JP2000123826A - Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same

Info

Publication number
JP2000123826A
JP2000123826A JP10296955A JP29695598A JP2000123826A JP 2000123826 A JP2000123826 A JP 2000123826A JP 10296955 A JP10296955 A JP 10296955A JP 29695598 A JP29695598 A JP 29695598A JP 2000123826 A JP2000123826 A JP 2000123826A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
negative electrode
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10296955A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tajiri
博幸 田尻
Haruo Kikuta
治夫 菊田
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10296955A priority Critical patent/JP2000123826A/en
Publication of JP2000123826A publication Critical patent/JP2000123826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode and capable of increasing electrode density and attaining large capacity without breaking double-structured active material particles formed out of high crystalline carbon particles covered with low crystalline carbon a secondary battery using it. SOLUTION: Double structured graphite particles having a means grain diameter 1 to 50 μm, and the plane interval (d002) <=0.34 nm for a plane (002) by X-ray wide angle diffraction method, covered with a noncrystalline carbon layer having plane intervals >=0.34 nm is used as active material particles a resin is used as a bonding agent, and, metal is used as a current collector. This negative electrode for a nonaqueous electrolyte secondary battery is characterized by the porosity 20 to 35%, electrode density 1.20 to 1.60 g/cm3 and electrode capacity >=400 mAh/cm3, and a nonaqueous electrolyte secondary battery using the negative electrode is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液を用いる二
次電池に関し、特にリチウム二次電池の性能を著しく向
上させる新規な負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery using a non-aqueous electrolyte, and more particularly to a novel negative electrode which significantly improves the performance of a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器類のポータブル化
乃至コードレス化が急速に進んでいる。これとともに、
電子機器類の駆動用電源としての二次電池に対する小形
化、軽量化、高エネルギー密度化などの機能/性能改善
要求も高まっている。このような観点から、非水系二次
電池、特に基本的に高電圧/高エネルギー密度を有する
リチウム二次電池に対する期待は大きく、その実用化が
急がれている。
2. Description of the Related Art In recent years, portable or cordless consumer electronic devices have been rapidly advanced. With this,
There is also a growing demand for improvements in functions / performance such as miniaturization, weight reduction, and high energy density of secondary batteries as power supplies for driving electronic devices. From such a viewpoint, there is great expectation for non-aqueous secondary batteries, particularly lithium secondary batteries having basically a high voltage / high energy density, and their practical use has been rushed.

【0003】すなわち、リチウムイオン含有複合酸化物
からなる正極と、非水電解液と、再充電可能な負極とを
備えた非水電解液二次電池では、負極において、リチウ
ムイオンが、充電時には炭素層間へドープされ、放電時
には炭素層間から脱ドープされる。このため、充放電サ
イクルが進行しても、負極において充電時にデンドライ
ト状の結晶の析出は生じないので、内部短絡を起こしに
くく、良好な充放電サイクル特性を示す。また、エネル
ギー密度も高くかつ軽量であることから、実用化へ向け
て開発が進んでいる。
That is, in a nonaqueous electrolyte secondary battery provided with a positive electrode made of a lithium ion-containing composite oxide, a nonaqueous electrolyte, and a rechargeable negative electrode, lithium ions are charged at the negative electrode during charging. It is doped between the layers, and is dedoped from the carbon layer during discharge. For this reason, even if the charge / discharge cycle proceeds, precipitation of dendrite-like crystals does not occur at the time of charging in the negative electrode, so that an internal short circuit hardly occurs and good charge / discharge cycle characteristics are exhibited. In addition, since the energy density is high and the weight is low, development is proceeding toward practical use.

【0004】特開昭57-208079号公報および特開昭63-24
555号公報は、可とう性に優れ、充放電サイクルの繰り
返しに伴う苔状のリチウムが析出する恐れのない負極材
料として、黒鉛の使用を提案している。黒鉛は、独特の
層構造を有しており、層間化合物を形成するという性質
を有するので、この性質を利用した二次電池用電極材料
として、実用化されている。そして、電解液中で用いる
場合には、結晶性の低い炭素材料、例えば、炭化水素を
気相で熱分解して得られる乱層構造と選択的配向性とを
有する炭素材料が好ましいことが知られている(特開昭
63-24555号公報参照)。しかしながら、結晶性の低い炭
素材料を負極材料として使用する場合には、リチウムイ
オンの放出に伴う電位の変化が大きくなるので、電池と
して利用出来る容量が小さくなり、高容量の電池の作製
が困難である。
JP-A-57-208079 and JP-A-63-24
Japanese Patent Publication No. 555 proposes the use of graphite as a negative electrode material which is excellent in flexibility and does not cause moss-like lithium to be deposited due to repeated charge / discharge cycles. Graphite has a unique layer structure and has the property of forming an interlayer compound, and therefore has been put to practical use as an electrode material for secondary batteries utilizing this property. When used in an electrolytic solution, it is known that a carbon material having low crystallinity, for example, a carbon material having a turbostratic structure obtained by thermally decomposing a hydrocarbon in a gas phase and a selective orientation is preferable. (Japanese
No. 63-24555). However, when a carbon material having low crystallinity is used as a negative electrode material, the change in potential accompanying the release of lithium ions increases, so that the capacity that can be used as a battery is reduced, and it is difficult to manufacture a high-capacity battery. is there.

