簡
単となり、運転や維持も簡単になる。
According to the present invention, the invention of claim 1 uses a pressure reducing device to secure the tightening force in the transitional period when the pressure vessel is pressurized, while using the spring to secure the tightening force in the transitional period. It is. A stack and a bellows are provided between the upper and lower plates. As the internal pressure of the bellows becomes atmospheric pressure and the internal pressure of the pressure vessel increases, the upper and lower plates are attracted and the stack is tightened. When the internal pressure of the pressure vessel is low, a tightening force of a certain value or more is not generated, so that a fixed tightening force is applied by a spring. When the pressure inside the pressure vessel increases, a tightening force corresponding to the pressure difference from the atmospheric pressure is added. This eliminates the need for any operation of the bellows during transitional and stationary periods, simplifies the equipment, and simplifies operation and maintenance.

【0012】請求項3の発明では、燃料電池を積層して
なるスタックをほぼ中央部で挟む上板および下板と、こ
の上板の上面に設けられロッドで上板を押圧するシリン
ダと、スタックとこれを挟む上下板およびシリンダを格
納する圧力容器と、この圧力容器内を加圧する加圧装置
と、前記シリンダのシリンダチューブに接続されシリン
ダチューブ内を減圧しまたは大気開放する減圧装置と、
を備え、前記シリンダは、上端が開放され下端にロッド
貫通穴を有し垂直に取付けられたシリンダチューブと、
このシリンダチューブに嵌合するピストンと、このピス
トンの下面に結合され前記ロッド貫通穴を貫通するロッ
ドと、を有する。
According to the third aspect of the present invention, an upper plate and a lower plate sandwiching a stack of fuel cells in a substantially central portion, a cylinder provided on an upper surface of the upper plate and pressing the upper plate with a rod, And a pressure vessel for storing the upper and lower plates and the cylinder sandwiching the pressure vessel, a pressurizing device for pressurizing the inside of the pressure vessel, and a decompression device connected to the cylinder tube of the cylinder to decompress the cylinder tube or open the atmosphere,
The cylinder, the upper end is open, the lower end has a rod through hole and a vertically mounted cylinder tube,
The piston includes a piston fitted to the cylinder tube, and a rod coupled to the lower surface of the piston and penetrating the rod through hole.

【0013】シリンダチューブ内の圧力を圧力容器内の
圧力より低い圧力とすると、この差圧にピストンとロッ
ドの断面積の差を乗じた力が発生し、ロッド先端が貫通
穴を通り上板を押し下げスタックを締付ける。圧力容器
内圧が低いときはシリンダチューブ内圧を負圧とし差圧
を所定値以上とし一定値以上の締付け力を発生させ、圧
力容器内圧が高くなればシリンダチューブ内を大気圧と
して一定値以上の締付け力を確保できる。これにより圧
力容器内圧が所定圧になるまではシリンダチューブの内
圧を減圧するが、それ以降は解放して大気圧にすればよ
いので、圧力の調整をする必要はない。またシリンダに
は加圧装置は必要なく減圧装置でよく、しかも圧力容器
を加圧してゆく過渡期のみ動作するだけなので装置も簡
単になり、運転や維持も簡単になる。
If the pressure in the cylinder tube is lower than the pressure in the pressure vessel, a force is generated by multiplying the pressure difference by the difference between the cross-sectional areas of the piston and the rod, and the rod end passes through the through hole and passes through the upper plate. Tighten down stack. When the internal pressure of the pressure vessel is low, the internal pressure of the cylinder tube is set to a negative pressure, the differential pressure is set to a predetermined value or more, and a tightening force of a certain value or more is generated. Power can be secured. As a result, the internal pressure of the cylinder tube is reduced until the internal pressure of the pressure vessel becomes a predetermined pressure, but thereafter, it is only necessary to release the internal pressure to atmospheric pressure, so that there is no need to adjust the pressure. In addition, the cylinder does not need a pressurizing device and need only be a depressurizing device. In addition, since the cylinder only operates during the transitional period when the pressure vessel is pressurized, the device is also simplified, and the operation and maintenance are simplified.

