JP2000121347A - Instrument and method for shape measurement - Google Patents

Instrument and method for shape measurement

Info

Publication number
JP2000121347A
JP2000121347A JP10292623A JP29262398A JP2000121347A JP 2000121347 A JP2000121347 A JP 2000121347A JP 10292623 A JP10292623 A JP 10292623A JP 29262398 A JP29262398 A JP 29262398A JP 2000121347 A JP2000121347 A JP 2000121347A
Authority
JP
Japan
Prior art keywords
shape
fuel assembly
measurement
cross
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10292623A
Other languages
Japanese (ja)
Inventor
Masayuki Takeishi
雅之 武石
Hisashi Yanagida
尚志 柳田
Iwao Ikarimoto
岩男 碇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10292623A priority Critical patent/JP2000121347A/en
Publication of JP2000121347A publication Critical patent/JP2000121347A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the deformation generating in a fuel aggregation in a nuclear reactor. SOLUTION: The instrument is equipped with an upper sensor 3 and a lower sensor 4 which are arranged at a distance in the moving direction of the fuel aggregation 1 and measure the sectional shapes of the moving fuel aggregation 1 and a control part 5 which determines the three-dimensional shape of the fuel aggregation 1 by comparing the three-dimensional shape of the fuel aggregation 1 assumed according to the sectional shape measured by the upper sensor 3 with the three-dimensional shape of the fuel aggregation 1 assumed according to the sectional shape measured by the lower sensor 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、所定方向に移動す
る物体の形状を測定する形状測定装置ならびに形状測定
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring device and a shape measuring method for measuring the shape of an object moving in a predetermined direction.

【0002】[0002]

【従来の技術】原子力発電プラント等における原子炉に
ついて、原子炉を構成する圧力容器には、燃料集合体
等、様々な炉心構成要素が収納されるようになってい
る。
2. Description of the Related Art With regard to a nuclear reactor in a nuclear power plant or the like, various core components such as a fuel assembly are housed in a pressure vessel constituting the nuclear reactor.

【0003】これら炉心構成要素を収納する際、炉心構
成要素に変形や損傷等が生じてしまうと、原子炉の稼働
後にそれらが原因となって危険な事態を招く恐れがあ
る。そのため、圧力容器内への炉心構成要素の収納には
非常に高い作業精度が求められる。加えて、収納される
炉心構成要素についても、収納作業に際して変形や損傷
が生じていないかどうかが厳密に検査される。
When these core components are stored, if the core components are deformed or damaged, they may cause a dangerous situation after the operation of the reactor. Therefore, extremely high working accuracy is required for storing the core components in the pressure vessel. In addition, the stored core components are strictly inspected for deformation or damage during the storage operation.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来は燃料
集合体に生じる変形を原子炉内で測定する方法が確立さ
れていなかったため、解析による予測評価しか行われて
おらず、原子炉内での燃料集合体の変形挙動を把握する
には限界があった。また、照射後試験(P.I.E.)に
よる測定では、変形履歴を追うことができないことに加
えて測定データの収集までに時間がかかり過ぎるといっ
た問題があった。
However, since a method for measuring the deformation occurring in a fuel assembly in a nuclear reactor has not been established in the past, only prediction evaluation by analysis has been performed. There is a limit in understanding the deformation behavior of the fuel assembly. Further, the measurement by the post-irradiation test (PIE) has a problem that it takes too much time to collect measurement data in addition to the fact that the deformation history cannot be followed.

【0005】本発明は上記の事情に鑑みてなされたもの
であり、燃料集合体に生じる変形を原子炉内で測定する
ことが可能な形状測定装置ならびに形状測定方法を提供
することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a shape measuring apparatus and a shape measuring method capable of measuring a deformation occurring in a fuel assembly in a nuclear reactor. .

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、次のような構成を有する形状測定装置
ならびに形状測定方法を採用する。すなわち、請求項1
記載の形状測定装置は、所定方向に移動する物体の形状
を測定する形状測定装置であって、 前記物体の移動方向に離間して配置され、移動する物体
の断面形状を測定する第1のセンサおよび第2のセンサ
と、 前記第1のセンサにより測定された断面形状に基づいて
仮定された前記物体の3次元形状と、前記第2のセンサ
により測定された断面形状に基づいて仮定された前記物
体の3次元形状とを比較することにより前記物体の3次
元形状を決定する制御部とを備えることを特徴とする。
As means for solving the above-mentioned problems, a shape measuring apparatus and a shape measuring method having the following configuration are employed. That is, claim 1
The shape measuring device according to claim 1, which is a shape measuring device that measures a shape of an object moving in a predetermined direction, wherein the first sensor is arranged separately in a moving direction of the object, and measures a cross-sectional shape of the moving object. And a second sensor; a three-dimensional shape of the object assumed based on a cross-sectional shape measured by the first sensor; and the three-dimensional shape assumed based on a cross-sectional shape measured by the second sensor. A control unit that determines a three-dimensional shape of the object by comparing the three-dimensional shape with the three-dimensional shape of the object.

