JP2000123634A - Copper very fine particle independent dispersion solution - Google Patents

Copper very fine particle independent dispersion solution

Info

Publication number
JP2000123634A
JP2000123634A JP11226464A JP22646499A JP2000123634A JP 2000123634 A JP2000123634 A JP 2000123634A JP 11226464 A JP11226464 A JP 11226464A JP 22646499 A JP22646499 A JP 22646499A JP 2000123634 A JP2000123634 A JP 2000123634A
Authority
JP
Japan
Prior art keywords
metal
independent dispersion
ultrafine
particle independent
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11226464A
Other languages
Japanese (ja)
Other versions
JP4362173B2 (en
Inventor
Masaaki Oda
正明 小田
Nobuya Imazeki
暢哉 今関
Hiroyuki Yamakawa
洋幸 山川
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Ulvac Inc
Original Assignee
Vacuum Metallurgical Co Ltd
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd, Ulvac Inc filed Critical Vacuum Metallurgical Co Ltd
Priority to JP22646499A priority Critical patent/JP4362173B2/en
Publication of JP2000123634A publication Critical patent/JP2000123634A/en
Application granted granted Critical
Publication of JP4362173B2 publication Critical patent/JP4362173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Abstract

PROBLEM TO BE SOLVED: To control the viscosity of a dispersion solution in a specified value or less, and completely embed fine wiring grooves, via holes, and contact holes on an LSI board by mixing in a specified ratio Cu metal-containing very fine particles having a particle size of specified value or less and an organic solvent difficult to vaporize at room temperature, and vaporizing in a drying/baking process forming a Cu wiring circuit on a semiconductor board. SOLUTION: A Cu very fine particle independent dispersion solution is prepared by mixing an organic solvent and Cu metal-containing very fine particles having a particle size of 0.01 μm or less. The concentration of the Cu metal- containing very fine particles is 5-70 wt.%, preferably 15-20 wt.%. The organic solvent is a solvent capable of vaporizing at 150 deg.C or higher, and the Cu metal- containing very fine particles are very fine particles made of Cu, CuO, or a mixture of Cu and CuO. Very fine particle independent dispersion solution having a viscosity of 50 cP, preferably 10 cP or less is obtained. A conductive, uniform, very fine pattern is formed on the LSI board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSI基板などの
半導体基板の微細な配線を形成し、ビアホール、コンタ
クトホールを埋設するのに使用するCu超微粒子独立分
散液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu ultrafine particle independent dispersion used for forming fine wiring on a semiconductor substrate such as an LSI substrate and burying via holes and contact holes.

【0002】[0002]

【従来の技術】従来、LSI基板等の多層配線を形成す
る際に、導電性の均一な微細パターンを形成する金属ペ
ーストとして、炭素数5以上のアルコール類、又は有機
エステル類を含有する有機溶媒中に粒径1000Å
(0.1μm)以下の金属超微粒子がその表面を該有機
溶媒で覆われて個々に均一に分散しているものが知られ
ている(例えば、第2561537号特許公報)。
2. Description of the Related Art Conventionally, when forming a multilayer wiring such as an LSI substrate, an organic solvent containing an alcohol or an organic ester having 5 or more carbon atoms has been used as a metal paste for forming a fine pattern with uniform conductivity. Particle size 1000Å
It is known that ultrafine metal particles (0.1 μm) or less are uniformly dispersed individually with their surfaces covered with the organic solvent (for example, Japanese Patent No. 25661537).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、かかる
従来技術の金属ペーストにおいては、次のような問題が
あった。すなわち、LSI基板の配線幅が0.25μ
m、0.18μmと微細化が進む中で、塗布された金属
ペーストが配線溝内を十分に埋設する前に乾燥が始まっ
たり、また粘度が高いために、微細な溝内部を完全に埋
設することが困難となっていた。
However, such a conventional metal paste has the following problems. That is, the wiring width of the LSI substrate is 0.25 μm.
With the progress of miniaturization of m and 0.18 μm, drying starts before the applied metal paste sufficiently fills the inside of the wiring groove, and because the viscosity is high, the inside of the fine groove is completely filled. It was difficult.