【0005】これに対し、黒鉛を頂点とする結晶性の高
い炭素材料を負極材料として使用する場合には、理論的
にはリチウムイオンの放出に伴う電位の変化が小さくな
り、電池として利用できる容量が大きくなることがわか
っている。しかしながら、炭素材料の結晶性が高くなる
とともに、電解液の分解によると思われる充電効率の低
下が生じ、さらに充放電の繰り返しに伴う結晶の面間隔
の膨張/収縮により、炭素材料が破壊されるに至る。
On the other hand, when a highly crystalline carbon material having graphite as its apex is used as a negative electrode material, the change in potential accompanying the release of lithium ions is theoretically small, and the capacity that can be used as a battery is reduced. Is known to grow. However, as the crystallinity of the carbon material increases, the charging efficiency is reduced, which is considered to be caused by the decomposition of the electrolytic solution. Further, the carbon material is destroyed by expansion / contraction of the interplanar spacing of the crystal due to repeated charge and discharge. Leads to.

【0006】特開平4-368778号公報は、結晶性の高い炭
素粒子に結晶性の低い炭素を被覆した二重構造を形成さ
せることにより、充放電の繰り返しによる炭素材料の破
壊を防止できることを示している。この方法で調製した
炭素材料を活物質として用いる場合には、理論的には、
電解液の分解を防止して、電位の平滑性に優れた高容量
の電極を得ることができる。しかしながら、この二重構
造活物質粒子を用いて実用電極の作成を試みた場合、例
えば円筒型電池用として、銅箔上に活物質を塗布して厚
み50〜500μmの電極を作製しようとしたところ、電極密
度が上がりにくいため、電極体積当たりの容量は、増加
しなかった。より具体的に、電極密度を高くすることが
困難であり、仮に、加圧圧縮により電極密度を1.20g/cm
3以上としようとすると、二重構造活物質粒子が破壊さ
れるため、結局400mA/cm3以上の高容量は、得られなく
なる。
Japanese Patent Application Laid-Open No. 4-368778 discloses that the formation of a double structure in which carbon particles having high crystallinity are coated with carbon having low crystallinity can prevent the destruction of the carbon material due to repeated charge and discharge. ing. When using a carbon material prepared by this method as an active material, theoretically,
A high-capacity electrode with excellent potential smoothness can be obtained by preventing decomposition of the electrolyte solution. However, when attempting to create a practical electrode using the double-structured active material particles, for example, for a cylindrical battery, when the active material was applied on a copper foil to produce a 50 to 500 μm thick electrode Since the electrode density was hardly increased, the capacity per electrode volume did not increase. More specifically, it is difficult to increase the electrode density, and if the electrode density is 1.20 g / cm
If it is set to 3 or more, the active material particles having a double structure are destroyed, so that a high capacity of 400 mA / cm 3 or more cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】従って、発明は、高結
晶性炭素粒子に低結晶性炭素を被覆した二重構造活物質
粒子を破壊することなく、電極密度を高めることがで
き、高容量化を可能とする電極およびこれを用いた二次
電池を得ることを主な目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention can increase the electrode density without destroying the double-structured active material particles in which high-crystalline carbon particles are coated with low-crystalline carbon, thereby increasing the capacity. An object of the present invention is to obtain an electrode that enables the above and a secondary battery using the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に留意しつつ、研究を重ねた結果、X線広角
回折法による特定のパラメーターを備えた二重構造炭素
材料粒子が、非水系電解液二次電池用の負極材料として
優れた効果を発揮することを見出した。すなわち、本発
明は、下記の非水系電解液二次電池用負極材料を提供す
る。
Means for Solving the Problems The inventors of the present invention have conducted various studies while paying attention to the state of the art as described above, and as a result, have found that a double-structured carbon material particle having specific parameters by the X-ray wide-angle diffraction method is obtained. Has been found to exhibit excellent effects as a negative electrode material for a non-aqueous electrolyte secondary battery. That is, the present invention provides the following negative electrode material for a non-aqueous electrolyte secondary battery.

【0009】1.X線広角回折法による(002)面の両間隔
(d002)が0.34nm以下である黒鉛系粒子の表面が面間隔が
0.34nmを超える非晶質炭素層で被覆されている平均粒子
径1〜50μmの二重構造黒鉛系粒子を活物質粒子として使
用し、結着剤として樹脂を使用し、金属を集電材として
使用して形成されており、気孔率20〜35%、電極密度1.
20〜1.60g/cm3(より好ましくは1.35〜1.60g/cm3、特に
好ましくは1.40〜1.50g/cm3)、電極容量400mAh/cm3以上
であることを特徴とする非水電解液二次電池用負極。
1. X-ray wide-angle diffraction method for both distances between (002) planes
The surface spacing of the graphite-based particles in which (d002) is 0.34 nm or less has
Uses double-structure graphite particles with an average particle size of 1 to 50 μm coated with an amorphous carbon layer exceeding 0.34 nm as active material particles, uses resin as a binder, and uses metal as a current collector. It has a porosity of 20-35% and an electrode density of 1.
20 to 1.60 g / cm 3 (more preferably 1.35 to 1.60 g / cm 3 , particularly preferably 1.40 to 1.50 g / cm 3 ), and a non-aqueous electrolyte solution characterized by an electrode capacity of 400 mAh / cm 3 or more. Negative electrode for secondary battery.

【0010】2.上記項1に記載された非水電解液二次
電池用負極を用いた非水電解液二次電池。
[0010] 2. A non-aqueous electrolyte secondary battery using the negative electrode for a non-aqueous electrolyte secondary battery described in the above item 1.