【0007】請求項2記載の形状測定方法は、所定方向
に移動する物体の形状を測定する形状測定方法であっ
て、 前記物体の移動経路上に位置する第1の測定位置におい
て前記物体の断面形状を測定し、 前記第1の測定位置から前記物体の移動方向前方に位置
する第2の測定位置において前記物体の断面形状を測定
し、 前記第1の測定位置において測定された断面形状に基づ
いて前記物体の3次元形状を仮定するとともに、前記第
2の測定位置において測定された断面形状に基づいて前
記物体の3次元形状を仮定し、両者を比較することによ
り前記物体の3次元形状を決定することを特徴とする。
A shape measuring method according to claim 2 is a shape measuring method for measuring a shape of an object moving in a predetermined direction, wherein a cross section of the object is taken at a first measurement position located on a moving path of the object. Measuring the shape, measuring the cross-sectional shape of the object at a second measurement position located in front of the moving direction of the object from the first measurement position, based on the cross-sectional shape measured at the first measurement position The three-dimensional shape of the object is assumed based on the cross-sectional shape measured at the second measurement position, and the three-dimensional shape of the object is determined by comparing the two. It is characterized in that it is determined.

【0008】請求項3記載の形状測定方法は、請求項2
記載の形状測定方法において、前記第1の測定位置にお
いて測定された断面形状に基づいて仮定された前記物体
の3次元形状と前記第2の測定位置において測定された
断面形状に基づいて仮定された前記物体の3次元形状と
を比較して両者間に生じる偏差を算出し、 該偏差が許容値の範囲外であれば、前記第1の測定位置
において測定された断面形状と前記第2の測定位置にお
いて測定された断面形状とを比較して前記物体の測定時
の振れや回転を検出し、 この揺れや回転の状態を考慮して仮定の3次元形状に補
正を加えたうえで、再度両者を比較することにより前記
物体の3次元形状を決定することを特徴とする。
According to a third aspect of the invention, there is provided a shape measuring method.
In the shape measurement method described above, the assumption is made based on the three-dimensional shape of the object assumed based on the cross-sectional shape measured at the first measurement position and the cross-sectional shape measured at the second measurement position. Comparing the three-dimensional shape of the object with the three-dimensional shape, calculating a deviation between the two, and if the deviation is out of the allowable range, the cross-sectional shape measured at the first measurement position and the second measurement The shake and rotation of the object at the time of measurement are detected by comparing the cross-sectional shape measured at the position, and the assumed three-dimensional shape is corrected in consideration of the state of the shake and rotation. The three-dimensional shape of the object is determined by comparing

【0009】本発明に係る形状測定装置ならびに形状測
定方法においては、物体の形状を異なる2箇所で測定
し、双方の測定結果を比較することで最終的に物体の形
状を確定することが可能となる。
In the shape measuring apparatus and the shape measuring method according to the present invention, it is possible to finally determine the shape of the object by measuring the shape of the object at two different places and comparing the two measurement results. Become.

【0010】そこで、この形状測定装置を原子炉内への
燃料集合体の挿入経路に設置しておけば、挿入作業の際
に燃料集合体に生じる変形を原子炉内で測定することが
可能となり、より正確な検査が行えるようになる。ま
た、原子炉内への挿入過程において燃料集合体に生じる
振れや回転を測定しこの揺れや回転の状態を考慮して各
センサの測定結果に補正を加えることで、より正確に物
体の形状を測定することが可能になる。
[0010] Therefore, if this shape measuring device is installed in the insertion path of the fuel assembly into the reactor, it becomes possible to measure the deformation occurring in the fuel assembly during the insertion work in the reactor. , More accurate inspection can be performed. In addition, the shape and shape of the object can be more accurately determined by measuring the deflection and rotation of the fuel assembly during the process of insertion into the reactor, and correcting the measurement results of each sensor in consideration of the state of the fluctuation and rotation. It becomes possible to measure.