【0004】本発明は、かかる従来技術の問題点を解決
するためになされたものであり、LSI基板の微細な配
線溝、ビアホール、コンタクトホール等を完全に埋設す
ることができ、導電性の均一な微細パターンを形成する
ことができるCu超微粒子独立分散液を提供することを
課題としている。
The present invention has been made to solve the problems of the prior art, and can completely bury fine wiring grooves, via holes, contact holes, and the like in an LSI substrate, and can achieve uniform conductivity. It is an object of the present invention to provide a Cu ultrafine particle independent dispersion liquid capable of forming a fine pattern.

【0005】[0005]

【課題を解決するための手段】本発明のCu超微粒子独
立分散液は、粘度が50cP以下であり、室温で蒸発し
難くかつ半導体基板上にCu配線を形成する際の乾燥・
焼成工程で蒸発するような有機溶媒と、粒径0.01μ
m以下のCu金属含有超微粒子とを混合して形成され、
該超微粒子の表面が該有機溶媒で覆われて個々に独立し
て分散しているものである。該有機溶媒は、150℃以
上で蒸発するものであることが好ましい。該有機溶媒
は、ミネラルスピリット、トリデカン、ドデシルベンゼ
ン若しくはそれらの混合物、又はそれらにα−テルピネ
オールを混合した物であることが望ましく、その他に、
炭素数5以上の炭化水素(例えば、ピネン等)、アルコ
ール(例えば、n−ヘプタノール等)、エーテル(例え
ば、エチルベンジルエーテル等)、エステル(例えば、
n−ブチルステアレート等)、ケトン(例えば、ジイソ
ブチルケトン等)、有機窒素化合物(例えば、トリイソ
プロパノールアミン等)、有機ケイ素化合物(シリコー
ン油等)、有機イオウ化合物若しくはそれらの混合物
を、使用するCu分散液の用途によって適宜混合するこ
とができる。前記Cu金属含有超微粒子は、Cu、Cu
O又は該CuとCuOとの混合物からなる超微粒子であ
ることが望ましい。また、前記Cu金属含有超微粒子の
濃度は、5〜70wt%、好ましくは15〜50wt%
である。該粒子の濃度が70wt%を超えると、粘度が
高くなりすぎ、また、該粒子の濃度が5wt%未満だと
膜厚が小さすぎるという問題がある。前記Cu超微粒子
独立分散液の粘度は20℃で50cP以下、好ましくは
10cP以下である。前記Cu金属含有超微粒子は、C
u金属元素以外にCuへの溶解度が低く、かつ半導体基
板の基材と反応しやすい金属又はこれらの金属を含む化
合物を少なくとも一種含有していてもよく、これにより
基材との密着性が向上する。このCu金属元素以外の金
属の具体的な例としては、例えば、Mg、Al、B、T
a、Nb及びVから選ばれる金属又はこれら金属を含む
化合物が挙げられる。これらの金属を含む化合物には、
例えば(C1735COO)2Mg等が挙げられる。これら
の金属又は金属含有化合物のCu金属含有超微粒子への
添加量は、超微粒子の全重量基準で、0.5〜5wt%
である。
The Cu ultrafine particle independent dispersion of the present invention has a viscosity of 50 cP or less, is difficult to evaporate at room temperature, and is used for drying and forming a Cu wiring on a semiconductor substrate.
Organic solvent that evaporates in the baking process, particle size 0.01μ
m or less and mixed with Cu metal-containing ultrafine particles,
The surface of the ultrafine particles is covered with the organic solvent and dispersed individually. The organic solvent preferably evaporates at 150 ° C. or higher. The organic solvent is preferably mineral spirit, tridecane, dodecylbenzene or a mixture thereof, or a mixture thereof with α-terpineol.
Hydrocarbons having 5 or more carbon atoms (e.g., pinene), alcohols (e.g., n-heptanol), ethers (e.g., ethylbenzyl ether), esters (e.g.,
n-butyl stearate, a ketone (eg, diisobutyl ketone, etc.), an organic nitrogen compound (eg, triisopropanolamine, etc.), an organic silicon compound (silicone oil, etc.), an organic sulfur compound, or a mixture thereof using Cu The mixture can be appropriately mixed depending on the use of the dispersion. The Cu metal-containing ultrafine particles are Cu, Cu
It is desirable to use ultrafine particles composed of O or a mixture of Cu and CuO. The concentration of the Cu metal-containing ultrafine particles is 5 to 70 wt%, preferably 15 to 50 wt%.
It is. If the concentration of the particles exceeds 70 wt%, the viscosity becomes too high, and if the concentration of the particles is less than 5 wt%, the film thickness becomes too small. The viscosity of the Cu ultrafine particle independent dispersion at 20 ° C. is 50 cP or less, preferably 10 cP or less. The Cu metal-containing ultrafine particles are C
In addition to the u metal element, it may contain at least one kind of metal having low solubility in Cu and easily reacting with the base material of the semiconductor substrate or a compound containing these metals, thereby improving the adhesion to the base material. I do. Specific examples of the metal other than the Cu metal element include, for example, Mg, Al, B, T
a, a metal selected from Nb and V, or a compound containing these metals. Compounds containing these metals include:
For example, (C 17 H 35 COO) 2 Mg and the like can be mentioned. The amount of these metals or metal-containing compounds added to the Cu metal-containing ultrafine particles is 0.5 to 5 wt% based on the total weight of the ultrafine particles.
It is.