【0011】[0011]

【発明の実施の形態】本発明において活物質として使用
する黒鉛系粒子は、黒鉛粒子表面を非晶質炭素により覆
った二重構造を備えている。この様な二重構造黒鉛系粒
子を使用することにより、電解液の分解によるものと思
われる充電効率の低下は実質的に生じなくなり、黒鉛構
造の破壊も防止される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Graphite-based particles used as an active material in the present invention have a double structure in which the surface of graphite particles is covered with amorphous carbon. By using such a double-structured graphite-based particle, a reduction in charging efficiency, which is considered to be caused by decomposition of the electrolytic solution, does not substantially occur, and destruction of the graphite structure is also prevented.

【0012】そして、この様な二重構造黒鉛系粒子を活
物質として使用し、結着剤として樹脂を使用することに
より、高温においても安定であり、集電体である金属と
の密着性も良好な負極が得られる。
By using such a double-structured graphite-based particle as an active material and using a resin as a binder, it is stable even at a high temperature and has good adhesion to a metal as a current collector. A good negative electrode is obtained.

【0013】この様な黒鉛系材料を使用して得られ、気
孔率が20〜35%であって、電極密度が1.20〜1.60g/cm
3(より好ましくは1.35〜1.60g/cm3、特に好ましくは1.4
0〜1.50g/cm3)である材料は、電解液の含浸が容易であ
り、リチウムイオンの移動および電子の移動がスムーズ
に行われるので、400mA/cm3以上という高電極容量の負
極およびこれを用いた非水電解質二次電池を得ることが
できる。
The porosity is obtained by using such a graphite-based material, the porosity is 20 to 35%, and the electrode density is 1.20 to 1.60 g / cm.
3 (more preferably 1.35 to 1.60 g / cm 3 , particularly preferably 1.4
The material having a capacity of 0 to 1.50 g / cm 3 ) has a high electrode capacity of 400 mA / cm 3 or more, since the electrolyte is easily impregnated and lithium ions and electrons move smoothly. Can be used to obtain a non-aqueous electrolyte secondary battery.

【0014】本発明による非水電解液二次電池用負極
は、活物質として用いる黒鉛系粒子のX線広角回折法に
よる(002)面の面間隔(d002)が通常0.34nm未満、より好
ましくは0.3354〜0.3380nm程度、さらに好ましくは0.33
54nm〜0.3360nm程度である。この値が0.34nmを超える場
合には、結晶性が低くなるので、リチウムイオンの放出
に伴う電位の変化が大きくなり、電池として利用できる
有効容量が小さくなる。
In the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention, the spacing (d002) of the (002) plane of the graphite-based particles used as the active material by X-ray wide-angle diffraction is usually less than 0.34 nm, more preferably 0.3354 to 0.3380 nm, more preferably 0.33
It is about 54 nm to 0.3360 nm. If this value exceeds 0.34 nm, the crystallinity becomes low, so that the potential change accompanying the release of lithium ions increases, and the effective capacity that can be used as a battery decreases.

【0015】黒鉛系粒子を被覆している非晶質炭素層の
面間隔は、X線広角回折法による(002)面の両間隔(d002)
が0.34nm以上、より好ましくは0.34〜0.38nm程度、さら
に好ましくは0.34〜0.36nm程度である。この値が0.34nm
未満である場合には、結晶性が高すぎて、電解液の分解
によると思われる充電効率の低下が生じるとともに、充
放電の繰り返しに伴う結晶の面間隔の膨張/収縮によ
り、炭素材料が破壊される。一方、0.38nmを上回る場合
には、リチウムイオンの移動がし難くなり、電池として
利用できる有効容量が小さくなる。
The plane spacing of the amorphous carbon layer covering the graphite-based particles is determined by the X-ray wide-angle diffraction method (d002).
Is about 0.34 nm or more, more preferably about 0.34 to 0.38 nm, and still more preferably about 0.34 to 0.36 nm. This value is 0.34 nm
If it is less than 1, the crystallinity is too high, and the charging efficiency is likely to decrease due to the decomposition of the electrolytic solution, and the carbon material is destroyed due to the expansion / contraction of the crystal plane spacing due to repeated charge / discharge. Is done. On the other hand, when the thickness exceeds 0.38 nm, the movement of lithium ions becomes difficult, and the effective capacity usable as a battery decreases.

【0016】黒鉛粒子とその被覆層とからなる二重構造
活物質粒子の粒径は、1〜50μm程度、より好ましくは3
〜40μm程度、さらに好ましくは5〜35μm程度である。
二重構造体の粒子径が1μm未満であると、電極密度を高
めることができないのに対し、50μmを上回ると、電極
厚みが100μm程度と薄い場合に、電極密度を上げるため
にプレス加工を行う際に、二重構造活物質粒子の破壊が
起こり、高容量が得られない。
The particle diameter of the double-structured active material particles composed of graphite particles and its coating layer is about 1 to 50 μm, more preferably 3 to 50 μm.
About 40 μm, more preferably about 5 to 35 μm.
If the particle diameter of the double structure is less than 1 μm, the electrode density cannot be increased, whereas if it exceeds 50 μm, when the electrode thickness is as thin as about 100 μm, press work is performed to increase the electrode density At this time, the double-structured active material particles are broken, and a high capacity cannot be obtained.

