JP2019049509A - Surface inspection device and surface inspection method - Google Patents

Surface inspection device and surface inspection method Download PDF

Info

Publication number
JP2019049509A
JP2019049509A JP2017174758A JP2017174758A JP2019049509A JP 2019049509 A JP2019049509 A JP 2019049509A JP 2017174758 A JP2017174758 A JP 2017174758A JP 2017174758 A JP2017174758 A JP 2017174758A JP 2019049509 A JP2019049509 A JP 2019049509A
Authority
JP
Japan
Prior art keywords
measurement
condition
area
measured
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174758A
Other languages
Japanese (ja)
Other versions
JP6884077B2 (en
Inventor
達彦 川上
Tatsuhiko Kawakami
達彦 川上
定岡 紀行
Noriyuki Sadaoka
紀行 定岡
高橋 寿一
Juichi Takahashi
寿一 高橋
博文 松江
Hirofumi Matsue
博文 松江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017174758A priority Critical patent/JP6884077B2/en
Publication of JP2019049509A publication Critical patent/JP2019049509A/en
Application granted granted Critical
Publication of JP6884077B2 publication Critical patent/JP6884077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

To provide a surface inspection device and surface inspection method that automatically and correctly as well as quickly measure a surface shape of a measurement object of mass-production casting products to determine presence or absence of defects.SOLUTION: A surface inspection device comprises: an optical measuring instrument 2; movement parts 3 and 5 that move a measurement object 1 nd the optical measuring instrument 2; a rotary stage 4 that causes the measurement object 1 to rotate; a control unit 6; and a processing unit 8. Let a measurement condition be a condition that the control unit 6 controls the movement parts 3 and 5 and the rotary stage 4, and let a condition determination index be an index for determining a measurement condition of a main measurement to be conducted with respect to many measurement objects 1. The processing unit 8 is configured to: input a plurality of sets of measurement conditions; obtain a measurement area of the measurement object 1 with respect to the measurement condition of each set, using a measurement result with respect to a small number of measurement objects 1 by the optical measuring instrument 2 under the measurement condition of each set; and determine the measurement condition for each number of measurements, using the condition determination index and the measurement area with respect to the measurement condition of each set. The optical measuring instrument 2 is configured to, when the control unit 6 controls the movement parts 3 and 5, and the rotary stage 4 according to the measurement condition for each number of measurements, conduct the main measurement.SELECTED DRAWING: Figure 1

Description

本発明は、表面検査装置及び表面検査方法に関し、特に量産品の表面検査装置及び表面検査方法に関する。   The present invention relates to a surface inspection apparatus and a surface inspection method, and more particularly to a surface inspection apparatus and a surface inspection method for mass-produced products.

自動車部品などの量産鋳造品の鋳造プロセスでは、次の機械加工プロセスを実施する前に、傷、打痕、バリ、及び型落ちによる欠損等の欠陥が無いことを確認するために、目視検査を実施する。鋳造品の生産量が増加し生産速度が速くなると、目視検査での確認が難しくなることから、目視検査に代わる自動外観検査技術が求められている。自動車部品などの量産鋳造品は複雑な3次元形状を有するものが多いため、このような複雑な形状を有する計測対象物に対しては、高精度に形状を計測し欠陥の有無を判定できる計測装置が必要である。   In the casting process of mass-produced castings such as automobile parts, before conducting the next machining process, visual inspection is performed to confirm that there are no defects such as scratches, dents, burrs, and defects due to mold loss. carry out. As the production rate of cast products increases and production speed increases, it is difficult to confirm by visual inspection, so there is a need for an automatic visual inspection technique that replaces visual inspection. Many mass-produced cast products such as automobile parts have complicated three-dimensional shapes, so for measurement objects having such complicated shapes, measurement can be performed with high accuracy to measure the shape and determine the presence or absence of defects A device is needed.

特許文献1には、光学プローブから得られた画像データに基づいて算出した測定領域の位置情報を基に、光学プローブと測定対象とを相対的に移動させる方向を決定し、この移動方向に基づいて移動機構を制御する形状測定装置が開示されている。特許文献2には、検査対象の形状を表す参照データを用いて、検査対象にレーザを照射する3次元形状センサの相対位置が検査時に通る経路を設定して、検査対象に対する3次元形状センサの相対位置を制御する形状検査装置が開示されている。   In Patent Document 1, the direction in which the optical probe and the object to be measured are relatively moved is determined based on the position information of the measurement area calculated based on the image data obtained from the optical probe, and based on this movement direction And a shape measuring device for controlling the moving mechanism. Patent Document 2 uses a reference data representing the shape of the inspection object to set a path along which the relative position of the three-dimensional shape sensor that irradiates the laser to the inspection object passes at the time of inspection. A shape inspection device is disclosed that controls the relative position.

特開2014−145735号JP 2014-145735 特開2014−169947号Unexamined-Japanese-Patent No. 2014-169947

特許文献1に記載の形状測定装置では、複雑な形状を有する計測対象物に対して、計測対象物の形状や表面状態に依存せず、高精度に形状を計測できる。しかし、計測対象物の全表面を計測する場合には、光学プローブと計測対象物の相対位置を変化させて複数回計測した際に、異なる計測回の間で重複して計測される領域が多く、検査が非効率的であることが懸念されるという課題がある。   The shape measuring device described in Patent Document 1 can measure the shape of the measurement object having a complicated shape with high accuracy regardless of the shape and the surface state of the measurement object. However, when measuring the entire surface of the measurement object, when the relative position of the optical probe and the measurement object is changed and measurement is performed multiple times, there are many areas that are measured redundantly between different measurement times. There is a problem that the inspection is concerned about being inefficient.

特許文献2に記載の形状検査装置では、検査対象の形状を表す参照データを用いて3次元形状センサの経路を決定しているが、計測対象物の表面状態を考慮していない。計測対象物が量産鋳造品であると、計測対象物の表面の凹凸は個体によってばらつきがあり、レーザ光の入射角度が大きい表面では計測対象物からの反射光が検出されずデータ欠損が生じる場合がある。このため、計測対象物の個体によっては、データ欠損が生じた箇所で形状を取得できず、欠陥を見落とす可能性があるという課題がある。   In the shape inspection apparatus described in Patent Document 2, the route of the three-dimensional shape sensor is determined using the reference data representing the shape of the inspection object, but the surface state of the measurement object is not considered. When the measurement object is a mass-produced cast product, unevenness on the surface of the measurement object varies depending on the individual, and reflected light from the measurement object is not detected on the surface where the incident angle of the laser light is large. There is. For this reason, depending on the individual of the measurement object, there is a problem that the shape can not be acquired at the location where the data loss occurs, and there is a possibility that the defect may be overlooked.

本発明は、上記の課題を鑑みてなされたものであり、量産鋳造品である計測対象物の表面形状を自動で正確かつ高速に計測して欠陥の有無を判定する表面検査装置及び表面検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a surface inspection apparatus and a surface inspection method for determining the presence or absence of a defect by automatically measuring the surface shape of a measurement object which is a mass-produced cast product accurately and rapidly. Intended to provide.