【0006】[0006]

【実施例】以下、本発明のCu超微粒子独立分散液の実
施例をその分散液の使用例と共に説明する。 (実施例1)ヘリウム圧力0.5Torrの条件下でC
uを蒸発させ、ガス中蒸発法によりCuの超微粒子を生
成する際に、生成過程のCu超微粒子にミネラルスピリ
ットの蒸気を接触させて冷却回収し、溶媒中に独立した
状態で分散している平均粒子径0.008μmのCu超
微粒子を20wt%含有するCu超微粒子独立分散液を
作製した。この分散液は粘度が室温で5cPであった。
EXAMPLES Examples of the Cu ultrafine particle independent dispersion of the present invention will be described below together with examples of use of the dispersion. (Example 1) C under the condition of helium pressure 0.5 Torr
When evaporating u and generating ultrafine particles of Cu by an in-gas evaporation method, the vapor of the mineral spirit is brought into contact with the ultrafine particles of Cu in the process of production, cooled and recovered, and dispersed independently in a solvent. A Cu ultrafine particle independent dispersion liquid containing 20 wt% of Cu ultrafine particles having an average particle diameter of 0.008 μm was prepared. This dispersion had a viscosity of 5 cP at room temperature.

【0007】次いで、上記Cu超微粒子独立分散液を用
いて、Si基板上に設けられたビアホールを処理した。
このSi基板に形成されている絶縁膜としてのSiO2
膜には孔径0.15μm(アスペクト比5)、0.25
μm(アスペクト比4)のビアホールが開けられてお
り、ビアホールの内表面を含む基板の表面にはスパッタ
により、WNのバリヤ膜が厚さ0.02μmで形成され
ており、またこのバリヤ膜の表面にはスパッタによりC
uのシード膜が形成されている。
Next, the via holes provided on the Si substrate were treated using the above-mentioned independent dispersion liquid of Cu ultrafine particles.
SiO 2 as an insulating film formed on the Si substrate
The membrane has a pore size of 0.15 μm (aspect ratio 5), 0.25
A via hole of μm (aspect ratio 4) is opened, and a WN barrier film is formed with a thickness of 0.02 μm on the surface of the substrate including the inner surface of the via hole by sputtering. To C
u seed film is formed.