【0017】本発明による負極においては、リチウムな
どのアルカリ金属をドープ/脱ドープし得る負極活物質
として黒鉛系粒子を用いる。黒鉛系粒子の製造原料とし
ては、ピッチコークス、ニードルコークスなどのコーク
ス類、ポリマー類、カーボンファイバー類などが挙げら
れ、これらを常法に従って1500℃〜3000℃程度の温度で
焼成することにより、所望の黒鉛系粒子を得ることがで
きる。
In the negative electrode according to the present invention, graphite-based particles are used as a negative electrode active material capable of doping / dedoping an alkali metal such as lithium. Examples of the raw material for producing graphite-based particles include pitch coke, cokes such as needle coke, polymers, carbon fibers, and the like.These are fired at a temperature of about 1500 ° C. to 3000 ° C. according to a conventional method to obtain a desired material. Can be obtained.

【0018】黒鉛系粒子の被覆層形成材料としては、ピ
ッチ類、ポリマー類などの有機材料を挙げることが出来
る。非晶質被覆層炭素材料は、常法に従って、例えば、
上記の方法で得た黒鉛系粒子材料の表面を液状有機材料
(例えば、溶融ピッチなど)により被覆し、被覆有機材料
を500℃〜2000℃程度の温度で焼成し、炭素化すること
により、得ることが出来る。
Examples of the material for forming the coating layer of the graphite-based particles include organic materials such as pitches and polymers. The amorphous coating carbon material, according to a conventional method, for example,
The surface of the graphite-based particle material obtained by the above method is coated with a liquid organic material.
(E.g., a molten pitch), and the coated organic material is calcined at a temperature of about 500 ° C. to 2000 ° C. to be carbonized.

【0019】本発明による非水系電解液二次電池用の負
極は、結着剤である樹脂の有機溶剤溶液を用いて、上記
の二重構造活物質粒子を集電体である金属上に塗着し、
乾燥することにより、得られる。
The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is obtained by coating the above-mentioned double structure active material particles on a metal as a current collector using an organic solvent solution of a resin as a binder. Wear
It is obtained by drying.

【0020】本発明において使用する結着剤としての樹
脂は、二重構造活物質粒子同士を結着させるとともに、
金属箔上に活物質粒子をを結着固定させる。結着剤樹脂
の種類は、特に限定されるものではないないが、具体的
には、ポリフッ化ビニリデン、ポリ四フッ化エチレンな
どのフッ素系樹脂、フッ素ゴム、SBR、アクリル樹脂、
ポリエチレン、ポリプロピレンなどのポリオレフィンが
例示される。これらの中では、特に汎用の有機溶剤(N-
メチルピロリドン、トルエン、スチレンなど)に可溶で
あり、耐電解液性および耐電圧に優れたポリフッ化ビニ
リデンが好ましい。
The resin as the binder used in the present invention binds the double-structured active material particles together,
The active material particles are bound and fixed on the metal foil. The type of the binder resin is not particularly limited, but specifically, polyvinylidene fluoride, a fluorinated resin such as polytetrafluoroethylene, a fluorinated rubber, SBR, an acrylic resin,
Examples thereof include polyolefins such as polyethylene and polypropylene. Among these, especially general-purpose organic solvents (N-
Polyvinylidene fluoride, which is soluble in methylpyrrolidone, toluene, styrene, etc.) and has excellent electrolytic solution resistance and withstand voltage, is preferred.

【0021】負極における結着剤混合量は、二重構造活
物質粒子の種類、粒径、形状、目的とする電極の厚み、
強度などに応じて適宜決定すれば良く、特に限定される
ものではないが、通常活物質粒子重量の1〜30%程度の
割合とすることが好ましい。
The amount of the binder mixed in the negative electrode depends on the type, particle size, shape, target electrode thickness,
The ratio may be appropriately determined according to the strength and the like, and is not particularly limited. However, it is usually preferable to set the ratio to about 1 to 30% of the weight of the active material particles.

【0022】本発明において、集電体として用いる金属
としては、特に限定されるものではないが、銅箔、ステ
ンレス鋼箔、チタン箔などが挙げられる。さらに、金属
箔上あるいは金属の隙間に電極が形成可能であるもの、
例えば、エキスパンドメタル、鋼材などを用いることも
できる。これらの中でも、後述する塗布法による負極の
製造が容易であること、強度、電気抵抗などに優れるこ
となどの理由により、厚さ1〜50μm程度の銅箔が、よ
り好ましい。
In the present invention, the metal used as the current collector is not particularly limited, and examples thereof include copper foil, stainless steel foil, and titanium foil. Furthermore, an electrode can be formed on a metal foil or in a gap between metals,
For example, expanded metal, steel material, or the like can be used. Among them, a copper foil having a thickness of about 1 to 50 μm is more preferable because it is easy to manufacture a negative electrode by a coating method described later and is excellent in strength, electric resistance, and the like.

【0023】本発明による非水系二次電池用負極の具体
的製造法の一例として、結着剤樹脂としてポリフッ化ビ
ニリデンを使用し、集電体として銅箔を使用する用いる
方法を以下に示す。いうまでもなく、本発明は、この手
法により限定されるものではない。
As an example of a specific method for producing the negative electrode for a non-aqueous secondary battery according to the present invention, a method using polyvinylidene fluoride as a binder resin and using a copper foil as a current collector will be described below. Of course, the invention is not limited by this approach.