本発明による表面検査装置は、3次元形状の複数の計測対象物の表面形状を計測する光学測定機と、前記計測対象物と前記光学測定機とを互いに相対的に移動させる移動部と、前記計測対象物を回転移動させる回転ステージと、前記移動部と前記回転ステージを制御する制御部と、前記制御部と前記光学測定機を制御する処理部とを備える。計測条件を、前記制御部が前記移動部と前記回転ステージを制御する条件とし、予備的な計測を、前記光学測定機が前記計測対象物のうち一部の数の前記計測対象物に対して行う計測とし、本計測を、前記光学測定機が前記計測対象物のうち少なくとも残りの数の前記計測対象物に対して行う計測とし、条件決定指標を、前記本計測に用いる前記計測条件を決定するための指標とする。前記処理部は、複数の組の前記計測条件を入力し、それぞれの組の前記計測条件で前記光学測定機が前記予備的な計測を行った結果を用いて、それぞれの組の前記計測条件に対して前記計測対象物の計測すべき領域を求め、前記条件決定指標とそれぞれの組の前記計測条件に対する前記計測すべき領域とを用いて、複数の組の前記計測条件の中から計測回ごとの前記計測条件を決定するように構成されている。前記光学測定機は、前記制御部が前記計測回ごとの前記計測条件に従って前記移動部と前記回転ステージを制御すると、前記本計測を行うように構成されている。   The surface inspection apparatus according to the present invention comprises an optical measuring device that measures the surface shapes of a plurality of measurement objects having a three-dimensional shape, a moving unit that moves the measurement object and the optical measurement device relative to each other, and It has a rotation stage which rotationally moves a measurement object, a control unit which controls the moving unit and the rotation stage, and a processing unit which controls the control unit and the optical measuring instrument. The measurement condition is a condition under which the control unit controls the moving unit and the rotation stage, and the preliminary measurement is performed with respect to the measurement object of which the optical measuring device is a part of the measurement object The measurement is performed, and the main measurement is performed by the optical measurement machine on at least the remaining number of the measurement objects, and the condition determination index is the measurement condition to be used for the main measurement. As an indicator to The processing unit inputs a plurality of sets of the measurement conditions, and using the results of the preliminary measurement performed by the optical measurement device under each set of the measurement conditions, the processing conditions are set to the respective set of the measurement conditions. The area to be measured of the object to be measured is determined, and using the condition determination index and the area to be measured for each set of measurement conditions, measurement is performed each time among a plurality of sets of measurement conditions. It is configured to determine the measurement condition of The optical measuring instrument is configured to perform the main measurement when the control unit controls the moving unit and the rotation stage according to the measurement condition for each measurement.

本発明によれば、量産鋳造品である計測対象物の表面形状を自動で正確かつ高速に計測して欠陥の有無を判定する表面検査装置及び表面検査方法を提供することができる。   According to the present invention, it is possible to provide a surface inspection apparatus and a surface inspection method for automatically and accurately and rapidly measuring the surface shape of a measurement object which is a mass-produced cast product to determine the presence or absence of a defect.

本発明の実施例1による表面検査装置の構成を示す図である。It is a figure which shows the structure of the surface inspection apparatus by Example 1 of this invention. 本発明の実施例1による表面検査装置が実施する、計測対象物に対する表面検査方法のフローチャートである。It is a flowchart of the surface inspection method with respect to a measurement object which the surface inspection apparatus by Example 1 of this invention implements. 計測すべき領域を求めるステップS1の手順を示すフローチャートである。It is a flowchart which shows the procedure of step S1 which calculates | requires the area | region which should be measured. 計測条件の説明図である。It is explanatory drawing of measurement conditions. 計測データと形状データとの位置合わせの説明図である。It is explanatory drawing of alignment with measurement data and shape data. 形状データの各格子セルが計測すべきか否かを判定する方法の説明図である。It is explanatory drawing of the method of determining whether each lattice cell of shape data should measure. 記憶部に保存される、計測条件の組と計測すべき領域の識別番号とを示す図である。It is a figure which shows the identification number of the group of measurement conditions and the area | region which should be measured preserve | saved at a memory | storage part. それぞれの計測回における計測条件を決定するステップS2の手順を示すフローチャートである。It is a flowchart which shows the procedure of step S2 which determines the measurement conditions in each measurement time. 本発明の実施例2による表面検査装置の構成を示す図である。It is a figure which shows the structure of the surface inspection apparatus by Example 2 of this invention. 本発明の実施例2による表面検査装置が実行するステップS2の手順を示すフローチャートである。It is a flowchart which shows the procedure of step S2 which the surface inspection apparatus by Example 2 of this invention performs.

本発明による表面検査装置及び表面検査方法は、3次元形状の複数の計測対象物の表面形状を計測する(本計測を行う)ための計測条件を、条件決定指標に応じて、指定した計測回数でのそれぞれの計測回ごとに決定することで、計測対象物の表面形状のデータを正確かつ高速に取得することができる。条件決定指標は、本計測に用いる計測条件を決定するための指標である。条件決定指標には、例えば、計測対象物の計測すべき領域(表面形状のデータを欠損なく取得できる領域)の面積や、計測対象物の表面の部分ごとの検査の必要性(優先度)を用いることができる。条件決定指標として、本発明の実施例1のように、計測対象物の計測すべき領域の面積を用いると、計測対象物の可能な限り広い領域を計測することができる。条件決定指標として、本発明の実施例2のように、計測対象物の表面の部分ごとの優先度を用いると、計測対象物の検査の必要性が高い部分を優先的に計測することができる。   The surface inspection apparatus and the surface inspection method according to the present invention specify the measurement conditions for measuring (performing the main measurement) the surface shapes of a plurality of measurement objects having a three-dimensional shape, according to the condition determination index By determining for each measurement cycle in, it is possible to acquire data of the surface shape of the measurement object accurately and at high speed. The condition determination index is an index for determining the measurement condition used for the main measurement. The condition determination index includes, for example, the area of the area to be measured of the measurement object (the area where data on the surface shape can be obtained without defects) or the necessity (priority) of inspection for each part of the surface of the measurement object. It can be used. If the area of the area to be measured of the measurement object is used as the condition determination index as in the first embodiment of the present invention, the largest possible area of the measurement object can be measured. As in the second embodiment of the present invention, by using the priority for each portion of the surface of the measurement object as the condition determination index, it is possible to preferentially measure the portion where the necessity of inspection of the measurement object is high. .

本発明によると、量産品の計測対象物を短時間で正確に検査することができるとともに、決められた計測回数(計測時間)内で、可能な限り広い領域や検査の必要性が高い部分を計測でき、計測しなかった領域も把握できる。   According to the present invention, while being able to inspect the measurement object of mass-produced object accurately in a short time, within the determined number of times of measurement (measurement time), the area as wide as possible and the part where the necessity of inspection is high It is possible to measure and understand the area that was not measured.