【0014】請求項4の発明では、燃料電池を積層して
なるスタックをほぼ中央部で挟む上板および下板と、こ
の上板の上面に設けられロッドで上板を押圧するシリン
ダと、スタックとこれを挟む上下板およびシリンダを格
納する圧力容器と、この圧力容器内を加圧する加圧装置
と、前記シリンダのシリンダチューブに接続されシリン
ダチューブ内を大気開放するシリンダ開放管と、前記上
板と格納容器に固定されたばね支持材の間に設けられ上
板を介してスタックを押圧するばねと、を備え、前記シ
リンダは、上端が開放され下端にロッド貫通穴を有し垂
直に取付けられたシリンダチューブと、このシリンダチ
ューブに嵌合するピストンと、このピストンの下面に結
合され前記ロッド貫通穴を貫通するロッドと、を有す
る。
According to a fourth aspect of the present invention, an upper plate and a lower plate sandwiching a stack formed by stacking fuel cells at a substantially central portion, a cylinder provided on an upper surface of the upper plate and pressing the upper plate with a rod, A pressure vessel for storing the upper and lower plates and the cylinder sandwiching the pressure vessel, a pressurizing device for pressurizing the inside of the pressure vessel, a cylinder opening pipe connected to the cylinder tube of the cylinder and opening the inside of the cylinder tube to the atmosphere, and the upper plate And a spring provided between a spring support member fixed to the storage container and pressing the stack via an upper plate, wherein the cylinder is vertically mounted with an open upper end and a rod through hole at a lower end. It has a cylinder tube, a piston fitted to the cylinder tube, and a rod coupled to the lower surface of the piston and passing through the rod through hole.

【0015】本発明は、請求項3の発明が減圧装置を用
いて、圧力容器加圧時の過渡期の締付け力を確保したの
に対し、ばねを用いて過渡期の締付け力を確保したもの
である。シリンダチューブ内を大気圧とし圧力容器内の
圧力を高くしてゆくと、この差圧にピストンとロッドの
断面積の差を乗じた力が発生し、ロッド先端が貫通穴を
通り上板を押し下げスタックを締付ける。圧力容器内圧
が低いときは一定値以上の締付け力が発生しないので、
ばねにより一定値の締付け力を与え、圧力容器内圧が高
くなれば差圧による力が追加されて一定値以上の締付け
力を確保できる。これによりシリンダは過渡期および定
常時を問わず何の操作も必要なく、装置も簡単となり、
運転や維持も簡単になる。
According to the third aspect of the present invention, the clamping force in the transitional period when the pressure vessel is pressurized is secured by using the pressure reducing device, whereas the clamping force in the transitional period is secured by using the spring. It is. When the pressure inside the pressure vessel is increased by setting the pressure inside the cylinder tube to atmospheric pressure, a force is generated by multiplying this pressure difference by the difference in the cross-sectional area between the piston and the rod, and the rod end pushes down the upper plate through the through hole. Tighten the stack. When the pressure inside the pressure vessel is low, a tightening force of a certain value or more will not be generated.
A fixed force is applied by a spring, and when the internal pressure of the pressure vessel increases, a force due to a differential pressure is added, so that a fixed force equal to or higher than a certain value can be secured. As a result, the cylinder does not need any operation regardless of the transition period and the steady state, and the device is simplified,
Driving and maintenance are also easier.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。図1は本発明の第1実施形態
の燃料電池スタック締付装置の構成図である。以下の図
面において本図と同一機能を有するものは同一符号で表
す。燃料電池のスタック1は上板2と下板3で挟まれ支
持台10上に設置されている。上下板2,3を貫通して
押さえボルト4が設けられスタック1と上下板2,3が
左右にずれないようになっている。上下板2,3の間で
スタック1の外側には気密性のベローズ20が設けら
れ、ベローズ20が上下方向に収縮することにより、ス
タック1に締付け力を加える。上下板2,3とこれに挟
まれているスタック1やベローズ20等は圧力容器5内
に格納されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a fuel cell stack fastening device according to a first embodiment of the present invention. In the following drawings, those having the same functions as those of the present drawing are denoted by the same reference numerals. The fuel cell stack 1 is sandwiched between an upper plate 2 and a lower plate 3 and is set on a support base 10. Pressing bolts 4 are provided through the upper and lower plates 2 and 3 so that the stack 1 and the upper and lower plates 2 and 3 do not shift left and right. An airtight bellows 20 is provided outside the stack 1 between the upper and lower plates 2 and 3, and the bellows 20 contracts vertically to apply a tightening force to the stack 1. The upper and lower plates 2 and 3 and the stack 1 and the bellows 20 sandwiched therebetween are stored in the pressure vessel 5.