【0011】[0011]

【発明の実施の形態】本発明に係る形状測定装置の実施
形態を図1および図2に示して説明する。図1は形状測
定装置の概略構成図である。図において、符号1は燃料
集合体、2は炉内中継ラック、3は上側センサ(第1の
センサ)、4は下側センサ(第2のセンサ)、5は制御
部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a shape measuring apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of a shape measuring device. In the figure, reference numeral 1 denotes a fuel assembly, 2 denotes an in-furnace relay rack, 3 denotes an upper sensor (first sensor), 4 denotes a lower sensor (second sensor), and 5 denotes a controller.

【0012】燃料集合体1は、図示しない燃料交換機等
の燃料集合体移動機構に吊持されており、速度vで圧力
容器内の所定位置に向けて吊り降ろされるようになって
いる。炉内中継ラック2は、燃料集合体1が収納される
圧力容器内の所定位置の直上に設けられており、上方か
ら挿入される燃料集合体1を所定位置に案内する役目を
果たしている。
The fuel assembly 1 is suspended by a fuel assembly moving mechanism such as a fuel exchanger (not shown), and is suspended at a speed v toward a predetermined position in the pressure vessel. The in-furnace relay rack 2 is provided immediately above a predetermined position in the pressure vessel in which the fuel assembly 1 is stored, and serves to guide the fuel assembly 1 inserted from above to the predetermined position.

【0013】上側センサ3、下側センサ4は、炉内中継
ラック2の上端に間隔lを空けて取り付けられており、
上方から炉内中継ラック2に挿入される燃料集合体1の
水平方向の断面形状を測定するものである。各センサ
は、複数の超音波センサ(距離計)が環状に配置されて
構成されている。
The upper sensor 3 and the lower sensor 4 are attached to the upper end of the in-furnace relay rack 2 with an interval 1 therebetween.
The cross section of the fuel assembly 1 inserted into the in-furnace relay rack 2 from above is measured in the horizontal direction. Each sensor is configured by arranging a plurality of ultrasonic sensors (distance meters) in a ring shape.

【0014】制御部5には、上側センサ3で測定された
燃料集合体1の断面形状S1と燃料集合体1の移動距離
vΔt(Δtは測定を行うインターバル)とに基づいて
燃料集合体1の3次元形状V1を仮定するとともに、下
側センサ4で測定された燃料集合体1の断面形状S2
燃料集合体1の移動距離vΔtとに基づいて燃料集合体
1の3次元形状V2を仮定する処理工程が設けられてい
る。さらに、仮定された3次元形状V1、V2を比較して
最終的に燃料集合体1の3次元形状を決定する処理工程
が設けられている。
The control unit 5 provides the fuel assembly 1 based on the cross-sectional shape S 1 of the fuel assembly 1 measured by the upper sensor 3 and the moving distance vΔt (Δt is an interval at which measurement is performed) of the fuel assembly 1. 3D with a shape V 1 is assumed, three-dimensional shape V of the fuel assembly 1 on the basis of the moving distance vΔt cross section S 2 and the fuel assembly 1 of the fuel assembly 1 measured by the lower sensor 4 A processing step assuming 2 is provided. Further, a processing step is provided for comparing the assumed three-dimensional shapes V 1 and V 2 to finally determine the three-dimensional shape of the fuel assembly 1.

【0015】また、測定中には燃料集合体1に振れや回
転が生じることが予想されるため、制御部5には、上側
センサ3ならびに下側センサ4の測定結果から測定時の
燃料集合体1の振れや回転を検出し、その揺れや回転の
状態から、各センサの測定結果等に基づいて決定される
燃料集合体1の3次元形状を補正する処理工程が設けら
れている。
During the measurement, it is expected that the fuel assembly 1 will oscillate or rotate. Therefore, the control unit 5 supplies the fuel assembly 1 at the time of measurement based on the measurement results of the upper sensor 3 and the lower sensor 4. There is provided a processing step of detecting the shake and rotation of the fuel assembly 1 and correcting the three-dimensional shape of the fuel assembly 1 determined based on the measurement result of each sensor and the like from the state of the shake and rotation.