以下、本発明の実施例による表面検査装置及び表面検査方法を図面を用いて説明する。   Hereinafter, a surface inspection apparatus and a surface inspection method according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1による表面検査装置の構成を示す図である。本実施例による表面検査装置は、3次元形状の複数の計測対象物1の表面形状を計測する測定機2と、測定機2を移動させるロボットアーム3と、計測対象物1を載せて回転する回転ステージ4と、回転ステージ4を一方向に平行移動させる走査部5と、制御部6と、記憶部7と、処理部8を備える。   FIG. 1 is a view showing the configuration of a surface inspection apparatus according to a first embodiment of the present invention. The surface inspection apparatus according to the present embodiment rotates a measurement object 2 for measuring the surface shapes of a plurality of measurement objects 1 having a three-dimensional shape, a robot arm 3 for moving the measurement device 2, and a measurement object 1 placed thereon. A rotation stage 4, a scanning unit 5 for moving the rotation stage 4 in one direction in parallel, a control unit 6, a storage unit 7, and a processing unit 8.

測定機2は、レーザ変位計やカメラや投影機などの光学測定機である。本実施例では、測定機2としてレーザ変位計を用いる。測定機2は、計測対象物1の表面形状を計測し、計測対象物1の表面形状のデータを取得する。   The measuring device 2 is an optical measuring device such as a laser displacement meter, a camera or a projector. In the present embodiment, a laser displacement gauge is used as the measuring device 2. The measuring device 2 measures the surface shape of the measurement object 1 and acquires data of the surface shape of the measurement object 1.

回転ステージ4は、回転することで計測対象物1を回転移動させ、計測対象物1の向きを変える。   The rotation stage 4 rotationally moves the measurement object 1 by rotating, and changes the direction of the measurement object 1.

ロボットアーム3と走査部5は、計測対象物1と測定機2とを互いに相対的に移動させる移動部である。   The robot arm 3 and the scanning unit 5 are moving units that move the measurement object 1 and the measuring device 2 relative to each other.

制御部6は、ロボットアーム3、回転ステージ4、及び走査部5に動作指令を与え、これらを制御する。   The control unit 6 gives operation commands to the robot arm 3, the rotation stage 4, and the scanning unit 5 to control them.

記憶部7は、測定機2が計測対象物1の表面形状のデータを欠損なく取得できる領域(計測対象物1の計測すべき領域)の情報を、その領域についての計測条件と併せて保存する。計測条件は、制御部6がロボットアーム3と回転ステージ4と走査部5を制御する条件である。   The storage unit 7 stores information of an area where the measuring device 2 can acquire data of the surface shape of the measurement object 1 without loss (an area to be measured of the measurement object 1), together with the measurement conditions for that area. . The measurement conditions are conditions under which the control unit 6 controls the robot arm 3, the rotation stage 4, and the scanning unit 5.

処理部8は、制御部6と測定機2を制御する。処理部8は、記憶部7に保存された情報を基にロボットアーム3、回転ステージ4、及び走査部5の動作を決定し、制御部6を制御する。本実施例では、ロボットアーム3、回転ステージ4、及び走査部5の動作は、指定した計測回数での計測で、計測対象物1の計測すべき領域(表面形状のデータを欠損なく取得できる領域)の面積が大きくなるように決定する。また、処理部8は、測定機2を制御し、測定機2に計測対象物1を計測させる。   The processing unit 8 controls the control unit 6 and the measuring device 2. The processing unit 8 determines operations of the robot arm 3, the rotation stage 4, and the scanning unit 5 based on the information stored in the storage unit 7, and controls the control unit 6. In the present embodiment, the operations of the robot arm 3, the rotation stage 4 and the scanning unit 5 are the areas to be measured of the measurement object 1 (areas where surface shape data can be acquired without loss) by measurement with the specified number of measurements. Determine to increase the area of). The processing unit 8 also controls the measuring device 2 to cause the measuring device 2 to measure the measurement target 1.

測定機2(レーザ変位計)の計測原理を以下に説明する。測定機2は、レーザ光(ラインレーザ9)を投光する投光部と、レーザ光を受光する受光部を備える。測定機2が投光部からレーザ光を計測対象物1に照射すると、計測対象物1で反射された光は、測定機2の受光部の受光レンズで集光され、受光素子上で結像する。測定機2から計測対象物1までの距離が変化すると、集光される反射光の角度が変わり、これに伴って反射光が受光素子上で結像する位置が変化する。この反射光の受光素子上での結像位置の変位量は、測定機2から計測対象物1までの距離の変化量と比例することから、結像位置の変位量を読み取ることで、測定機2から計測対象物1までの距離を計測することができる。   The measurement principle of the measuring device 2 (laser displacement gauge) will be described below. The measuring device 2 includes a light emitting unit that emits a laser beam (line laser 9) and a light receiving unit that receives the laser beam. When the measuring device 2 irradiates the measuring object 1 with the laser beam from the light emitting unit, the light reflected by the measuring object 1 is collected by the light receiving lens of the light receiving portion of the measuring device 2 and forms an image on the light receiving element Do. When the distance from the measuring device 2 to the measurement object 1 changes, the angle of the reflected light to be collected changes, and accordingly, the position at which the reflected light forms an image on the light receiving element changes. The amount of displacement of the imaging position on the light receiving element of this reflected light is proportional to the amount of change of the distance from the measuring device 2 to the measuring object 1, so the measuring device can be measured by reading the amount of displacement of the imaging position. The distance from 2 to the measurement object 1 can be measured.

計測対象物1に対する測定機2の位置と角度は、ロボットアーム3と走査部5によって調整することができる。計測対象物1の向きは、回転ステージ4によって調整する。走査部5が回転ステージ4を平行移動させることで、測定機2は、計測対象物1をレーザ光で走査することができる。   The position and angle of the measuring device 2 with respect to the measurement object 1 can be adjusted by the robot arm 3 and the scanning unit 5. The orientation of the measurement object 1 is adjusted by the rotation stage 4. The measuring unit 2 can scan the measurement target 1 with the laser beam as the scanning unit 5 translates the rotation stage 4 in parallel.

回転ステージ4や走査部5は、図1には示していないが、走査中に計測対象物1が意図しない動きをしないように計測対象物1を固定するための器具や、正しい姿勢で計測対象物1が設置されていることを確認するためのセンサを備えてもよい。また、回転ステージ4や走査部5は、図1には示していないが、計測対象物1を保持し、姿勢を変更するための機構を備えてもよい。   The rotation stage 4 and the scanning unit 5 are not shown in FIG. 1, but an instrument for fixing the measurement object 1 so that the measurement object 1 does not move unintentionally during scanning, and the measurement object with the correct posture A sensor may be provided to confirm that the object 1 is installed. Further, although not shown in FIG. 1, the rotary stage 4 and the scanning unit 5 may be provided with a mechanism for holding the measurement target 1 and changing its posture.