【0017】圧力容器5には加圧管6を介して圧力調整
装置7および圧縮空気源8が接続され、圧力容器5の内
圧を大気圧から所定の燃料電池の運転圧、例えば5at
aまで調整する。スタック1の側面には断熱材9が設け
られ燃料電池を高温に保持する。ベローズ20にはベロ
ーズ開放管21が接続され、圧力容器5外まで導設され
ておりベローズ減圧装置22に接続されている。ベロー
ズ減圧装置22はベローズ20の内圧を負圧から大気圧
まで調整する。
A pressure regulating device 7 and a compressed air source 8 are connected to the pressure vessel 5 via a pressure pipe 6, and the internal pressure of the pressure vessel 5 is increased from atmospheric pressure to a predetermined operating pressure of the fuel cell, for example, 5 at.
Adjust to a. A heat insulating material 9 is provided on the side surface of the stack 1 to keep the fuel cell at a high temperature. A bellows opening pipe 21 is connected to the bellows 20, is led to the outside of the pressure vessel 5, and is connected to a bellows pressure reducing device 22. The bellows pressure reducing device 22 adjusts the internal pressure of the bellows 20 from negative pressure to atmospheric pressure.

【0018】図2は燃料電池の起動から定常運転までの
圧力容器5とベローズ20の内圧を示す。P1は圧力容
器5の圧力を示し、P3はベローズ20の圧力を示す。
P1は起動開始時の大気圧(これを圧力0とする)から
一定の割合で昇圧し、所定の運転圧となるとその圧力を
持続する。P3は起動開始時でも一定の締付け力が発生
するように負圧としP1との差圧ΔPaにより一定の締
付け力が発生するよう調整される。P1がΔPaとなっ
た時以降はP3を大気圧とする。これにより過渡期でも
一定の締付け力が確保され、定常運転時は差圧ΔPcに
応じた締付け力が発生する。
FIG. 2 shows the internal pressure of the pressure vessel 5 and the bellows 20 from the start of the fuel cell to the steady operation. P1 indicates the pressure of the pressure vessel 5, and P3 indicates the pressure of the bellows 20.
P1 is increased at a fixed rate from the atmospheric pressure at the start of activation (this is referred to as pressure 0), and when a predetermined operating pressure is reached, the pressure is maintained. P3 is set to a negative pressure so that a constant tightening force is generated even at the start of startup, and is adjusted so as to generate a constant tightening force by a differential pressure ΔPa from P1. After P1 becomes ΔPa, P3 is set to the atmospheric pressure. As a result, a constant tightening force is ensured even in a transitional period, and a tightening force corresponding to the differential pressure ΔPc is generated during a steady operation.

【0019】本実施形態では、過渡期のみベローズの減
圧調整をすればよく、定常運転時は大気開放しておけば
よいので、圧力調整操作は不要となる。また減圧装置を
設ければよいので、装置は簡単で製作費や維持費も少な
くてよい。
In this embodiment, the bellows need only be depressurized and adjusted only during the transitional period, and the bellows need only be opened to the atmosphere during a steady operation, so that the pressure adjusting operation is not required. Further, since a decompression device may be provided, the device is simple and the production cost and maintenance cost may be low.