【0008】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から室温で上記のCu
超微粒子独立分散液を滴下することによって、スピンコ
ーティングした。ビアホール内にはこの分散液が充填さ
れ、基板の表面には平坦な該分散液の液膜が形成され
た。この状態の基板を10-2Torr以下の真空中、250
℃の温度で、2分間加熱して有機溶媒を蒸発させ、次い
で温度を300℃に上げて、CO2 ガス760Torr
雰囲気中で、60分間焼成した。さらに、温度を400
℃に上げて、不活性ガス中で30分間焼成した。かくし
て、Cu超微粒子が相互に融着して、ビアホール内がC
uで空洞なく埋め込まれた縮みや割れのないCu薄膜が
形成された。次いで、該ビアホールの内部以外のCu膜
をCMP処理したところ、基板表面の余分なCuが除去
され、ビアホール内に平坦な表面を有するCu薄膜が形
成された。その比抵抗は2.0μΩcmであった。 (実施例2)1Torrのヘリウムガス中に0.01T
orrのO2 ガスを混合した雰囲気下でCuを蒸発させ
てCuOの超微粒子を生成し、ドデシルベンゼンとフタ
ル酸ジエチルとの混合蒸気に接触させて冷却し、平均粒
径0.01μmのCuO超微粒子を25wt%含有する
粘度10cP(20℃)のCuO超微粒子独立分散液を
作製した。また、このCuO超微粒子独立分散液と実施
例1で作製したCu超微粒子独立分散液とを混合して、
粘度7cP(20℃)のCu、CuO混合分散液を作製
した。
The above substrate is set on a spin coater and
Rotation at 00 rpm, the above Cu at room temperature from above
Spin coating was performed by dropping the ultrafine particle independent dispersion. This dispersion was filled in the via hole, and a flat liquid film of the dispersion was formed on the surface of the substrate. The substrate in this state is placed in a vacuum of 10 −2 Torr or less for 250
At ° C. of temperature, the organic solvent is evaporated by heating for 2 minutes, then the temperature was raised to 300 ° C., CO 2 gas 760Torr
It was baked for 60 minutes in an atmosphere. Further, when the temperature is 400
C. and baked in an inert gas for 30 minutes. Thus, the Cu ultrafine particles are fused to each other, and C
A Cu thin film without any shrinkage or cracks embedded without voids was formed with u. Next, when the Cu film other than the inside of the via hole was subjected to CMP treatment, excess Cu on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the via hole. Its specific resistance was 2.0 μΩcm. (Example 2) 0.01 T in helium gas of 1 Torr
In a mixed atmosphere of O 2 gas of orr, Cu is evaporated to produce ultrafine particles of CuO, which are contacted with a mixed vapor of dodecylbenzene and diethyl phthalate and cooled to obtain an ultrafine CuO having an average particle size of 0.01 μm. A CuO ultrafine particle independent dispersion having a viscosity of 10 cP (20 ° C.) containing 25 wt% of fine particles was prepared. Further, this CuO ultrafine particle independent dispersion and the Cu ultrafine particle independent dispersion prepared in Example 1 were mixed,
A mixed dispersion of Cu and CuO having a viscosity of 7 cP (20 ° C.) was prepared.

【0009】次いで、上記分散液を用いて、実施例1と
同様にして室温で基板のビアホールを埋め込み、Cu膜
を形成したところ、得られた薄膜は、いずれも焼結後も
縮みや割れが生じることもなく、その比抵抗は2.0μ
Ωcmであった。 (実施例3)実施例1におけるCu超微粒子独立分散液
の代わりに、トリデカンとフェネトールとの混合溶媒に
50wt%のCu超微粒子を分散させたCu超微粒子独
立分散液にMg、Al、B、Ta、Nb又はVの有機化
合物の添加されたものを、実施例1と同様にして作製し
た。この分散液の粘度は20℃で10cPであった。
Next, using the above-mentioned dispersion liquid, a via hole was buried in the substrate at room temperature in the same manner as in Example 1 to form a Cu film. As a result, any of the obtained thin films showed shrinkage and cracking even after sintering. No specific resistance and its specific resistance is 2.0μ
Ωcm. (Example 3) Instead of the Cu ultrafine particle independent dispersion in Example 1, Mg, Al, B, and Cu ultrafine particle independent dispersions in which 50 wt% of Cu ultrafine particles were dispersed in a mixed solvent of tridecane and phenetole were used. One to which an organic compound of Ta, Nb or V was added was produced in the same manner as in Example 1. The viscosity of this dispersion was 10 cP at 20 ° C.