図2は、本実施例による表面検査装置が実施する、1種類(互いに同一の形状と大きさ)の計測対象物1に対する表面検査方法のフローチャートである。   FIG. 2 is a flowchart of a surface inspection method for one type (the same shape and size as each other) of the measurement object 1 performed by the surface inspection apparatus according to the present embodiment.

ステップS1では、測定機2が複数の組の計測条件で計測対象物1の表面形状を計測してそれぞれの組に対して計測すべき領域を求め、記憶部7が計測すべき領域の情報を保存する。ステップS2では、処理部8が、記憶部7に保存された情報を基に、指定した計測回数nでのそれぞれの計測回kにおける計測条件iを決定する。ステップS3では、ステップS2で決定した計測条件iで、計測対象物1の表面形状を計測する。ステップS4では、ステップS3の計測で得られたデータを用いて、計測対象物1の表面の欠陥の有無を判定する。 In step S1, the measuring device 2 measures the surface shape of the measurement object 1 under a plurality of sets of measurement conditions to obtain an area to be measured for each set, and the storage unit 7 obtains information on the area to be measured. save. In step S2, the processing unit 8, based on information stored in the storage unit 7, determines the measurement condition i k at each measurement times k for the specified number of measurements n. In step S3, the measurement conditions i k determined in step S2, to measure the surface shape of the measurement object 1. In step S4, the presence or absence of a defect on the surface of the measurement object 1 is determined using the data obtained by the measurement in step S3.

ステップS1は、複数の計測対象物1のうち一部の数の計測対象物1(少数の複数のサンプル)に対して行うのが望ましい。複数の計測対象物1のうち一部の数の計測対象物1に対して行う計測を、予備的な計測と呼ぶ。ステップS3とステップS4は、多数の計測対象物1(量産品)に対して順次行う。すなわち、ステップS1では、少数の計測対象物1に予備的な計測を行い、ステップS3では、多数の計測対象物1に本計測を行う。本計測とは、計測対象物1のうち、少なくとも残りの数の計測対象物1(すなわち、少なくとも、予備的な計測が行われなかった多数の計測対象物1)に対して行う計測である。本計測は、全ての数の計測対象物1に対して行ってもよい。予備的な計測は、本計測での計測回ごとの計測条件を求めるために行う。   Step S1 is preferably performed on a part of the plurality of measurement objects 1 (a small number of samples). The measurement performed on a part of the plurality of measurement objects 1 is referred to as preliminary measurement. Steps S3 and S4 are sequentially performed on a large number of measurement objects 1 (mass-produced products). That is, in step S1, preliminary measurement is performed on a small number of measurement objects 1, and in step S3, main measurement is performed on a large number of measurement objects 1. The main measurement is a measurement performed on at least the remaining number of measurement objects 1 (that is, at least a large number of measurement objects 1 for which preliminary measurement has not been performed) among the measurement objects 1. The main measurement may be performed on all numbers of measurement objects 1. Preliminary measurement is performed to obtain measurement conditions for each measurement in the main measurement.

量産鋳造品の検査に用いられる表面検査装置は、短時間で正確に多数の計測対象物1を検査できることが望まれている。本実施例による表面検査装置では、ステップS1とステップS2で少数の計測対象物1を用いて計測条件を決定し、ステップS3とステップS4でこの計測条件で多数の計測対象物1を計測して計測対象物1の表面の欠陥の有無を判定する。このため、本実施例による表面検査装置は、短時間で正確に多数の計測対象物1を検査できる。   The surface inspection apparatus used for inspection of mass-produced cast products is desired to be able to inspect a large number of measurement objects 1 accurately in a short time. In the surface inspection apparatus according to the present embodiment, measurement conditions are determined using a small number of measurement objects 1 in steps S1 and S2, and a large number of measurement objects 1 are measured under these measurement conditions in steps S3 and S4. The presence or absence of a defect on the surface of the measurement object 1 is determined. Therefore, the surface inspection apparatus according to the present embodiment can inspect a large number of measurement objects 1 accurately in a short time.

以下、各ステップについて詳しく説明する。   Each step will be described in detail below.

初めに、ステップS1について説明する。ステップS1では、複数の組の計測条件のそれぞれの組に対して、計測すべき領域を求める。   First, step S1 will be described. In step S1, an area to be measured is determined for each of a plurality of sets of measurement conditions.

図3は、ステップS1の手順を示すフローチャートである。ステップS1は、ステップS101からステップS105を有する。   FIG. 3 is a flowchart showing the procedure of step S1. Step S1 has steps S101 to S105.

ステップS101では、検査員が1組の計測条件を処理部8に入力する。   In step S101, the inspector inputs one set of measurement conditions to the processing unit 8.

図4は、計測条件の説明図である。図4において、走査部5の移動方向をx方向、水平面内でx方向に垂直な方向をy方向、鉛直方向(x方向とy方向に垂直な方向)をz方向とする。1組の計測条件には、例えば、ロボットアーム3の位置座標(x,y,z)と、ロボットアーム3のz軸を基準とした回転角度φと、回転ステージ4のx軸を基準とした回転角度θと、走査部5の移動開始位置、移動終了位置、及び移動速度が含まれる。ロボットアーム3の位置座標(x,y,z)とは、ロボットアーム3と測定機2との接続点の位置座標である。ロボットアーム3のz軸を基準とした回転角度φとは、ロボットアーム3と測定機2との接続点の、z軸からの回転角度である。これらの計測条件は、計測対象物1の全体形状が計測できるように、計測対象物1の大きさや形状に応じて検査員が入力する。   FIG. 4 is an explanatory diagram of measurement conditions. In FIG. 4, the moving direction of the scanning unit 5 is the x direction, the direction perpendicular to the x direction in the horizontal plane is the y direction, and the vertical direction (the direction perpendicular to the x direction and the y direction) is the z direction. For one set of measurement conditions, for example, the position coordinates (x, y, z) of the robot arm 3, the rotation angle φ based on the z axis of the robot arm 3, and the x axis of the rotation stage 4 The rotation angle θ, the movement start position, the movement end position, and the movement speed of the scanning unit 5 are included. The position coordinates (x, y, z) of the robot arm 3 are position coordinates of a connection point between the robot arm 3 and the measuring device 2. The rotation angle φ based on the z axis of the robot arm 3 is the rotation angle from the z axis of the connection point between the robot arm 3 and the measuring device 2. These measurement conditions are input by the inspector according to the size and the shape of the measurement object 1 so that the entire shape of the measurement object 1 can be measured.