【0020】次に第2実施形態を説明する。図3は第2
実施形態の構成を示す。本実施形態は図1に示す第1実
施形態に対して、ベローズ減圧装置22を取り止め、ベ
ローズ開放管21を大気開放とし、圧力容器5に固定さ
れたばね支持材23と上板2の間にばね24を設け、常
に一定の締付け力をスタック1に加えるようにしたもの
である。図中P1は圧力容器5の圧力、P0は大気圧を
示す。
Next, a second embodiment will be described. FIG. 3 shows the second
1 shows a configuration of an embodiment. This embodiment is different from the first embodiment shown in FIG. 1 in that the bellows pressure reducing device 22 is stopped, the bellows opening pipe 21 is opened to the atmosphere, and a spring is provided between the spring support member 23 fixed to the pressure vessel 5 and the upper plate 2. 24 are provided so that a constant tightening force is always applied to the stack 1. In the figure, P1 indicates the pressure of the pressure vessel 5, and P0 indicates the atmospheric pressure.

【0021】図4は燃料電池の起動から定常運転までの
スタック1に加わる締付け力を示す。F1は圧力容器5
の内圧とベローズ20の内圧(大気圧)との差圧により
ベローズ20が上下方向に伸縮して発生する締付け力を
示す。F2はばね24によって加えられる締付け力を示
す。ΣFはスタック1に加わる締付け力の合計を示す。
FIG. 4 shows the tightening force applied to the stack 1 from the start of the fuel cell to the steady operation. F1 is a pressure vessel 5
And the tightening force generated when the bellows 20 expands and contracts in the vertical direction due to the differential pressure between the internal pressure of the bellows 20 and the internal pressure of the bellows 20 (atmospheric pressure). F2 indicates the clamping force applied by the spring 24. ΣF indicates the total tightening force applied to the stack 1.

【0022】本実施形態はスタック1に一定値以上の締
付け力を加えるために何の操作も必要としないので操作
による作業コストは発生せず、また締付け力発生装置が
簡単であるので、製作費や維持費も少ない。
In this embodiment, no operation is required to apply a tightening force of a fixed value or more to the stack 1, so that no operation cost is required for the operation, and the manufacturing cost is simple because the tightening force generating device is simple. And maintenance costs are low.

【0023】次に第3実施形態を説明する。図5は第3
実施形態の構成を示す。燃料電池のスタック1は上板2
と下板3で挟まれ支持台10上に設置されている。上下
板2,3を貫通して押さえボルト4が設けられ、スタッ
ク1と上下板2,3が左右にずれないようになってい
る。スタック1の側面には断熱材9が設けられ燃料電池
運転時高温を保持している。圧力容器5には加圧管6を
介して圧力調整装置7および圧縮空気源8が接続され、
圧力容器5の内圧を大気圧から所定の燃料電池の運転
圧、例えば5ataまで調整する。図中P1は圧力容器
の圧力を示し、P3はシリンダの内圧を示す。
Next, a third embodiment will be described. FIG. 5 shows the third
1 shows a configuration of an embodiment. The fuel cell stack 1 has an upper plate 2
And the lower plate 3, and is set on the support base 10. Pressing bolts 4 are provided through the upper and lower plates 2 and 3 so that the stack 1 and the upper and lower plates 2 and 3 do not shift left and right. A heat insulating material 9 is provided on the side surface of the stack 1 and keeps a high temperature during operation of the fuel cell. A pressure adjusting device 7 and a compressed air source 8 are connected to the pressure vessel 5 via a pressurizing pipe 6.
The internal pressure of the pressure vessel 5 is adjusted from atmospheric pressure to a predetermined operating pressure of the fuel cell, for example, 5 data. In the figure, P1 indicates the pressure of the pressure vessel, and P3 indicates the internal pressure of the cylinder.

【0024】上板2の上面には空気圧作動のシリンダ3
0が設けられている。シリンダチューブ31は上端が開
放され、下端にはロッド33の貫通穴が設けられてい
る。ピストン32とロッド33は一体に構成されピスト
ン32がシリンダチューブ31の内面に嵌合し、ロッド
33の先端がロッド貫通穴に嵌合している。シリンダチ
ューブ31にはシリンダ開放管34が接続され、圧力容
器5の外側まで導設され、シリンダ減圧装置35に接続
されている。
On the upper surface of the upper plate 2, a pneumatically operated cylinder 3 is provided.
0 is provided. The upper end of the cylinder tube 31 is open, and a through hole for the rod 33 is provided at the lower end. The piston 32 and the rod 33 are integrally formed, and the piston 32 is fitted on the inner surface of the cylinder tube 31, and the tip of the rod 33 is fitted on the rod through hole. A cylinder opening pipe 34 is connected to the cylinder tube 31, is guided to the outside of the pressure vessel 5, and is connected to a cylinder pressure reducing device 35.