【0016】次に、上記の形状測定装置により燃料集合
体1の形状を測定する手順を図2に示す流れ図を参照し
て説明する。燃料集合体1は燃料交換機によって吊り降
ろされ、所定の速度vで炉内中継ラック2に挿入され
る。そして、燃料集合体1の先端が上側センサ3の測定
面に到達した時点で上側センサ3による第1回目の測定
が行われ、燃料集合体1の先端の断面形状S1(1)が測
定される。さらに、断面形状S1(1)と、時間Δtが経
過して第2回目の測定が行われるまでの間に燃料集合体
1が移動(下降)する距離vΔtとに基づいて、上側セ
ンサ3による第1回目の測定位置から第2回目の測定位
置までの間に位置する燃料集合体1の3次元形状V
1(1)が仮定される。
Next, a procedure for measuring the shape of the fuel assembly 1 by the above-described shape measuring device will be described with reference to a flowchart shown in FIG. The fuel assembly 1 is suspended by the refueling machine and inserted into the in-furnace relay rack 2 at a predetermined speed v. When the tip of the fuel assembly 1 reaches the measurement surface of the upper sensor 3, the first measurement by the upper sensor 3 is performed, and the cross-sectional shape S 1 (1) of the tip of the fuel assembly 1 is measured. You. Further, based on the cross-sectional shape S 1 (1) and the distance vΔt by which the fuel assembly 1 moves (falls) until the second measurement is performed after the elapse of the time Δt, the upper sensor 3 The three-dimensional shape V of the fuel assembly 1 located between the first measurement position and the second measurement position
1 (1) is assumed.

【0017】燃料集合体1は引き続いて挿入され、第1
回目の測定から時間Δt経過後に上側センサ3による第
2回目の測定が行われ、先端から距離vΔtだけ基端寄
りに位置する燃料集合体1の断面形状S1(2)が測定さ
れる。そして、断面形状S1(2)と、時間Δtが経過し
て第3回目の測定が行われるまでの間に燃料集合体1が
移動(下降)する距離vΔtとに基づいて、上側センサ
3による第2回目の測定位置から第3回目の測定位置ま
での間に位置する燃料集合体1の3次元形状V 1(2)が
仮定される。
The fuel assembly 1 is subsequently inserted, and the first
After a lapse of time Δt from the second measurement, the upper sensor 3
The second measurement is performed, and the distance from the tip to the proximal end is the distance vΔt.
Section S of the fuel assembly 1 located at1(2) is measured
It is. Then, the sectional shape S1(2) and the time Δt elapses
Until the third measurement is performed,
Upper sensor based on the moving (falling) distance vΔt
3 from the second measurement position to the third measurement position
-Dimensional shape V of fuel assembly 1 located between 1(2)
Is assumed.

【0018】このように、時間Δtが経過するごとに上
側センサ3による測定が行われ、前回の測定位置から距
離vΔtだけ基端寄りに位置する燃料集合体1の断面形
状S 1(3)、S1(4)、…、S1(m)が次々に測定され
(ステップ1)、これと同時進行的に次回の測定位置ま
での間に位置する燃料集合体1の3次元形状V1(2)、
1(4)、…、V1(m)が次々に仮定される(ステップ
2)。ここで、mは燃料集合体1について各センサが実
施する測定回数(m=l/vΔt)である。
Thus, every time the time Δt elapses,
Measurement by the side sensor 3 is performed, and the distance from the previous measurement position is
Sectional shape of fuel assembly 1 located closer to the base end by distance vΔt
State S 1(3), S1(4),…, S1(m) are measured one after another
(Step 1), simultaneously with the next measurement position
-Dimensional shape V of fuel assembly 1 located between1(2),
V1(4), ..., V1(m) are assumed one after another (step
2). Here, m is the actual value of each sensor for the fuel assembly 1.
The number of measurements to be performed (m = l / vΔt).

【0019】上側センサ3を通過した燃料集合体1の先
端は、上側センサ3による測定の開始から時間l/vだ
け遅れて下側センサ4の測定面に到達する。この時点で
下側センサ4による第1回目の測定が行われ、燃料集合
体1の先端の断面形状S2(1)が測定される。さらに、
断面形状S2(1)と、時間Δtが経過して第2回目の測
定が行われるまでの間に燃料集合体1が移動(下降)す
る距離vΔtとに基づいて、下側センサ4による第1回
目の測定位置から第2回目の測定位置までの間に位置す
る燃料集合体1の3次元形状V2(1)が仮定される。
The tip of the fuel assembly 1 that has passed through the upper sensor 3 reaches the measurement surface of the lower sensor 4 with a delay of 1 / v from the start of measurement by the upper sensor 3. At this time, the first measurement by the lower sensor 4 is performed, and the cross-sectional shape S 2 (1) of the tip of the fuel assembly 1 is measured. further,
Based on the cross-sectional shape S 2 (1) and the distance vΔt by which the fuel assembly 1 moves (falls) until the second measurement is performed after the elapse of the time Δt, the second sensor A three-dimensional shape V 2 (1) of the fuel assembly 1 located between the first measurement position and the second measurement position is assumed.