【0010】次いで、これらの分散液を用いて、WNの
バリア膜とCuシード膜を形成する工程を省き、他は実
施例1と同様にして基板のビアホールを埋め込み、Cu
膜を形成したところ、得られた薄膜は、焼結後も及びC
MPによる平坦化処理工程中も縮みや割れが生じること
もなく、基板との密着性も良好であり、その比抵抗は
2.1μΩcmであった。 (実施例4)実施例1のミネラルスピリットにα−テル
ピネオールを混合した溶媒中に分散させた粘度50cP
(20℃)のCu超微粒子独立分散液を作製し、これを
用いて、Si基板上に配線パターンを形成した。このS
i基板に形成されている絶縁膜としてのSiO2 膜には
幅0.25μm、深さ1μm(アスペクト比4)の溝が
パターン状に形成されており、溝の内表面を含む基板の
表面にはスパッタにより、WNバリヤ膜が厚さ0.02
μmで形成されており、またこのバリヤ膜の表面にはス
パッタによりCuのシード膜が形成されている。
Next, a step of forming a WN barrier film and a Cu seed film using these dispersions is omitted, and the other steps are the same as those in the first embodiment, and the via holes of the substrate are buried.
When the film was formed, the obtained thin film was still sintered and C
No shrinkage or cracking occurred during the planarization treatment step by MP, and the adhesion to the substrate was good, and the specific resistance was 2.1 μΩcm. (Example 4) Viscosity of 50 cP dispersed in a solvent obtained by mixing α-terpineol with the mineral spirit of Example 1
A (20 ° C.) Cu ultrafine particle independent dispersion was prepared, and using this, a wiring pattern was formed on a Si substrate. This S
A groove having a width of 0.25 μm and a depth of 1 μm (aspect ratio 4) is formed in a pattern on the SiO 2 film as an insulating film formed on the i-substrate, and is formed on the surface of the substrate including the inner surface of the groove. Indicates that the WN barrier film has a thickness of 0.02 by sputtering.
.mu.m, and a Cu seed film is formed on the surface of the barrier film by sputtering.

【0011】上記の基板をスピンコータにセットして5
00rpmで回転させ、その上方から上記のCu超微粒
子独立分散液を滴下することによって、スピンコーティ
ングした。パターン状の溝内にはこの分散液が充填さ
れ、基板の表面には平坦な該分散液の液膜が形成され
た。この状態の基板を10-2Torr以下の真空中、250
℃の温度で、2分間加熱して有機溶媒を蒸発させ、次い
で温度を300℃に上げて、不活性ガス雰囲気中で、H
2Oガスの存在下(H2O分圧:10Torr)、60分間焼
成した。さらに、温度を400℃に上げて、H2Oを除
去した不活性ガス中で30分間焼成した。かくして、C
u超微粒子が相互に融着して、溝内がCuで空洞なく埋
め込まれた縮みや割れのないCu薄膜が形成された。次
いで、該溝の内部以外のCu膜をCMP処理したとこ
ろ、基板表面の余分なCuが除去され、溝内に平坦な表
面を有するCu薄膜が形成された。その比抵抗は2.0
μΩcmであった。
The above substrate is set on a spin coater and 5
Rotation was performed at 00 rpm, and the above-described Cu ultrafine particle independent dispersion was dropped from above to perform spin coating. The dispersion liquid was filled in the pattern-shaped grooves, and a flat liquid film of the dispersion liquid was formed on the surface of the substrate. The substrate in this state is placed in a vacuum of 10 −2 Torr or less for 250
C. for 2 minutes to evaporate the organic solvent, then raise the temperature to 300.degree.
Firing was performed for 60 minutes in the presence of 2 O gas (H 2 O partial pressure: 10 Torr). Further, the temperature was increased to 400 ° C., and calcination was performed for 30 minutes in an inert gas from which H 2 O had been removed. Thus, C
The u ultra-fine particles were fused to each other to form a Cu thin film without any shrinkage or cracking in which the inside of the groove was filled with Cu without any voids. Next, when the Cu film other than the inside of the groove was subjected to CMP treatment, excess Cu on the substrate surface was removed, and a Cu thin film having a flat surface was formed in the groove. Its specific resistance is 2.0
μΩcm.