【0025】図6は燃料電池の起動から定常運転までの
圧力容器5とシリンダ30の内圧を示す。P1は圧力容
器5の圧力を示し、P3はシリンダチューブ31の圧力
を示す。P1は起動開始時の大気圧(これを圧力0とす
る)から一定の割合で昇圧し、所定の運転圧となるとそ
の圧力を持続する。P3は起動開始時でも一定の締付け
力が発生するように負圧としP1との差圧ΔPaにより
一定の締付け力が発生するよう調整される。P1がΔP
aとなった時以降はP3は大気圧とする。これにより過
渡期でも一定の締付け力が確保され、定常運転時は差圧
ΔPcに応じた締付け力が発生する。
FIG. 6 shows the internal pressure of the pressure vessel 5 and the cylinder 30 from the start of the fuel cell to the steady operation. P1 indicates the pressure of the pressure vessel 5, and P3 indicates the pressure of the cylinder tube 31. P1 is increased at a fixed rate from the atmospheric pressure at the start of activation (this is referred to as pressure 0), and when a predetermined operating pressure is reached, the pressure is maintained. P3 is set to a negative pressure so that a constant tightening force is generated even at the start of startup, and is adjusted so as to generate a constant tightening force by a differential pressure ΔPa from P1. P1 is ΔP
After time a, P3 is set to the atmospheric pressure. As a result, a constant tightening force is ensured even in a transitional period, and a tightening force corresponding to the differential pressure ΔPc is generated during a steady operation.

【0026】本実施形態では、過渡期のみシリンダ30
の減圧調整をすればよく、定常運転時は大気開放してお
けばよいので、圧力調整操作は不要となる。またシリン
ダ減圧装置を設ければよいので、装置は簡単で製作費や
維持費も少なくてよい。
In this embodiment, the cylinder 30 is used only during the transition period.
It is only necessary to perform the pressure reduction operation described above, and it is only necessary to open to the atmosphere during the steady operation, so that the pressure adjustment operation is unnecessary. Further, since a cylinder pressure reducing device may be provided, the device is simple and the production cost and maintenance cost can be reduced.

【0027】次に第4実施形態を説明する。図7は第4
実施形態の構成を示す。本実施形態は図5に示す第3実
施形態に対して、シリンダ減圧装置35を取り止め、シ
リンダ開放管34を大気開放とし、圧力容器5に固定さ
れたばね支持材23と上板2との間にばね24を設け、
常に一定の締付け力を加えるようにしたものである。図
中P1は圧力容器5の内圧を示し、P0は大気圧を示
す。
Next, a fourth embodiment will be described. FIG. 7 shows the fourth
1 shows a configuration of an embodiment. This embodiment is different from the third embodiment shown in FIG. 5 in that the cylinder pressure reducing device 35 is stopped, the cylinder opening pipe 34 is opened to the atmosphere, and the spring support member 23 fixed to the pressure vessel 5 and the upper plate 2 A spring 24 is provided,
A constant tightening force is always applied. In the figure, P1 indicates the internal pressure of the pressure vessel 5, and P0 indicates the atmospheric pressure.

【0028】図8は燃料電池の起動から定常運転までの
スタック1に加わる締付け力を示す。F1は圧力容器5
の内圧とシリンダチューブ31の内圧(大気圧)との差
圧によりピストン32およびロッド33が下方に移動し
て発生する締付け力を示す。F2はばね24によって加
えられる締付け力を示す。ΣFはスタック1に加わる締
付け力の合計を示す。
FIG. 8 shows the tightening force applied to the stack 1 from the start of the fuel cell to the steady operation. F1 is a pressure vessel 5
And the tightening force generated when the piston 32 and the rod 33 move downward due to the differential pressure between the internal pressure of the cylinder tube 31 and the internal pressure (atmospheric pressure) of the cylinder tube 31. F2 indicates the clamping force applied by the spring 24. ΣF indicates the total tightening force applied to the stack 1.