【0020】燃料集合体1は引き続いて挿入され、下側
センサ4による第1回目の測定から時間Δt経過後に下
側センサ4による第2回目の測定が行われ、先端から距
離vΔtだけ基端寄りに位置する燃料集合体1の断面形
状S2(2)が測定される。そして、断面形状S2(2)と、
時間Δtが経過して第3回目の測定が行われるまでの間
に燃料集合体1が移動(下降)する距離vΔtとに基づ
いて、下側センサ4による第2回目の測定位置から第3
回目の測定位置までの間に位置する燃料集合体1の3次
元形状V2(2)が仮定される。
The fuel assembly 1 is inserted continuously, and after a lapse of time Δt from the first measurement by the lower sensor 4, a second measurement by the lower sensor 4 is performed. Is measured for the cross-sectional shape S 2 (2) of the fuel assembly 1 located at the position. And, the cross-sectional shape S 2 (2),
From the second measurement position of the lower sensor 4 to the third measurement position based on the distance vΔt that the fuel assembly 1 moves (falls) until the third measurement is performed after the time Δt has elapsed.
A three-dimensional shape V 2 (2) of the fuel assembly 1 located before the second measurement position is assumed.

【0021】このように、時間Δtが経過するごとに下
側センサ4による測定が行われ、前回の測定位置から距
離vΔtだけ基端寄りに位置する燃料集合体1の断面形
状S 2(3)、S2(4)、…、S2(n)、…、S2(m)が次々
に測定され(ステップ3)、これと同時進行的に次回の
測定位置までの間に位置する燃料集合体1の3次元形状
2(2)、V2(4)、…、V2(n)、…、V2(m)が次々に
仮定される(ステップ4)。
As described above, every time the time Δt elapses,
The measurement is performed by the side sensor 4 and the distance from the previous measurement position is measured.
Sectional shape of fuel assembly 1 located closer to the base end by distance vΔt
State S Two(3), STwo(4),…, STwo(n), ..., STwo(m) one after another
(Step 3), and at the same time,
Three-dimensional shape of fuel assembly 1 located between measurement positions
VTwo(2), VTwo(4), ..., VTwo(n), ..., VTwo(m) one after another
Assumed (step 4).

【0022】ここで、下側センサ4による第1回目の測
定位置は上側センサ3による第1回目の測定位置と同じ
になり、以降、下側センサ4による第n回目の測定位置
は上側センサ3による第n回目の測定位置と同じとな
る。したがって、上側センサ3による第n回目の測定結
果等に基づいて仮定された燃料集合体1の3次元形状V
1(n)と、下側センサ4による第n回目の測定結果等に
基づいて仮定された3次元形状V2(n)とは、時間l/
vだけ時間差を設けて計測された同じ部分である。ここ
で、nは各センサによる測定回次を表し、0<n<mで
ある。
Here, the first measurement by the lower sensor 4 is performed.
The fixed position is the same as the first measurement position by the upper sensor 3.
, And thereafter, the n-th measurement position by the lower sensor 4
Is the same as the n-th measurement position by the upper sensor 3.
You. Therefore, the n-th measurement result by the upper sensor 3
-Dimensional shape V of fuel assembly 1 assumed based on results
1(n) and the n-th measurement result by the lower sensor 4
3D shape V assumed based onTwo(n) is the time 1 /
This is the same part measured with a time difference of v. here
Where n represents the order of measurement by each sensor and 0 <n <m
is there.

【0023】燃料集合体1の下降に伴い3次元形状V
1(n)、V2(n)が次々に仮定されるのに続いて、上側セ
ンサ3による第n回目の測定結果等に基づいて仮定され
た燃料集合体1の3次元形状V1(n)と、下側センサ4
による第n回目の測定結果等に基づいて仮定された燃料
集合体1の3次元形状V2(n)との比較が行われ(ステ
ップ5)、代表点や全数等の偏差が算出される。そし
て、算出された偏差が予め設定された許容値以内であれ
ば、両センサの測定結果等に基づいて仮定された3次元
形状V1(n)、V2(n)に基づき、第n回目の測定位置か
ら第n+1回目の測定位置までの燃料集合体1の3次元
形状が確定され出力される(ステップ6)。
As the fuel assembly 1 descends, the three-dimensional shape V
Following the assumption of 1 (n) and V 2 (n) one after another, the three-dimensional shape V 1 (n) of the fuel assembly 1 assumed based on the n-th measurement result by the upper sensor 3 and the like. ) And the lower sensor 4
Is compared with the assumed three-dimensional shape V 2 (n) of the fuel assembly 1 based on the n-th measurement result and the like (step 5), and deviations such as representative points and total numbers are calculated. Then, if the calculated deviation is within a preset allowable value, the n-th time based on the three-dimensional shapes V 1 (n) and V 2 (n) assumed based on the measurement results of both sensors and the like, The three-dimensional shape of the fuel assembly 1 from the measurement position to the (n + 1) th measurement position is determined and output (step 6).