【0024】まず、ポリフッ化ビニリデンをN-メチルピ
ロリドンに溶解した結着剤樹脂溶液に対し、二重構造活
物質粒子を均一に溶解させて、スラリーを調製する。こ
の際、必要に応じて、アセチレンブラックなどの導電
材、ポリビニルピロリドンなどの成形助剤などを添加す
ることも、可能である。次いで、得られたスラリーをコ
ーターを用いて、銅箔上に塗布し、乾燥し、電極層を銅
箔上に形成させた後、プレスして、厚さ50μm〜500μ
m程度の非水系二次電池用負極を得ることができる。電
極層は、必要に応じて、銅箔の両面あるいは片面に形成
される。
First, a double-structured active material particle is uniformly dissolved in a binder resin solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone to prepare a slurry. At this time, if necessary, a conductive material such as acetylene black, a molding aid such as polyvinylpyrrolidone, and the like can be added. Next, using a coater, the obtained slurry is applied on a copper foil and dried, and after forming an electrode layer on the copper foil, pressing is performed to a thickness of 50 μm to 500 μm.
A negative electrode for a non-aqueous secondary battery of about m can be obtained. The electrode layers are formed on both sides or one side of the copper foil as required.

【0025】かくして得られる本発明の非水系二次電池
用負極は、密度1.20〜1.60g/cm3程度、好ましくは密度
1.35〜1.60g/cm3程度、より好ましくは密度1.40〜1.50g
/cm3程度、気孔率20〜35%であり、電極容量は、400mAh
/cm3以上である。これら密度および気孔率は、金属箔上
に形成された電極層自体についての値であり、電極層中
の二重構造活物質粒子、結着剤樹脂の真密度および電極
密度から計算することができる。電極容量についても、
電極層体積を基準とする容量である。
The negative electrode for a non-aqueous secondary battery of the present invention thus obtained has a density of about 1.20 to 1.60 g / cm 3 , preferably
1.35~1.60g / cm 3, more preferably about density 1.40~1.50g
/ cm 3 or so, a porosity of 20-35%, the electrode capacity, 400 mAh
/ cm 3 or more. These densities and porosity are values for the electrode layer itself formed on the metal foil, and can be calculated from the true density and the electrode density of the double structure active material particles in the electrode layer, the binder resin. . Regarding the electrode capacity,
The capacitance is based on the volume of the electrode layer.

【0026】非水系二次電池用負極の密度が低すぎる場
合には、充分な電極容量は得られないのに対し、高すぎ
る場合には、二重構造活物質の破壊による容量低下が生
じるので、好ましくない。また、気孔率が低すぎる場合
には、充分なレート特性が得られないのに対し、高すぎ
る場合には、充分な電極容量が得られない。
When the density of the negative electrode for a non-aqueous secondary battery is too low, sufficient electrode capacity cannot be obtained. On the other hand, when the density is too high, the capacity is reduced due to the destruction of the double-structured active material. Is not preferred. If the porosity is too low, sufficient rate characteristics cannot be obtained, while if it is too high, sufficient electrode capacity cannot be obtained.

【0027】本発明による非水系二次電池用負極は、そ
の電極容量が400mAh/cm3以上にも達する、容量低下のな
い高密度電極である。
The negative electrode for a non-aqueous secondary battery according to the present invention is a high-density electrode with an electrode capacity of 400 mAh / cm 3 or more and without capacity reduction.

【0028】なお、本発明における電極容量とは、リチ
ウムを十分にドープし、脱ドープした時の電極容量であ
る。例えば、対極と参照極としてリチウム金属を用いた
電気化学セルを組み立て、後述の非水系電解液中におい
て、リチウム金属電位に対し1mVの電位で定電圧を印加
し、電流値が充分に小さく(例えば0.01mA/cm2)なるま
でリチウムをドープした後、充分に遅い速度(例えば0.2
5mA/cm2)でリチウム金属電位に対し、2Vまで脱ドープす
ることにより、脱ドープ容量が測定される。この脱ドー
プ容量を電極体積で割れば、本発明にいう電極容量を求
めることができる。
The electrode capacity in the present invention is the electrode capacity when lithium is sufficiently doped and undoped. For example, an electrochemical cell using lithium metal as a counter electrode and a reference electrode is assembled, and in a non-aqueous electrolyte described below, a constant voltage is applied at a potential of 1 mV with respect to the lithium metal potential, and the current value is sufficiently small (for example, After doping with lithium to 0.01 mA / cm 2 ), a sufficiently slow rate (for example, 0.2
The undoping capacity is measured by undoping up to 2 V with respect to the lithium metal potential at 5 mA / cm 2 ). By dividing the undoped capacity by the electrode volume, the electrode capacity according to the present invention can be obtained.

【0029】本発明による負極を製造する際には、二重
構造活物質粒子を破壊しない様に留意する必要がある。
すなわち、本発明による二重構造活物質粒子を用いる場
合には、他の公知の負極材料(例えば、黒鉛、MCMBな
ど)を用いる場合に比して、電極密度が上がりにくいの
で、例えば、上述の製造例において、プレス工程におけ
る諸条件に注意する必要がある。これらの条件として、
より具体的には、金属箔上に形成された電極層をローラ
ーによりプレスする際の加圧速度、張力、ローラー曲
率、或いはプレス前の電極層の乾燥状態(溶剤残量)、
さらにはプレス温度などが挙げられる。
In producing the negative electrode according to the present invention, care must be taken not to destroy the double-structured active material particles.
That is, when the dual-structure active material particles according to the present invention are used, the electrode density is less likely to increase than when other known negative electrode materials (eg, graphite, MCMB, etc.) are used. In the production example, it is necessary to pay attention to various conditions in the pressing step. As these conditions,
More specifically, the pressing speed, tension, roller curvature when pressing the electrode layer formed on the metal foil by a roller, or the dry state (solvent remaining amount) of the electrode layer before pressing,
Further, a press temperature and the like can be mentioned.