【0029】本実施形態はスタック1に一定値以上の締
付け力を加えるために何の操作も必要としないので操作
による作業コストは発生せず、また締付け力発生装置が
簡単であるので、製作費や維持費も少ない。
In this embodiment, no operation is required to apply a tightening force of a certain value or more to the stack 1, so that no operation cost is required by the operation, and the manufacturing cost is simple because the tightening force generating device is simple. And maintenance costs are low.

【0030】[0030]

【発明の効果】以上の説明より明らかなように、本発明
は、ベローズまたはシリンダを用いて、圧力容器の内圧
と大気圧との差圧を利用することにより、スタックの締
付け力を確保するので、締付け力保持のための作業が少
なく、装置も簡単であるので、製作費、維持費および操
作費用が少なく、経済的なスタック締付け装置となって
いる。
As is apparent from the above description, the present invention uses a bellows or a cylinder to utilize the pressure difference between the internal pressure of the pressure vessel and the atmospheric pressure, thereby securing the tightening force of the stack. Since the operation for maintaining the tightening force is small and the device is simple, the production cost, the maintenance cost and the operation cost are small, and the stack tightening device is economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】第1実施形態の締付け力発生を説明する図であ
る。
FIG. 2 is a diagram illustrating generation of a tightening force according to the first embodiment.

【図3】本発明の第2実施形態の構成図である。FIG. 3 is a configuration diagram of a second embodiment of the present invention.

【図4】第2実施形態の締付け力発生を説明する図であ
る。
FIG. 4 is a diagram illustrating generation of a tightening force according to a second embodiment.

【図5】本発明の第3実施形態の構成図である。FIG. 5 is a configuration diagram of a third embodiment of the present invention.

【図6】第3実施形態の締付け力発生を説明する図であ
る。
FIG. 6 is a diagram illustrating generation of a tightening force according to a third embodiment.

【図7】本発明の第4実施形態の構成図である。FIG. 7 is a configuration diagram of a fourth embodiment of the present invention.

【図8】第4実施形態の締付け力発生を説明する図であ
る。
FIG. 8 is a diagram illustrating generation of a tightening force according to a fourth embodiment.

【図9】スタックの構成を説明する図である。FIG. 9 is a diagram illustrating a configuration of a stack.

【図10】従来のスタック締付装置の構成図である。FIG. 10 is a configuration diagram of a conventional stack tightening device.

【図11】従来のスタック締付装置の締付け力発生の説
明図である。
FIG. 11 is an explanatory diagram of generation of a tightening force of a conventional stack tightening device.

【符号の説明】[Explanation of symbols]