【0012】[0012]

【発明の効果】本発明のCu超微粒子独立分散液によれ
ば、LSI基板の微細な配線溝、ビアホール、コンタク
トホール等を完全に埋設することができ、導電性の均一
な微細パターンを形成することができる。
According to the Cu ultrafine particle independent dispersion of the present invention, fine wiring grooves, via holes, contact holes and the like of an LSI substrate can be completely buried, and a fine pattern with uniform conductivity can be formed. be able to.

フロントページの続き (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内Continuing from the front page (72) Inventor Hiroyuki Yamakawa 5-9-7 Tokodai, Tsukuba, Ibaraki Pref. Japan Vacuum Engineering Co., Ltd. (72) Inventor Hirohiko Murakami 5-9- Tokodai, Tsukuba, Ibaraki 7. Inside of Tsukuba Super Materials Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 室温で蒸発し難くかつ半導体基板上にC
u配線を形成する際の乾燥・焼成工程で蒸発するような
有機溶媒と、粒径0.01μm以下のCu金属含有超微
粒子とを混合して形成され、該超微粒子の表面が該有機
溶媒で覆われて個々に独立して分散しており、粘度が5
0cP以下であることを特徴とするCu超微粒子独立分
散液。
1. The method according to claim 1, wherein the compound is hardly evaporated at room temperature and has C on the semiconductor substrate.
It is formed by mixing an organic solvent that evaporates in a drying / firing step when forming a u wiring and Cu metal-containing ultrafine particles having a particle size of 0.01 μm or less, and the surface of the ultrafine particles is formed with the organic solvent. It is covered and dispersed independently and has a viscosity of 5
A Cu ultrafine particle independent dispersion having a pressure of 0 cP or less.
【請求項2】 前記有機溶媒が150℃以上で蒸発する
ものであることを特徴とする請求項1記載のCu超微粒
子独立分散液。
2. The Cu ultrafine particle independent dispersion according to claim 1, wherein the organic solvent evaporates at 150 ° C. or higher.
【請求項3】 前記有機溶媒がミネラルスピリット、ト
リデカン、ドデシルベンゼン若しくはそれらの混合物、
又はそれらにα−テルピネオール又は炭素数5以上の炭
化水素、アルコール、エーテル、エステル、ケトン、有
機窒素化合物、有機ケイ素化合物、有機イオウ化合物、
又はその混合物を混合した物であることを特徴とする請
求項1又は2に記載のCu超微粒子独立分散液。
3. The method according to claim 1, wherein the organic solvent is mineral spirit, tridecane, dodecylbenzene, or a mixture thereof.
Or α-terpineol or a hydrocarbon having 5 or more carbon atoms, alcohol, ether, ester, ketone, organic nitrogen compound, organic silicon compound, organic sulfur compound,
3. The Cu ultrafine particle independent dispersion according to claim 1, wherein the Cu ultrafine particle independent dispersion is a mixture of a mixture thereof.
【請求項4】 前記Cu金属含有超微粒子が、Cu、C
uO又は該CuとCuOとの混合物からなる超微粒子で
あることを特徴とする前記請求項1〜3のいずれかに記
載のCu超微粒子独立分散液。
4. The method according to claim 1, wherein the Cu metal-containing ultrafine particles are Cu, C
The Cu ultrafine particle independent dispersion according to any one of claims 1 to 3, wherein the ultrafine particles comprise uO or a mixture of Cu and CuO.
【請求項5】 前記Cu金属含有超微粒子の濃度が5〜
70wt%であることを特徴とする請求項1〜4のいず
れかに記載のCu超微粒子独立分散液。
5. The concentration of the Cu metal-containing ultrafine particles is 5 to 5.
The Cu ultrafine particle independent dispersion according to any one of claims 1 to 4, wherein the content is 70 wt%.
【請求項6】 前記Cu金属含有超微粒子が、Cu金属
元素以外にCuへの溶解度が低く、かつ半導体基板の基
材と反応しやすい金属又はこれらの金属を含む化合物を
含有していることを特徴とする請求項1〜5のいずれか
に記載のCu超微粒子独立分散液。
6. The method according to claim 1, wherein the Cu metal-containing ultrafine particles contain, in addition to the Cu metal element, a metal having low solubility in Cu and easily reacting with a base material of a semiconductor substrate or a compound containing these metals. The Cu ultrafine particle independent dispersion according to any one of claims 1 to 5, wherein:
【請求項7】 前記Cu金属含有超微粒子が、Cu金属
元素以外にMg、Al、B、Ta、Nb及びVから選ば
れる少なくとも1つの金属又はこれら金属を含む少なく
とも1つの化合物を含有していることを特徴とする請求
項1〜6のいずれかに記載のCu超微粒子独立分散液。
7. The Cu metal-containing ultrafine particles contain at least one metal selected from Mg, Al, B, Ta, Nb and V, or at least one compound containing these metals, in addition to the Cu metal element. The Cu ultrafine particle independent dispersion according to any one of claims 1 to 6, characterized in that:
JP22646499A 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion Expired - Lifetime JP4362173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22646499A JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22614198 1998-08-10
JP10-226141 1998-08-10
JP22646499A JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Publications (2)