【0030】プレス前の電極層の乾燥状態(溶剤残量)
は、通常1〜10%程度、好ましくは1〜8%程度、さらに
好ましくは2〜5%程度とすることが望ましい。この程度
の溶剤が残存している場合には、二重構造活物質粒子を
破壊することなく、プレスによる電極層密度の向上を達
成することができる。すなわち、一定量の溶剤が残存し
ている場合には、二重構造活物質粒子、結着剤および導
電材表面に溶剤が存在しているので、プレス時にこれら
の材料間での滑りが良好となり、その結果、二重構造活
物質粒子が破壊されることなく、電極層密度を向上させ
ることができるものと考えられる。従来の常識では、溶
剤は、不純物とみなされており、その残存量は極力抑制
すべき(溶剤残量0.2%以下とすべき)であると考えられ
てきた。しかるに、本発明者の研究によれば、溶剤残量
を所定範囲内に調整する場合には、意外にも、電極密度
が高く、高容量の非水電解液二次電池用負極材料として
好適な新規な材料が得られることが判明した。
Dry state of electrode layer before pressing (solvent remaining)
Is usually about 1 to 10%, preferably about 1 to 8%, and more preferably about 2 to 5%. When such a solvent remains, the density of the electrode layer can be improved by pressing without breaking the double structure active material particles. In other words, when a certain amount of solvent remains, the solvent exists on the surface of the double-structured active material particles, the binder, and the conductive material, so that the slip between these materials becomes good at the time of pressing. As a result, it is considered that the density of the electrode layer can be improved without breaking the dual structure active material particles. In the conventional common sense, it has been considered that the solvent is regarded as an impurity, and the remaining amount thereof should be suppressed as much as possible (the remaining amount of the solvent should be 0.2% or less). However, according to the study of the present inventor, when adjusting the remaining amount of the solvent within a predetermined range, the electrode density is unexpectedly high, which is suitable as a negative electrode material for a high capacity non-aqueous electrolyte secondary battery. It has been found that a new material can be obtained.

【0031】電極層のプレス温度は、溶剤残量とも関連
するが、通常常温(25℃)〜140℃程度、好ましくは常温
〜100℃程度、さらに好ましくは常温〜70℃程度であ
る。
Although the pressing temperature of the electrode layer is related to the remaining amount of the solvent, it is usually from room temperature (25 ° C.) to about 140 ° C., preferably from room temperature to about 100 ° C., and more preferably from room temperature to about 70 ° C.

【0032】上記の条件(特に溶剤残量)を予め試験的に
調整しておくことにより、二重構造活物質粒子を破壊す
ることなく、すなわち電極を高密度化しても、容量低下
を生じない本発明電極を製造することができる。
By preliminarily adjusting the above conditions (especially, the remaining amount of the solvent) on a trial basis, the capacity does not decrease without breaking the double-structured active material particles, that is, even if the electrodes are made denser. The electrode of the present invention can be manufactured.

【0033】本発明の非水系二次電池用負極に関して
は、その使用対象としての電池は、限定されるものでは
なく、例えば、正極および非水系電解液と組み合わせ
て、リチウム二次電池を製造することができる。この場
合、高電圧および高容量を得るために、正極としてはLi
CoO2、LiMnO2、LiMn2O4、LiNiO2などのリチウム複合酸
化物を用いることが好ましい。また、非水系電解液とし
ては、リチウム塩を含む非水系電解液が用いられる。電
解液の種類は、正極材料の種類、二重構造活物質粒子の
性状、充電電圧などの使用条件などにより、適宜決定さ
れる。電解液としては、例えば、LiPF6、LiBF4、LIClO4
などのリチウム塩をプロピレンカーボネート、エチレン
カーボネート、ジエチルカーボネート、ジメチルカーボ
ネート、メチルエチルカーボネート、ジメトキシエタ
ン、γ−ブチルラクトン、酢酸メチル、蟻酸メチルなど
の1種または2種以上からなる有機溶媒に溶解したもの
が、好ましい。
With respect to the negative electrode for a non-aqueous secondary battery of the present invention, the battery to be used is not limited. For example, a lithium secondary battery is manufactured by combining with a positive electrode and a non-aqueous electrolyte. be able to. In this case, in order to obtain high voltage and high capacity, Li
It is preferable to use a lithium composite oxide such as CoO 2 , LiMnO 2 , LiMn 2 O 4 , and LiNiO 2 . As the non-aqueous electrolyte, a non-aqueous electrolyte containing a lithium salt is used. The type of the electrolytic solution is appropriately determined depending on the type of the positive electrode material, the properties of the dual-structure active material particles, the use conditions such as the charging voltage, and the like. Examples of the electrolyte include LiPF 6 , LiBF 4 , LIClO 4
A lithium salt such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyl lactone, methyl acetate, methyl formate, and the like are dissolved in one or more organic solvents. Is preferred.

【0034】[0034]

【実施例】以下に、実施例を示し、本発明の特徴とする
ところをさらに明確にする。
The following examples are provided to further clarify the features of the present invention.

【0035】実施例1〜7 I.電極の作製 黒鉛粒子の表面を非晶質炭素で被覆した二重構造活物質
粒子を負極活物質として用い、導電材としてアセチレン
プラック(商品名:デンカブラック:電気化学工業
(株)製)を用い、結着剤としてポリフッ化ビニリデン
(商品名:KF#1100:呉羽化学工業(株)製)をN-メチ
ルピロリドンに溶解した溶液を用い、電極を作製した。
Examples 1 to 7 I. Preparation of Electrode A double-structured active material particle in which the surface of graphite particles is coated with amorphous carbon is used as a negative electrode active material, and acetylene plaque (trade name: Denka Black: manufactured by Denki Kagaku Kogyo Co., Ltd.) is used as a conductive material. An electrode was prepared using a solution in which polyvinylidene fluoride (trade name: KF # 1100: manufactured by Kureha Chemical Industry Co., Ltd.) was dissolved in N-methylpyrrolidone as a binder.