1 スタック 2 上板 3 下板 4 押さえボルト 5 圧力容器 6 加圧管 7 圧力調整装置 8 圧縮空気源 9 断熱材 10 支持台 20 ベローズ 21 ベローズ開放管 22 ベローズ減圧装置 23 ばね支持材 24 ばね 30 シリンダ 31 シリンダチューブ 32 ピストン 33 ロッド 34 シリンダ開放管 35 シリンダ減圧装置 Reference Signs List 1 stack 2 upper plate 3 lower plate 4 holding bolt 5 pressure vessel 6 pressurizing pipe 7 pressure regulator 8 compressed air source 9 heat insulating material 10 support base 20 bellows 21 bellows open pipe 22 bellows pressure reducing device 23 spring support 24 spring 30 cylinder 31 Cylinder tube 32 Piston 33 Rod 34 Cylinder opening pipe 35 Cylinder pressure reducing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池を積層してなるスタックをほぼ
中央部で挟む上板および下板と、この上下板の間に設け
られ上下端がそれぞれ上下板と結合しており上下方向に
伸縮する気密なベローズと、スタックおよびベローズと
これらを挟む上下板を格納する圧力容器と、この圧力容
器内を加圧する加圧装置と、前記ベローズに接続されベ
ローズ内を減圧しまたは大気開放する減圧装置と、を備
えたことを特徴とする燃料電池スタック締付装置。
An upper plate and a lower plate sandwiching a stack formed by stacking fuel cells at a substantially central portion, and upper and lower ends provided between the upper and lower plates are connected to the upper and lower plates, respectively, so that an airtight air-conditioning device that expands and contracts in a vertical direction is provided. A bellows, a pressure vessel for storing the stack and the bellows and the upper and lower plates sandwiching them, a pressurizing device for pressurizing the inside of the pressure vessel, and a depressurizing device connected to the bellows for decompressing the inside of the bellows or opening to the atmosphere, A fuel cell stack tightening device, comprising:
【請求項2】 燃料電池を積層してなるスタックをほぼ
中央部で挟む上板および下板と、この上下板の間に設け
られ上下端がそれぞれ上下板と結合しており上下方向に
伸縮する気密なベローズと、スタックおよびベローズと
これらを挟む上下板を格納する圧力容器と、この圧力容
器内を加圧する加圧装置と、前記ベローズに接続されベ
ローズ内を大気開放するベローズ開放管と、前記上板と
格納容器に固定されたばね支持材との間に設けられ上板
を介してスタックを押圧するばねと、を備えたことを特
徴とする燃料電池スタック締付装置。
2. An upper plate and a lower plate sandwiching a stack of fuel cells in a substantially central portion, and upper and lower ends provided between the upper and lower plates are connected to the upper and lower plates, respectively, so that an airtight airbag which expands and contracts in a vertical direction is provided. A pressure vessel for storing the bellows, the stack and the bellows and the upper and lower plates sandwiching them, a pressurizing device for pressurizing the inside of the pressure vessel, a bellows opening pipe connected to the bellows and opening the inside of the bellows to the atmosphere, and the upper plate And a spring provided between the spring support member fixed to the storage container and pressing the stack via an upper plate.
【請求項3】 燃料電池を積層してなるスタックをほぼ
中央部で挟む上板および下板と、この上板の上面に設け
られロッドで上板を押圧するシリンダと、スタックとこ
れを挟む上下板およびシリンダを格納する圧力容器と、
この圧力容器内を加圧する加圧装置と、前記シリンダの
シリンダチューブに接続されシリンダチューブ内を減圧
しまたは大気開放する減圧装置と、を備え、前記シリン
ダは、上端が開放され下端にロッド貫通穴を有し垂直に
取付けられたシリンダチューブと、このシリンダチュー
ブに嵌合するピストンと、このピストンの下面に結合さ
れ前記ロッド貫通穴を貫通するロッドと、を有すること
を特徴とする燃料電池スタック締付装置。
3. An upper plate and a lower plate which sandwich a stack formed by stacking fuel cells at a substantially central portion, a cylinder which is provided on an upper surface of the upper plate and presses the upper plate with a rod, a stack and upper and lower portions which sandwich the stack A pressure vessel for storing plates and cylinders;
A pressure device for pressurizing the inside of the pressure vessel, and a decompression device connected to the cylinder tube of the cylinder to decompress the cylinder tube or open to the atmosphere, wherein the cylinder has a rod through hole at an upper end and a rod through hole at a lower end. A fuel cell stack clamp having a vertically mounted cylinder tube, a piston fitted to the cylinder tube, and a rod coupled to the lower surface of the piston and passing through the rod through hole. Attachment device.
【請求項4】 燃料電池を積層してなるスタックをほぼ
中央部で挟む上板および下板と、この上板の上面に設け
られロッドで上板を押圧するシリンダと、スタックとこ
れを挟む上下板およびシリンダを格納する圧力容器と、
この圧力容器内を加圧する加圧装置と、前記シリンダの
シリンダチューブに接続されシリンダチューブ内を大気
開放するシリンダ開放管と、前記上板と格納容器に固定
されたばね支持材との間に設けられ上板を介してスタッ
クを押圧するばねと、を備え、前記シリンダは、上端が
開放され下端にロッド貫通穴を有し垂直に取付けられた
シリンダチューブと、このシリンダチューブに嵌合する
ピストンと、このピストンの下面に結合され前記ロッド
貫通穴を貫通するロッドと、を有することを特徴とする
燃料電池スタック締付装置。
4. An upper plate and a lower plate sandwiching a stack formed by stacking fuel cells at a substantially central portion, a cylinder provided on an upper surface of the upper plate and pressing the upper plate with a rod, a stack and upper and lower portions sandwiching the stack. A pressure vessel for storing plates and cylinders;
A pressurizing device for pressurizing the inside of the pressure vessel, a cylinder opening pipe connected to the cylinder tube of the cylinder and opening the inside of the cylinder tube to the atmosphere, and a spring support member fixed to the upper plate and the storage container are provided. A spring that presses the stack via an upper plate, wherein the cylinder is vertically mounted with a cylinder through which the upper end is opened and has a rod through hole at the lower end, and a piston that fits into the cylinder tube; A rod coupled to the lower surface of the piston and penetrating the rod through hole.
JP9033478A 1997-02-18 1997-02-18 Fuel cell stack fastening device Pending JPH10233223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9033478A JPH10233223A (en) 1997-02-18 1997-02-18 Fuel cell stack fastening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9033478A JPH10233223A (en) 1997-02-18 1997-02-18 Fuel cell stack fastening device