ステップS102では、処理部8が、計測対象物1を測定機2に対して相対移動させて、計測対象物1の表面形状を計測する(予備的な計測を行う)。この計測は、測定機2が、ステップS101で入力した1組の計測条件に従って行う。計測対象物1は、検査員または図1に示していない搬送ロボット等によって、回転ステージ4に設置される。測定機2は、計測対象物1をレーザ光で走査し、計測対象物1の表面の座標を計測データとして取得する。計測時には、計測対象物1の位置を固定してロボットアーム3によって測定機2を移動させて走査してもよく、測定機2の位置を固定して走査部5によって計測対象物1を移動させて走査してもよい。   In step S102, the processing unit 8 moves the measurement target 1 relative to the measurement device 2 and measures the surface shape of the measurement target 1 (performs preliminary measurement). This measurement is performed by the measuring device 2 according to one set of measurement conditions input in step S101. The measurement target 1 is installed on the rotation stage 4 by an inspector or a transfer robot not shown in FIG. The measuring device 2 scans the measurement object 1 with a laser beam, and acquires the coordinates of the surface of the measurement object 1 as measurement data. At the time of measurement, the position of the measurement object 1 may be fixed and the measuring machine 2 may be moved and scanned by the robot arm 3 or the position of the measuring machine 2 may be fixed and the measurement object 1 may be moved by the scanning unit 5 You may scan.

測定機2の受光素子は、ラインレーザ9の方向に沿って等間隔で配置されている。このため、計測データは、ラインレーザ9の方向に沿った等間隔な位置の座標について取得される。測定機2をラインレーザ9の方向と略垂直な方向に移動させて走査することで、計測対象物1の3次元形状を取得できる。   The light receiving elements of the measuring device 2 are arranged at equal intervals along the direction of the line laser 9. Therefore, measurement data is acquired for coordinates of equally spaced positions along the direction of the line laser 9. The three-dimensional shape of the measurement object 1 can be acquired by moving the measuring device 2 in a direction substantially perpendicular to the direction of the line laser 9 and scanning.

計測のタイミングを与えるトリガは、測定機2の内部で連続的に発生する。このトリガは、エンコーダを用いて走査部5の移動量を計測し、移動量に応じたパルス信号を測定機2の外部から与えることで発生させてもよい。走査部5の移動速度が一定、かつトリガ間隔が一定の場合、走査方向に等間隔の座標についての計測データが取得できる。   The trigger giving the timing of measurement occurs continuously inside the measuring device 2. The trigger may be generated by measuring the amount of movement of the scanning unit 5 using an encoder and applying a pulse signal according to the amount of movement from the outside of the measuring device 2. In the case where the moving speed of the scanning unit 5 is constant and the trigger interval is constant, measurement data can be acquired for coordinates at regular intervals in the scanning direction.

ステップS103では、処理部8が、計測対象物1の形状データを入力し、ステップS102で取得した計測データと形状データとの位置合わせを行う。計測データは、計測対象物1の表面の座標を示す点群である。形状データは、計測対象物1の3次元形状を示すデータであり、計測対象物1の表面の座標を含む。形状データは、計測対象物1の表面を表す多数の格子セルの集合であり、計測対象物1の設計情報から抽出することで、または計測対象物1の標準サンプルの計測データを基にすることで作成できる。形状データの格子セルは、計測対象物1の3次元形状に合わせて形状や大きさを定めることができる。形状データは、各格子セルの面積を含む。各格子セルには、識別番号が付けられている。   In step S103, the processing unit 8 inputs the shape data of the measurement object 1, and aligns the measurement data and the shape data acquired in step S102. The measurement data is a point cloud indicating coordinates of the surface of the measurement object 1. The shape data is data indicating the three-dimensional shape of the measurement object 1 and includes the coordinates of the surface of the measurement object 1. The shape data is a set of a large number of grid cells representing the surface of the measurement object 1, and is extracted from the design information of the measurement object 1, or based on measurement data of a standard sample of the measurement object 1. Can be created by The shape and size of the grid cell of the shape data can be determined in accordance with the three-dimensional shape of the measurement object 1. The shape data includes the area of each grid cell. Each grid cell is assigned an identification number.

図5は、計測データ10と形状データ11との位置合わせの説明図である。図5には、左側に位置合わせをする前の計測データ10と形状データ11を示し、右側に位置合わせをした後の計測データ10と形状データ11を示している。   FIG. 5 is an explanatory diagram of alignment of the measurement data 10 and the shape data 11. FIG. 5 shows measurement data 10 and shape data 11 before alignment on the left side, and measurement data 10 and shape data 11 after alignment on the right side.

この位置合わせは、計測データ10と形状データ11を同じ座標系に配置し、計測データ10で表される形状の物体と形状データ11で表される形状の物体との距離が最小になるように、これらの物体の一方または両方を平行移動させることで行う。この平行移動で移動した物体を表すデータについては、計測対象物1の表面の座標が変更される。   In this alignment, the measurement data 10 and the shape data 11 are arranged in the same coordinate system, and the distance between the object of the shape represented by the measurement data 10 and the object of the shape represented by the shape data 11 is minimized. , By translating one or both of these objects. For data representing an object moved by this parallel movement, the coordinates of the surface of the measurement object 1 are changed.

この位置合わせは、例えば、次のようにして行うことができる。まず、形状データ11の各格子セルについて、ステップS102で取得した計測データ10の中で最も近い点との距離dを計算する。次に、形状データ11の全格子セルについて距離dを足し合わせた値Dを求める。値Dが予め設定したしきい値より大きければ、計測データ10で表される形状の物体を平行移動させ、計測データ10の座標の値を変えて、値Dを再び求める。以上の処理を値Dが上記のしきい値より小さくなるまで行い、計測データ10で表される形状の物体の位置を決定する。なお、値Dのしきい値は、処理部8が読み込むことができる。   This alignment can be performed, for example, as follows. First, for each lattice cell of the shape data 11, the distance d to the closest point in the measurement data 10 acquired in step S102 is calculated. Next, a value D is obtained by adding the distances d for all lattice cells of the shape data 11. If the value D is larger than a preset threshold value, an object having a shape represented by the measurement data 10 is moved in parallel, the value of the coordinates of the measurement data 10 is changed, and the value D is determined again. The above processing is performed until the value D becomes smaller than the above threshold, and the position of the object having the shape represented by the measurement data 10 is determined. The processing unit 8 can read the threshold value of the value D.

ステップS103では、以上のようにして、計測データ10で表される形状の物体と形状データ11で表される形状の物体との一方または両方の位置を変えて、これらの物体の位置が互いに合うように、計測データ10と形状データ11の一方または両方について計測対象物1の表面の座標を変更する。   In step S103, the positions of one or both of the object of the shape represented by the measurement data 10 and the object of the shape represented by the shape data 11 are changed as described above, and the positions of these objects match each other. As described above, the coordinates of the surface of the measurement object 1 are changed for one or both of the measurement data 10 and the shape data 11.