【0024】また、算出された偏差が許容値の範囲から
外れていれば、断面形状S1(n)、S2(n)が比較されて
測定時の燃料集合体1の振れや回転が検出され(ステッ
プ7)、この揺れや回転の状態を考慮して3次元形状V
1(n)、V2(n)に補正が加えられ(ステップ8)、ステ
ップ5に戻って再度双方の比較が行われる。そして、偏
差が許容値以内に納まれば、3次元形状V1(n)、V
2(n)に基づいて第n回目の測定位置から第n+1回目
の測定位置までの燃料集合体1の3次元形状が確定され
出力される。
If the calculated deviation is out of the range of the allowable value, the sectional shapes S 1 (n) and S 2 (n) are compared to detect the deflection and rotation of the fuel assembly 1 at the time of measurement. (Step 7), taking into account the state of the swing and rotation, the three-dimensional shape V
1 (n), the correction is added to V 2 (n) (Step 8), a comparison of both again returns to step 5 is performed. Then, if the deviation falls within the allowable value, the three-dimensional shapes V 1 (n), V
Based on 2 (n), the three-dimensional shape of the fuel assembly 1 from the nth measurement position to the (n + 1) th measurement position is determined and output.

【0025】上記の処理を行うことにより、第1回目の
測定位置、すなわち燃料集合体1の先端から第2回目の
測定位置までの3次元形状、第2回目の測定位置から第
3回目の測定位置までの3次元形状、…、第n回目の測
定位置から第n+1回目の測定位置までの3次元形状、
…、第m回目の測定位置から燃料集合体1の後端までの
3次元形状がすべて確定され、これによって燃料集合体
1の全体的な形状が最終的に決定される。
By performing the above processing, the first measurement position, that is, the three-dimensional shape from the tip of the fuel assembly 1 to the second measurement position, and the second measurement position to the third measurement position A three-dimensional shape up to the position, ..., a three-dimensional shape from the nth measurement position to the (n + 1) th measurement position,
..., the three-dimensional shapes from the m-th measurement position to the rear end of the fuel assembly 1 are all determined, whereby the overall shape of the fuel assembly 1 is finally determined.

【0026】上記のようにして燃料集合体1の3次元形
状を特定することで、挿入作業の際に燃料集合体1に生
じる変形を原子炉内で測定することが可能となり、より
正確な検査を行うことができる。また、原子炉内への挿
入過程において燃料集合体1に生じる振れや回転を測定
しこの揺れや回転の状態を考慮して3次元形状V
1(1)、V2(1)に補正を加えることで、より正確に燃料
集合体1の形状を測定することができる。
By specifying the three-dimensional shape of the fuel assembly 1 as described above, the deformation occurring in the fuel assembly 1 during the insertion operation can be measured in the nuclear reactor, and a more accurate inspection can be performed. It can be performed. In addition, the swing and rotation occurring in the fuel assembly 1 in the process of insertion into the nuclear reactor are measured, and the three-dimensional shape V
By correcting 1 (1) and V 2 (1), the shape of the fuel assembly 1 can be measured more accurately.