Publications (1)

Publication Number Publication Date
JPH10233223A true JPH10233223A (en) 1998-09-02

Family

ID=12387666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033478A Pending JPH10233223A (en) 1997-02-18 1997-02-18 Fuel cell stack fastening device

Country Status (1)

Country Link
JP (1) JPH10233223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129148A (en) * 2010-12-17 2012-07-05 Ngk Spark Plug Co Ltd Fuel battery
JP2014507759A (en) * 2011-01-06 2014-03-27 ブルーム エナジー コーポレーション Components of SOFC hot box

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9520602B2 (en) 2010-09-01 2016-12-13 Bloom Energy Corporation SOFC hot box components
JP2012129148A (en) * 2010-12-17 2012-07-05 Ngk Spark Plug Co Ltd Fuel battery
JP2014507759A (en) * 2011-01-06 2014-03-27 ブルーム エナジー コーポレーション Components of SOFC hot box
US9780392B2 (en) 2011-01-06 2017-10-03 Bloom Energy Corporation SOFC hot box components
US9941525B2 (en) 2011-01-06 2018-04-10 Bloom Energy Corporation SOFC hot box components
US9991526B2 (en) 2011-01-06 2018-06-05 Bloom Energy Corporation SOFC hot box components
US10797327B2 (en) 2011-01-06 2020-10-06 Bloom Energy Corporation SOFC hot box components

Similar Documents

Publication Publication Date Title
JP4153491B2 (en) Fuel cell stack compression system
CN101160682B (en) Fuel cell, method and apparatus for manufacturing fuel cell
EP0329161B1 (en) Arrangement for tightening stack of fuel cell elements
CN107275662B (en) Fuel cell stack with tensioning device
JPH10233223A (en) Fuel cell stack fastening device
KR101806606B1 (en) Structure for mounting fuel cell stack
US20050158601A1 (en) Method to startup a fuel cell stack without battery derived compressor power
JPH0845535A (en) Fuel cell fastening device
JP2007066625A (en) Fuel cell stack
JPH07230817A (en) Solid high polymer electrolyte fuel cell
JP2003160891A (en) Clamping device in solid polymer type water electrolytic cell
JPH117975A (en) Fastening control device for fuel cell
JPH10261426A (en) Block structure of fuel cell stack
JP2000208163A (en) Fuel cell fastening device
KR20170037858A (en) Fuel cell module and method of operating such module
JP3141558B2 (en) Fuel cell
JP3240712B2 (en) Fuel cell
JP2004514262A (en) Fuel cell device
JPH1032015A (en) Fuel cell fastening method
JP5536503B2 (en) Flat plate type solid oxide fuel cell module and operation method thereof
JPH10241719A (en) Fuel cell stack
JP2002260711A (en) Clamping device of fuel cell and clamping method
JPS5853166A (en) Fuel cell
JP2007059180A (en) Fuel cell system
KR101951078B1 (en) High temperature Fuel Cell Unit-cell Assembly with Homopolar plates