ステップS104では、処理部8が、ステップS103で計測データ10と位置合わせがされた形状データ11に対して、各格子セルが計測すべき格子セルであるか否かを判定する。計測すべきと判定された格子セルが、計測すべき領域(表面形状のデータを欠損なく取得できる領域)を表す格子セルである。   In step S104, the processing unit 8 determines, with respect to the shape data 11 aligned with the measurement data 10 in step S103, whether or not each grid cell is a grid cell to be measured. A grid cell determined to be measured is a grid cell representing a region to be measured (a region from which surface shape data can be obtained without any loss).

図6は、形状データ11の各格子セルが計測すべき格子セルであるか否かを判定する方法の説明図である。図6には、左側に位置合わせをした後の計測データ10と形状データ11を示し、右側に形状データ11と計測すべき領域12(計測すべき格子セル)を示している。形状データ11の格子セルには、A1〜A12の識別番号が付けられている。   FIG. 6 is an explanatory diagram of a method of determining whether each grid cell of the shape data 11 is a grid cell to be measured. FIG. 6 shows measurement data 10 and shape data 11 after alignment on the left side, and shape data 11 and an area 12 to be measured (lattice cells to be measured) on the right side. The grid cells of the shape data 11 are assigned identification numbers A1 to A12.

格子セルが計測すべき格子セルであるか否かの判定には、例えば、格子セルにおける計測点の数密度を用いることができる。計測点とは、計測データ10を取得した、計測対象物1の表面の地点であり、計測データ10の点群である。以下、格子セルにおける計測点の数密度を用いた判定方法について説明する。   For example, the number density of measurement points in the grid cell can be used to determine whether the grid cell is the grid cell to be measured. The measurement point is a point on the surface of the measurement object 1 at which the measurement data 10 is acquired, and is a point cloud of the measurement data 10. Hereinafter, a determination method using the number density of measurement points in the grid cell will be described.

まず、計測データ10の各データ(計測対象物1の表面の座標を示す点群)に対して、最も近い格子セルを形状データ11の中から求める。次に、格子セルを1つ選び、選んだ格子セルを最も近いとした計測データ10の個数を数える。そして、この個数を、選んだ格子セルの面積で割ることで、この格子セルにおける計測点の数密度を算出する。算出した計測点の数密度が、格子セルの大きさに応じて予め設定したしきい値より大きければ、この格子セルを計測すべき格子セル(計測すべき領域12)と判定する。以上の処理を、形状データ11の全ての格子セルについて行い、計測対象物1の計測すべき領域12を求める。図6に示した例では、識別番号A1、A2、A3、A6、A10、A11、A12の格子セルが計測すべき格子セル、すなわち計測すべき領域12である。なお、計測点の数密度のしきい値は、処理部8が読み込むことができる。   First, for each data of the measurement data 10 (point group indicating the coordinates of the surface of the measurement target 1), the nearest grid cell is obtained from the shape data 11. Next, one lattice cell is selected, and the number of pieces of measurement data 10 with the selected lattice cell closest is counted. Then, the number density of measurement points in this grid cell is calculated by dividing this number by the area of the selected grid cell. If the calculated number density of measurement points is larger than the threshold value set in advance according to the size of the grid cell, it is determined that this grid cell is the grid cell to be measured (the area 12 to be measured). The above processing is performed on all the grid cells of the shape data 11, and the area 12 to be measured of the measurement object 1 is obtained. In the example shown in FIG. 6, the grid cells of identification numbers A1, A2, A3, A6, A10, A11, and A12 are grid cells to be measured, that is, areas 12 to be measured. The processing unit 8 can read the threshold of the number density of measurement points.

ステップS105では、処理部8が、ステップS104で計測すべき格子セルと判定された格子セル(計測すべき領域12)の識別番号を、ステップS102での計測に用いた1組の計測条件と共に、記憶部7に保存する。   In step S105, the processing unit 8 identifies the identification number of the grid cell (the area 12 to be measured) determined to be the grid cell to be measured in step S104, together with the set of measurement conditions used for the measurement in step S102. It is stored in the storage unit 7.

図7は、記憶部7に保存される、計測条件C1の組と、計測すべきと判定された格子セル(計測すべき領域12)の識別番号とを示す図である。処理部8は、ロボットアーム3の位置座標(x,y,z)及び回転角度φと、回転ステージ4の回転角度θと、走査部5の移動開始位置、移動終了位置、及び移動速度といった計測条件C1の組と、この1組の計測条件C1で得られた計測すべき格子セルの識別番号A1、A2、A3、A6、A10、A11、A12(図6を参照)を、併せて記憶部7に保存する。   FIG. 7 is a diagram showing a set of measurement conditions C1 stored in the storage unit 7 and identification numbers of lattice cells (the area 12 to be measured) determined to be measured. The processing unit 8 measures the position coordinates (x, y, z) and rotation angle φ of the robot arm 3, the rotation angle θ of the rotation stage 4, and the movement start position, movement end position, and movement speed of the scanning unit 5. A set of conditions C1 and identification numbers A1, A2, A3, A6, A10, A11, A12 (see FIG. 6) of grid cells to be measured obtained under this set of measurement conditions C1 are stored together Save to 7.

ステップS101〜ステップS105の処理は、複数回繰り返す。従って、検査員は、ステップS101で複数の組の計測条件Cj(j=1,2,…,m)を処理部8に入力する(mは計測条件の組の数)。但し、ステップS101で入力する1組の計測条件は、既に入力して記憶部7に保存した計測条件の組と異なる計測条件の組とする。すなわち、計測条件を変えてステップS102〜ステップS105を実施する。ステップS101〜ステップS105を繰り返す回数m(すなわち、計測条件の組の数m)は、計測対象物1の3次元形状や大きさに応じて定めることができる。   The process of step S101 to step S105 is repeated several times. Therefore, the inspector inputs a plurality of sets of measurement conditions Cj (j = 1, 2,..., M) to the processing unit 8 in step S101 (m is the number of the set of measurement conditions). However, one set of measurement conditions input in step S101 is a set of measurement conditions different from the set of measurement conditions already input and stored in the storage unit 7. That is, the measurement conditions are changed and steps S102 to S105 are performed. The number m of repeating step S101 to step S105 (that is, the number m of sets of measurement conditions) can be determined according to the three-dimensional shape and size of the measurement object 1.

ステップS1では、このようにして、複数の組の計測条件Cj(j=1,2,…,m)と、これらの組の計測条件Cjに対応する計測すべき格子セル(計測すべき領域12)の識別番号を、記憶部7に保存する(図7を参照)。   In step S1, in this way, a plurality of sets of measurement conditions Cj (j = 1, 2,..., M) and grid cells to be measured corresponding to the sets of measurement conditions Cj (area 12 to be measured) Is stored in the storage unit 7 (see FIG. 7).