【0036】すなわち、上記のポリフッ化ビニリデン溶
液を厚さ14μmの銅箔に塗布した後、80℃で15分間乾燥
し、N-メチルピロリドンを残存させたまま、曲率半径30
cmのロールプレスで連続プレスし、電極厚さ100μmの負
極を作製した。
That is, the above-mentioned polyvinylidene fluoride solution was applied to a copper foil having a thickness of 14 μm, dried at 80 ° C. for 15 minutes, and with a radius of curvature of 30 with N-methylpyrrolidone remaining.
The roll was continuously pressed by a roll press having a thickness of 100 cm to produce a negative electrode having an electrode thickness of 100 μm.

【0037】得られた二重構造活物質粒子の粒径(μm)
ならびに黒鉛系粒子およびその被覆炭素層のX線広角回
折法による(002)面の面間隔(d002)(単位は、いずれもn
m)を表1に示し、電極層の各成分配合比を表2に示し、
電極密度、初期容量および溶剤残量を表3に示す。
Particle size (μm) of the obtained double-structure active material particles
And the spacing (d002) between the (002) planes of the graphite-based particles and the carbon layer coated thereon by X-ray wide-angle diffraction (unit: n
m) is shown in Table 1, and the composition ratio of each component of the electrode layer is shown in Table 2,
Table 3 shows the electrode density, the initial capacity, and the remaining amount of the solvent.

【0038】比較例1 溶剤残量を0.8%とした以外は実施例1と同様にして、
電極を作製した。
Comparative Example 1 The procedure of Example 1 was repeated except that the remaining amount of the solvent was 0.8%.
An electrode was prepared.

【0039】比較例2 溶剤残量を0.6%とした以外は実施例1と同様にして、
電極を作製した。
Comparative Example 2 The procedure of Example 1 was repeated except that the remaining amount of the solvent was 0.6%.
An electrode was prepared.

【0040】比較例3 溶剤残量を0.2%とした以外は実施例1と同様にして、
電極を作製した。
Comparative Example 3 The procedure of Example 1 was repeated except that the remaining amount of the solvent was changed to 0.2%.
An electrode was prepared.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】表1〜3に示す結果から明らかな様に、本
発明による負極を使用する場合には、高電極密度であり
ながら、高い放電容量が得られている。
As is clear from the results shown in Tables 1 to 3, when the negative electrode according to the present invention is used, a high discharge capacity is obtained despite a high electrode density.

【0045】[0045]

【発明の効果】本発明によれば、核となる黒鉛系粒子の
表面に非晶質炭素層を形成した安価な材料を活物質とし
て使用するので、負極およびこれを使用する非水系電解
液二次電池の低コスト化に貢献できる。
According to the present invention, an inexpensive material having an amorphous carbon layer formed on the surface of graphite-based particles serving as nuclei is used as an active material, so that a negative electrode and a non-aqueous electrolyte solution using the same are used. It can contribute to cost reduction of secondary batteries.

【0046】さらに、活物質の粒子径、電極の気孔率、
電極の密度などを最適化することにより、従来の負極材
料よりも、高密度かつ高容量の負極を得ることが出来
る。その結果、高性能の非水電解液二次電池を得ること
ができる。
Further, the particle diameter of the active material, the porosity of the electrode,
By optimizing the electrode density and the like, a negative electrode having a higher density and a higher capacity than a conventional negative electrode material can be obtained. As a result, a high performance non-aqueous electrolyte secondary battery can be obtained.

フロントページの続き (72)発明者 矢田 静邦 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 Fターム(参考) 4G046 EA02 EA03 EA05 EB02 EB06 EC05 EC06 5H029 AJ03 AK03 AL07 AM03 AM04 AM05 AM07 CJ22 DJ07 DJ08 DJ16 EJ01 EJ12 HJ08 HJ09 HJ13 HJ19 Continued on the front page (72) Inventor Shizukuni Yada 17 Kando-ji Minamimachi, Shimogyo-ku, Kyoto-shi, Kyoto Prefecture F-term in Kansai New Technology Research Institute (reference) 4G046 EA02 EA03 EA05 EB02 EB06 EC05 EC06 5H029 AJ03 AK03 AL07 AM03 AM04 AM05 AM07 CJ22 DJ07 DJ08 DJ16 EJ01 EJ12 HJ08 HJ09 HJ13 HJ19