【0027】上記実施形態においては、原子炉内への燃
料集合体の挿入に際してその形状を測定する装置につい
て説明したが、本発明に係る形状測定装置ならびに形状
測定方法はその他の炉心構成要素の挿入に際しても適用
可能である。
In the above embodiment, the apparatus for measuring the shape of the fuel assembly when the fuel assembly is inserted into the reactor has been described. However, the shape measuring apparatus and the shape measuring method according to the present invention are not limited to the insertion of other core components. This is also applicable.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る形状
測定装置ならびに形状測定方法によれば、物体の形状を
異なる2箇所で測定し、双方の測定結果を比較すること
で最終的に物体の形状を確定することが可能である。そ
こで、この形状測定装置を原子炉内への燃料集合体の挿
入経路に設置しておけば、挿入作業の際に燃料集合体に
生じる変形を原子炉内で測定することが可能となり、よ
り正確な検査を行うことができる。また、原子炉内への
挿入過程において燃料集合体に生じる振れや回転を測定
しこの揺れや回転の状態を考慮して各センサの測定結果
に補正を加えることで、より正確に物体の形状を測定す
ることができる。
As described above, according to the shape measuring apparatus and the shape measuring method according to the present invention, the shape of the object is measured at two different places, and the results of the two measurements are compared to finally obtain the object. Can be determined. Therefore, if this shape measuring device is installed on the insertion path of the fuel assembly into the reactor, it becomes possible to measure the deformation that occurs in the fuel assembly during the insertion work in the reactor, and more accurate Inspection can be performed. In addition, the shape and shape of the object can be more accurately determined by measuring the deflection and rotation of the fuel assembly during the process of insertion into the reactor, and correcting the measurement results of each sensor in consideration of the state of the fluctuation and rotation. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る形状測定装置の一実施形態を示
す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a shape measuring device according to the present invention.

【図2】 本発明に係る形状測定方法の一実施形態を示
す図であって、物体の形状を測定する処理手順を示す流
れ図である。
FIG. 2 is a diagram illustrating an embodiment of a shape measuring method according to the present invention, and is a flowchart illustrating a processing procedure for measuring a shape of an object.

【符号の説明】[Explanation of symbols]

1 燃料集合体(物体) 2 炉内中継ラック 3 上側センサ(第1のセンサ) 4 下側センサ(第2のセンサ) 5 制御部 Reference Signs List 1 fuel assembly (object) 2 relay rack in furnace 3 upper sensor (first sensor) 4 lower sensor (second sensor) 5 controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 碇本 岩男 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 2F069 AA63 AA68 BB34 BB40 DD15 DD16 EE03 EE20 GG04 GG63 JJ13 KK03 2G075 AA01 BA16 CA38 DA15 EA01 FA15 FB05 FB07 FB18 FC14 GA21  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Iwao Ikarimoto 1-1-1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo F-term in Kobe Shipyard, Mitsubishi Heavy Industries, Ltd. 2F069 AA63 AA68 BB34 BB40 DD15 DD16 EE03 EE20 GG04 GG63 JJ13 KK03 2G075 AA01 BA16 CA38 DA15 EA01 FA15 FB05 FB07 FB18 FC14 GA21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定方向に移動する物体の形状を測定す
る形状測定装置であって、 前記物体の移動方向に離間して配置され、移動する物体
の断面形状を測定する第1のセンサおよび第2のセンサ
と、 前記第1のセンサにより測定された断面形状に基づいて
仮定された前記物体の3次元形状と、前記第2のセンサ
により測定された断面形状に基づいて仮定された前記物
体の3次元形状とを比較することにより前記物体の3次
元形状を決定する制御部とを備えることを特徴とする形
状測定装置。
1. A shape measuring device for measuring the shape of an object moving in a predetermined direction, comprising: a first sensor for measuring a cross-sectional shape of the moving object, the first sensor being arranged at a distance in the moving direction of the object and 2 sensor; a three-dimensional shape of the object assumed based on the cross-sectional shape measured by the first sensor; and a three-dimensional shape of the object assumed based on the cross-sectional shape measured by the second sensor. And a control unit for determining a three-dimensional shape of the object by comparing the three-dimensional shape with the three-dimensional shape.
【請求項2】 所定方向に移動する物体の形状を測定す
る形状測定方法であって、 前記物体の移動経路上に位置する第1の測定位置におい
て前記物体の断面形状を測定し、 前記第1の測定位置から前記物体の移動方向前方に位置
する第2の測定位置において前記物体の断面形状を測定
し、 前記第1の測定位置において測定された断面形状に基づ
いて前記物体の3次元形状を仮定するとともに、前記第
2の測定位置において測定された断面形状に基づいて前
記物体の3次元形状を仮定し、両者を比較することによ
り前記物体の3次元形状を決定することを特徴とする形
状測定方法。
2. A shape measuring method for measuring a shape of an object moving in a predetermined direction, comprising: measuring a cross-sectional shape of the object at a first measurement position located on a movement path of the object; Measuring the cross-sectional shape of the object at a second measurement position located in front of the moving direction of the object from the measurement position, and calculating the three-dimensional shape of the object based on the cross-sectional shape measured at the first measurement position. Assuming a three-dimensional shape of the object based on the cross-sectional shape measured at the second measurement position, and determining the three-dimensional shape of the object by comparing the two. Measuring method.
【請求項3】 前記第1の測定位置において測定された
断面形状に基づいて仮定された前記物体の3次元形状と
前記第2の測定位置において測定された断面形状に基づ
いて仮定された前記物体の3次元形状とを比較して両者
間に生じる偏差を算出し、 該偏差が許容値の範囲外であれば、前記第1の測定位置
において測定された断面形状と前記第2の測定位置にお
いて測定された断面形状とを比較して前記物体の測定時
の振れや回転を検出し、 この揺れや回転の状態を考慮して仮定の3次元形状に補
正を加えたうえで、再度両者を比較することにより前記
物体の3次元形状を決定することを特徴とする請求項2
記載の形状測定方法。
3. The object assumed based on a three-dimensional shape of the object assumed based on a cross-sectional shape measured at the first measurement position and the object assumed based on a cross-sectional shape measured at the second measurement position. Calculate the deviation between the two by comparing the three-dimensional shape with the cross-sectional shape measured at the first measurement position and the second measurement position if the deviation is out of the range of the allowable value. By comparing the measured cross-sectional shape with the measured shake and rotation of the object at the time of measurement, correcting the assumed three-dimensional shape in consideration of the state of the shake and rotation, and comparing the two again. The three-dimensional shape of the object is determined by performing
The shape measurement method described.
JP10292623A 1998-10-14 1998-10-14 Instrument and method for shape measurement Pending JP2000121347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10292623A JP2000121347A (en) 1998-10-14 1998-10-14 Instrument and method for shape measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10292623A JP2000121347A (en) 1998-10-14 1998-10-14 Instrument and method for shape measurement