なお、計測対象物1が量産鋳造品であると、計測対象物1の表面の凹凸は個体によってばらつきがある。測定機2は、計測対象物1の表面の凹凸のために投光したレーザ光の入射角度が大きいと、計測対象物1からの反射光を検出できず、データ欠損が生じる場合がある。このように、計測対象物1の表面形状の計測では、計測対象物1の個体差によってデータ欠損が生じることがある。   In addition, when the measurement object 1 is a mass-produced cast product, the unevenness of the surface of the measurement object 1 varies depending on the individual. If the incident angle of the laser beam projected is large due to the unevenness of the surface of the measurement object 1, the measuring device 2 can not detect the reflected light from the measurement object 1, and data loss may occur. As described above, in the measurement of the surface shape of the measurement target 1, data loss may occur due to the individual difference of the measurement target 1.

そこで、量産鋳造品である計測対象物1の個体差の影響を小さくするために、計測対象物1の複数のサンプルに対して、同一の1組の計測条件でステップS102〜ステップS105を実施することもできる。ステップS105では、処理部8は、全てのサンプルで共通して計測すべきと判定された格子セルの識別番号を記憶部7に保存する。   Therefore, in order to reduce the influence of the individual difference of the measurement object 1 which is a mass-produced casting product, steps S102 to S105 are performed on a plurality of samples of the measurement object 1 under the same set of measurement conditions. It can also be done. In step S105, the processing unit 8 stores, in the storage unit 7, the identification number of the grid cell determined to be commonly measured among all the samples.

従って、計測対象物1の複数のサンプルに対しては、次のような処理を行うことができる。まず、計測対象物1の複数のサンプルに対して同一の1組の計測条件でステップS102〜ステップS105を実施し、この1組の計測条件に対応する計測すべき格子セル(計測すべき領域12)の識別番号(全てのサンプルで共通の識別番号)を記憶部7に保存する。次に、計測条件を変えて、計測対象物1の複数のサンプルに対してこの計測条件の組でステップS102〜ステップS105を実施し、この1組の計測条件に対応する計測すべき格子セルの識別番号を記憶部7に保存する。これらの処理を、計測条件の組の数だけ繰り返す。   Therefore, the following process can be performed on a plurality of samples of the measurement target 1. First, step S102 to step S105 are performed on a plurality of samples of the measurement object 1 under the same set of measurement conditions, and the grid cell to be measured corresponding to the set of measurement conditions (the area 12 to be measured) ) (Identification number common to all samples) is stored in the storage unit 7. Next, the measurement conditions are changed, and steps S102 to S105 are performed on a plurality of samples of the measurement object 1 with this set of measurement conditions, and the grid cell to be measured corresponding to the one set of measurement conditions. The identification number is stored in the storage unit 7. These processes are repeated by the number of sets of measurement conditions.

または、計測対象物1の複数のサンプルに対して、次のような処理を行うこともできる。計測対象物1の1つのサンプルに対して、計測条件の組の数だけ、それぞれの組の計測条件でステップS102〜ステップS104を実施する。次に、計測対象物1のサンプルを変えて、変えたサンプルに対して、計測条件の組の数だけ、それぞれの組の計測条件でステップS102〜ステップS104を実施する。これらの処理を、サンプルの数だけ繰り返す。そして、計測条件の組のそれぞれに対して、全てのサンプルで共通の計測すべき格子セル(計測すべき領域12)の識別番号を記憶部7に保存する。   Alternatively, the following process may be performed on a plurality of samples of the measurement target 1. Steps S <b> 102 to S <b> 104 are performed on one sample of the measurement object 1 by the number of measurement condition sets under each measurement condition set. Next, the sample of the measurement target 1 is changed, and for the changed sample, steps S102 to S104 are performed under the measurement conditions of each set by the number of sets of measurement conditions. These processes are repeated for the number of samples. Then, for each set of measurement conditions, the identification number of the grid cell (the area 12 to be measured) common to all the samples is stored in the storage unit 7.

以上のようにして、計測対象物1が量産鋳造品であって表面の凹凸に個体差がある場合でも、この個体差の影響を小さくして、複数の組の計測条件と、それぞれの組の計測条件に対応する計測すべき格子セル(計測すべき領域12)の識別番号を、記憶部7に保存することができる。   As described above, even when the measurement object 1 is a mass-produced cast product and there are individual differences in surface irregularities, the influence of the individual differences is reduced, and a plurality of sets of measurement conditions and each set of The identification number of the grid cell to be measured (the area 12 to be measured) corresponding to the measurement condition can be stored in the storage unit 7.

次に、ステップS2について説明する。ステップS2では、処理部8が、記憶部7に保存された情報を基に、指定した計測回数nでのそれぞれの計測回kにおける計測条件iを決定する。 Next, step S2 will be described. In step S2, the processing unit 8, based on information stored in the storage unit 7, determines the measurement condition i k at each measurement times k for the specified number of measurements n.

図8は、ステップS2の手順を示すフローチャートである。ステップS2は、ステップS201からステップS203を有する。   FIG. 8 is a flowchart showing the procedure of step S2. Step S2 has steps S201 to S203.

ステップS201では、処理部8が、記憶部7に保存された、全ての組の計測条件Cj(j=1,2,…,m)と、計測条件Cjのそれぞれに対応する計測すべき格子セル(計測すべき領域12)の識別番号を、記憶部7から読み込む。処理部8は、さらに計測回数nも読み込む。計測回数nは、計測を何回行うかを示す数値であり、計測対象物1に要求される検査時間に応じて予め設定することができる。また、計測回(何回目の計測であるか)を示すパラメータk(k=1,2,…,n)の値を1に設定する。   In step S201, the processing unit 8 calculates the lattice cells to be measured corresponding to the measurement conditions Cj (j = 1, 2,..., M) of all the sets and the measurement conditions Cj stored in the storage unit 7. The identification number of (the area 12 to be measured) is read from the storage unit 7. The processing unit 8 further reads the number of measurements n. The number of times of measurement n is a numerical value indicating how many times the measurement is performed, and can be set in advance according to the inspection time required for the measurement target 1. Further, the value of the parameter k (k = 1, 2,..., N) indicating the number of times of measurement (how many times of measurement) is set to 1.

ステップS202では、処理部8が、各組の計測条件Cjについて計測すべき格子セル(計測すべき領域12)の面積の和を計算し、この面積の和が最大となる計測条件Cjを、計測回k(k回目の計測)の計測条件iとして決定する。図6、7に示した例では、計測条件C1については、識別番号A1、A2、A3、A6、A10、A11、A12の格子セルの面積の和を計算する。 In step S202, the processing unit 8 calculates the sum of the areas of the grid cells (area 12 to be measured) to be measured for each set of measurement conditions Cj, and measures the measurement conditions Cj for which the sum of the areas is maximum. It is determined as the measurement conditions i k times k (k-th measurement). In the example shown in FIGS. 6 and 7, for the measurement condition C1, the sum of the areas of the grid cells of the identification numbers A1, A2, A3, A6, A10, A11, and A12 is calculated.