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】X線広角回折法による(002)面の両間隔(d00
2)が0.34nm以下である黒鉛系粒子の表面が面間隔が0.34
nmを超える非晶質炭素層で被覆されている平均粒子径1
〜50μmの二重構造黒鉛系粒子を活物質粒子として使用
し、結着剤として樹脂を使用し、金属を集電材として使
用して形成されており、気孔率20〜35%、電極密度1.20
〜1.60g/cm3、電極容量400mAh/cm3以上であることを特
徴とする非水電解液二次電池用負極。
(1) Both distances (d00) of the (002) plane by X-ray wide-angle diffraction
2) is 0.34 nm or less graphite-based particles have a surface spacing of 0.34
Average particle size 1 covered with amorphous carbon layer exceeding nm
5050 μm double-layered graphite-based particles are used as active material particles, a resin is used as a binder, and a metal is used as a current collector. The porosity is 20 to 35%, and the electrode density is 1.20.
~1.60g / cm 3, the electrode capacity 400 mAh / cm 3 or more in a negative electrode for a nonaqueous electrolyte secondary battery, characterized in that.
【請求項2】X線広角回折法による(002)面の両間隔(d00
2)が0.34nm以下である黒鉛系粒子の表面が面間隔が0.34
nmを超える非晶質炭素層で被覆されている平均粒子径1
〜50μmの二重構造黒鉛系粒子を活物質粒子として使用
し、結着剤として樹脂を使用し、金属を集電材として使
用して形成されており、気孔率20〜35%、電極密度1.35
〜1.60g/cm3、電極容量400mAh/cm3以上であることを特
徴とする非水電解液二次電池用負極。
2. The two distances (d00) of the (002) plane determined by the X-ray wide-angle diffraction method.
2) is 0.34 nm or less graphite-based particles have a surface spacing of 0.34
Average particle size 1 covered with amorphous carbon layer exceeding nm
5050 μm double-layer graphite-based particles are used as active material particles, a resin is used as a binder, and a metal is used as a current collector. The porosity is 20 to 35%, and the electrode density is 1.35.
~1.60g / cm 3, the electrode capacity 400 mAh / cm 3 or more in a negative electrode for a nonaqueous electrolyte secondary battery, characterized in that.
【請求項3】X線広角回折法による(002)面の両間隔(d00
2)が0.34nm以下である黒鉛系粒子の表面が面間隔が0.34
nmを超える非晶質炭素層で被覆されている平均粒子径1
〜50μmの二重構造黒鉛系粒子を活物質粒子として使用
し、結着剤として樹脂を使用し、金属を集電材として使
用して形成されており、気孔率20〜35%、電極密度1.40
〜1.50g/cm3、電極容量400mAh/cm3以上であることを特
徴とする非水電解液二次電池用負極。
3. The two distances between the (002) planes (d00
2) is 0.34 nm or less graphite-based particles have a surface spacing of 0.34
Average particle size 1 covered with amorphous carbon layer exceeding nm
5050 μm double-structured graphite-based particles are used as active material particles, a resin is used as a binder, and a metal is used as a current collector. The porosity is 20 to 35%, and the electrode density is 1.40.
~1.50g / cm 3, the electrode capacity 400 mAh / cm 3 or more in a negative electrode for a nonaqueous electrolyte secondary battery, characterized in that.
【請求項4】請求項1〜3のいずれかに記載された非水
電解液二次電池用負極を用いた非水電解液二次電池。
4. A non-aqueous electrolyte secondary battery using the negative electrode for a non-aqueous electrolyte secondary battery according to claim 1.
JP10296955A 1998-10-19 1998-10-19 Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same Pending JP2000123826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10296955A JP2000123826A (en) 1998-10-19 1998-10-19 Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10296955A JP2000123826A (en) 1998-10-19 1998-10-19 Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2000123826A true JP2000123826A (en) 2000-04-28

Family

ID=17840357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10296955A Pending JP2000123826A (en) 1998-10-19 1998-10-19 Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2000123826A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2002025613A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2002025614A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003109594A (en) * 2001-10-01 2003-04-11 Showa Denko Kk Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2010186751A (en) * 2010-04-14 2010-08-26 Hitachi Maxell Ltd Nonaqueous secondary battery
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
US8318355B2 (en) 2001-12-07 2012-11-27 Hydro-Quebec Carbon-carbon composite particles, their preparation and use therefore as negative electrode for li-ion batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2002025613A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2002025614A (en) * 2000-07-10 2002-01-25 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003109594A (en) * 2001-10-01 2003-04-11 Showa Denko Kk Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
US8318355B2 (en) 2001-12-07 2012-11-27 Hydro-Quebec Carbon-carbon composite particles, their preparation and use therefore as negative electrode for li-ion batteries
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2010186751A (en) * 2010-04-14 2010-08-26 Hitachi Maxell Ltd Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP3152226B2 (en) Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition
EP0688057B1 (en) Lithium ion secondary battery
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
EP2113957B1 (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
CN111183538B (en) Negative active material for lithium secondary battery and lithium secondary battery including the same
JP6494598B2 (en) High capacity electrode active material for lithium secondary battery and lithium secondary battery using the same
KR20130060987A (en) Lithium secondary battery having improved safety and stability
EP3309877A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
KR20130067920A (en) Carbon powder coated li anode for lithium rechargeable batteries
JP3532016B2 (en) Organic electrolyte secondary battery
JP2013145669A (en) Nonaqueous electrolyte secondary battery
JP3985143B2 (en) Electrode material and lithium battery using the same
JP2019175657A (en) Lithium ion secondary battery
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
WO2016133144A1 (en) Lithium-ion secondary battery
JP2000123826A (en) Negative electrode for nonaqueous electrolyte secondary battery and secondary battery using the same
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP3769647B2 (en) Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JP3140880B2 (en) Lithium secondary battery
JP3613372B2 (en) Lithium secondary battery
JPH10261406A (en) Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode
JP4400014B2 (en) Negative electrode active material for battery and nonaqueous electrolyte battery using the same
JP3975481B2 (en) Electrode material and lithium battery using the same
KR102244226B1 (en) Silicon Composite Anode Active Material including Network of Conductive Fibers, Manufacturing method thereof and Lithium Secondary Battery Comprising the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051102