Publications (1)

Publication Number Publication Date
JP2000121347A true JP2000121347A (en) 2000-04-28

Family

ID=17784205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10292623A Pending JP2000121347A (en) 1998-10-14 1998-10-14 Instrument and method for shape measurement

Country Status (1)

Country Link
JP (1) JP2000121347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256553A (en) * 2007-04-05 2008-10-23 Toshiba Corp Apparatus for measuring interval of structure in nuclear reactor
CN106813603A (en) * 2015-11-30 2017-06-09 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256553A (en) * 2007-04-05 2008-10-23 Toshiba Corp Apparatus for measuring interval of structure in nuclear reactor
CN106813603A (en) * 2015-11-30 2017-06-09 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method
CN106813603B (en) * 2015-11-30 2019-05-17 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method

Similar Documents

Publication Publication Date Title
KR900008662B1 (en) Method and device for checking a fuel assembly of a nuclear reactor
JPH01503733A (en) Workpiece inspection method and device
GB2328025A (en) A method of velocity dependent error compensation for coordinaate positioning machines
SE469490B (en) PROCEDURE AND DEVICE FOR DETERMINATION OF PARAMETERS FOR CALCULATION OF THE OUTER DIAMETERS, WALL THICKNESS OR INNER DIAMETERS OF A PIPE
JP6512157B2 (en) Thickness measurement apparatus, thickness evaluation apparatus, thickness measurement method and thickness evaluation method
US5426978A (en) Non-destructive axle flaw detecting apparatus
CA1114053A (en) Locating a welding seam
JPS59137801A (en) Measuring device for degree of straightness of nuclear fuel rod
EP3220139A1 (en) Eddy-current flaw detection device and eddy-current flaw detection method
JP4688811B2 (en) Method and apparatus for ultrasonic inspection of members with complex surface contours
JP2000121347A (en) Instrument and method for shape measurement
US20130274910A1 (en) Method for controlling a production facility by high-resolution location tracking of workpieces
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JP2019049509A (en) Surface inspection device and surface inspection method
KR20040048078A (en) Acquisition and Analysis system for real time monitoring welding condition
CN112179561A (en) Pressure sensor array calibration method, device and equipment
JPH08145763A (en) Level position detecting device for dispensing machine
KR101213277B1 (en) Device and method for ultrasonic inspection using profilometry data
KR20210034893A (en) Measuring equipment for curvature
JP6602707B2 (en) Inspection apparatus and inspection method
EP0505075A2 (en) Calibration method for inspecting the wall thickness of containers
JP3078507B2 (en) Method and apparatus for measuring parallelism in mounting end plugs of nuclear fuel rods
JP7288001B2 (en) Sample container spring inspection device
JPH04371393A (en) Detection of packing ratio of flux in welding wire including flux
GB2071849A (en) Improvements in ultrasonic testing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040929