Publication Number Publication Date
JP2000123634A true JP2000123634A (en) 2000-04-28
JP4362173B2 JP4362173B2 (en) 2009-11-11

Family

ID=26527018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22646499A Expired - Lifetime JP4362173B2 (en) 1998-08-10 1999-08-10 Cu ultrafine particle independent dispersion

Country Status (1)

Country Link
JP (1) JP4362173B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662020A1 (en) * 2003-07-03 2006-05-31 Mec Company Ltd. Method for producing a copper thin film
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
JP4578755B2 (en) * 2000-05-02 2010-11-10 日揮触媒化成株式会社 Integrated circuit manufacturing method
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
US8507104B2 (en) 2005-05-30 2013-08-13 Sumitomo Electric Industries, Ltd. Metal coating, forming method thereof, and metal wiring
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP6687822B1 (en) * 2018-12-03 2020-04-28 太陽誘電株式会社 Method and system for treating volatile organic compounds
WO2020116003A1 (en) * 2018-12-03 2020-06-11 太陽誘電株式会社 Method and system for treating volatile organic compound
JP2022021741A (en) * 2020-07-22 2022-02-03 有限会社 ナプラ Method for forming conductor in microscopic space in semiconductor substrate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215367A (en) * 1983-05-23 1984-12-05 Tdk Corp Electrically conductive paste composition
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH05114306A (en) * 1991-10-18 1993-05-07 Nippon Cement Co Ltd Low viscosity copper ink composite for metallizing ceramics
JPH0786737A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Manufacture of thin film multilayer circuit board
JPH0786128A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Formation of electrical characteristic film and spin coater therefor
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH0837376A (en) * 1994-07-21 1996-02-06 Fujitsu Ltd Manufacture of multilayered circuit board
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH10195350A (en) * 1996-12-25 1998-07-28 Clariant Internatl Ltd Coating composition
JPH1166957A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductor composition
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215367A (en) * 1983-05-23 1984-12-05 Tdk Corp Electrically conductive paste composition
JPH0334211A (en) * 1989-03-30 1991-02-14 Shinku Yakin Kk Metal paste and manufacture thereof
JPH05114306A (en) * 1991-10-18 1993-05-07 Nippon Cement Co Ltd Low viscosity copper ink composite for metallizing ceramics
JPH0786128A (en) * 1993-09-13 1995-03-31 Fujitsu Ltd Formation of electrical characteristic film and spin coater therefor
JPH0786737A (en) * 1993-09-20 1995-03-31 Fujitsu Ltd Manufacture of thin film multilayer circuit board
JPH07147469A (en) * 1993-11-24 1995-06-06 Sumitomo Kinzoku Ceramics:Kk Conductor paste
JPH0837376A (en) * 1994-07-21 1996-02-06 Fujitsu Ltd Manufacture of multilayered circuit board
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JPH10195350A (en) * 1996-12-25 1998-07-28 Clariant Internatl Ltd Coating composition
JPH1166957A (en) * 1997-08-12 1999-03-09 Tanaka Kikinzoku Kogyo Kk Conductor composition
JP2000124157A (en) * 1998-08-10 2000-04-28 Vacuum Metallurgical Co Ltd FORMATION OF Cu THIN FILM

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578755B2 (en) * 2000-05-02 2010-11-10 日揮触媒化成株式会社 Integrated circuit manufacturing method
EP1662020A1 (en) * 2003-07-03 2006-05-31 Mec Company Ltd. Method for producing a copper thin film
US8507104B2 (en) 2005-05-30 2013-08-13 Sumitomo Electric Industries, Ltd. Metal coating, forming method thereof, and metal wiring
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
WO2007094361A1 (en) 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US7535626B2 (en) 2006-06-06 2009-05-19 Konica Minolta Opto, Inc. Shape-variable optical element, optical device and image pickup apparatus
WO2008044695A1 (en) 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Organic thin film transistor device and organic thin film light-emitting transistor
WO2008059816A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2008059817A1 (en) 2006-11-14 2008-05-22 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
WO2009041254A1 (en) 2007-09-26 2009-04-02 Idemitsu Kosan Co., Ltd. Organic thin film transistor
US8535573B2 (en) 2007-11-05 2013-09-17 Sumitomo Metal Mining Co., Ltd. Copper fine particles, method for producing the same, and copper fine particle dispersion
JP6687822B1 (en) * 2018-12-03 2020-04-28 太陽誘電株式会社 Method and system for treating volatile organic compounds
WO2020116003A1 (en) * 2018-12-03 2020-06-11 太陽誘電株式会社 Method and system for treating volatile organic compound
JP2022021741A (en) * 2020-07-22 2022-02-03 有限会社 ナプラ Method for forming conductor in microscopic space in semiconductor substrate

Also Published As

Publication number Publication date
JP4362173B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US6214259B1 (en) Dispersion containing Cu ultrafine particles individually dispersed therein
JP4362170B2 (en) Silver ultrafine particle independent dispersion
JP2000123634A (en) Copper very fine particle independent dispersion solution
JP3842220B2 (en) Porous low dielectric constant insulating film, interconnect structure, and method for producing porous low dielectric constant insulating film
DE102018107374B4 (en) Physical vapor deposition process for semiconductor compound structures
EP0449309B1 (en) Method of making metalic thin film
US6280794B1 (en) Method of forming dielectric material suitable for microelectronic circuits
JP3113800B2 (en) Method for forming wiring of semiconductor device
JP2001254185A (en) Method of depositing electrically conductive metallic thin film and electrically conductive metallic hyperfine particle-dispersed material used for the method
EP0980094B1 (en) Method for forming Cu-thin film
Kang et al. The Effectiveness of Ta Prepared by Ion‐Assisted Deposition as a Diffusion Barrier Between Copper and Silicon
JP3953237B2 (en) Method for forming metal thin film and method for producing metal fine particle dispersion
JP2000124157A (en) FORMATION OF Cu THIN FILM
JP2001035814A (en) Method of forming silver wiring pattern
US20080220213A1 (en) Zeolite - carbon doped oxide composite low k dielectric
Katoh et al. Composite deposition of Co and Si clusters by rf/dc plasma-gas-codensation
JP2001102378A (en) Forming method for interlayer insulating film
JP2001053028A (en) Formation method of cu thin film
JP2002075999A (en) Method of forming copper wiring pattern
Perng et al. Self-forming AlOx layer as Cu diffusion barrier on porous low-k film
JPS63291436A (en) Manufacture of semiconductor device
DE10308968A1 (en) Process for making a conductive barrier layer with improved coverage within critical openings
US7060909B2 (en) Composition for forming low dielectric constant insulating film, method of forming insulating film using the composition and electronic parts having the insulating film produced thereby
JP2000306912A (en) Metal thin-film forming method
JP4751496B2 (en) (Cu-C) Seed Layer Formation Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term