ステップS203では、処理部8が、全ての組の計測条件Cjについての計測すべき格子セル(計測すべき領域12)の識別番号から、計測条件iについての計測すべき格子セル(計測すべき領域12)の識別番号を消去する。これは、既に決定した計測条件iについての計測すべき領域12を、異なる計測条件ik’についての計測すべき領域12として重複して選ばないようにするためである。 In step S203, the processing unit 8, the identification number of the measurement to be grid cell (area 12 to be measured) for all sets of measurement conditions Cj, should grid cell (measurement to be measured for the measurement condition i k Erase the identification number of area 12). This area 12 to be measured for the measurement condition i k which have already been determined, is to prevent selected overlap as a region 12 to be measured for the different measurement conditions i k '.

ステップS203の後、kがnに等しくなければ、処理部8は、kの値を1つ増やしてステップS202とステップS203の処理を繰り返す。但し、ステップS203で、既に決定した計測条件iについての計測すべき領域12が消去されているので、ステップS202では、既に決定した計測条件iについての計測すべき領域12以外の計測すべき領域12の面積の和を計算し、この面積の和が最大となる計測条件Cjを、計測回kの計測条件iとして決定する。 If k is not equal to n after step S203, the processing unit 8 increments the value of k by one and repeats the processes of steps S202 and S203. However, in step S203, since the region 12 to be measured for the measurement condition i k which has already been determined is erased, in step S202, to be measured other than the region 12 to be measured for the measurement condition i k which has already been determined The sum of the areas of the region 12 is calculated, and the measurement condition Cj at which the sum of the areas becomes maximum is determined as the measurement condition ik of the measurement count k .

ステップS203の後、kがnに等しければ、全ての計測回k(k=1,2,…,n)に対して計測条件iが決定されたので、処理部8は、ステップS2の処理を終了する。処理部8は、このようにして、計測回k(k=1,2,…,n)に対する計測条件iを得ることができる。 If k is equal to n after step S203, the measurement condition ik is determined for all the measurement times k (k = 1, 2,..., N), so the processing unit 8 performs the process of step S2. Finish. Processing unit 8, in this way, the measurement times k (k = 1,2, ..., n) can be obtained measurement condition i k for.

ステップS2の処理により、指定した計測回数nで計測対象物1の表面形状を計測するときに、条件決定指標として計測対象物1の計測すべき領域(表面形状のデータを欠損なく取得できる領域)の面積を用いて、計測すべき領域ができるだけ大きくなるように計測条件を選ぶことができる。このため、本実施例による表面検査装置では、計測対象物1の可能な限り広い領域を、指定した計測回数nで計測することができる。   When the surface shape of the measurement object 1 is measured with the designated number of times of measurement n by the process of step S2, an area to be measured of the measurement object 1 as a condition determination index (a region where data of the surface shape can be obtained without loss) Using the area of, the measurement conditions can be selected so that the area to be measured is as large as possible. For this reason, in the surface inspection apparatus according to the present embodiment, the largest possible area of the measurement object 1 can be measured by the designated number of times of measurement n.

次に、ステップS3について説明する。ステップS3では、測定機2が、ステップS2で決定した計測回k(k=1,2,…,n)に対する計測条件iで、計測対象物1の表面形状を計測する。この計測(本計測)は、1つの計測対象物1に対して、計測条件iを変えて複数回(n回)実行する。 Next, step S3 will be described. In step S3, the monitoring instrument 2 is measured and determined in step S2 times k (k = 1,2, ..., n) in the measurement condition i k for, for measuring the surface shape of the measurement object 1. This measurement (main measurement), relative to one of the measurement object 1, a plurality of times while changing the measurement condition i k (n times) to run.

ステップS3では、制御部6が、処理部8から送信された計測回k(k=1,2,…,n)に対する計測条件iに従って、ロボットアーム3の位置座標(x,y,z)及び回転角度φと、回転ステージ4の回転角度θと、走査部5の移動開始位置、移動終了位置、及び移動速度などを制御すると、測定機2は、計測対象物1の表面形状を計測する(本計測を行う)。なお、計測は、必ずしも計測条件i、i、・・・iの順番で実行する必要はなく、ロボットアーム3、回転ステージ4、及び走査部5の制御に要する時間がなるべく短くなる計測条件の順番で実行してもよい。 In step S3, the control unit 6, the processing unit 8 measuring times sent by k (k = 1,2, ..., n) in accordance with the measurement condition i k for the position coordinates of the robot arm 3 (x, y, z) The control device 2 measures the surface shape of the measurement object 1 by controlling the rotation angle φ, the rotation angle θ of the rotation stage 4, the movement start position, movement end position, movement speed, and the like of the scanning unit 5. (Perform the main measurement). Note that the measurements do not necessarily have to be performed in the order of the measurement conditions i 1 , i 2 ,... I n , and the time taken to control the robot arm 3, the rotation stage 4 and the scanning unit 5 becomes as short as possible. It may be executed in the order of conditions.

なお、図1には示していないが、表面検査装置が、処理部8に接続された表示部(例えば、ディスプレイ)を備えてもよい。表示部は、計測対象物1や計測条件iを表示する。表示部は、さらに、計測条件iに対応する計測すべき格子セル(計測すべき領域12)に色をつけて、計測対象物1を表示してもよい。このような表示により、検査員は、計測対象物1の計測すべき領域を計測中に確認でき、計測しなかった領域も把握できる。 Although not shown in FIG. 1, the surface inspection apparatus may include a display unit (for example, a display) connected to the processing unit 8. The display unit displays the measurement object 1 and the measurement condition i k. Display unit further with a color grid cells to be measured corresponding to the measurement conditions i k (region 12 to be measured) may be displayed measurement object 1. With such a display, the inspector can confirm the area to be measured of the measurement object 1 during measurement, and can also grasp the area not measured.

次に、ステップS4について説明する。ステップS4では、処理部8が、ステップS3の計測で取得した計測データを用いて、計測対象物1の表面の欠陥の有無を判定する。   Next, step S4 will be described. In step S4, the processing unit 8 determines the presence or absence of a defect on the surface of the measurement object 1 using the measurement data acquired in the measurement of step S3.

ステップS4では、処理部8は、例えば、ステップS3の計測で取得した計測データで表される形状の物体と形状データ11で表される形状の物体との距離を計算し、この距離が予め設定したしきい値より大きい場合に、計測対象物1の表面に欠陥があると判定する。この距離は、計測データと形状データ11とで互いに対応する位置の座標から求めることができる。ステップS103で説明したように、計測データは、計測対象物1の表面の座標を示す点群であり、形状データ11は、計測対象物1の表面の座標を含むデータである。   In step S4, the processing unit 8 calculates, for example, the distance between the object of the shape represented by the measurement data acquired in the measurement of step S3 and the object of the shape represented by the shape data 11, and this distance is set in advance. If it is larger than the threshold value, it is determined that the surface of the measurement object 1 has a defect. This distance can be obtained from the coordinates of positions corresponding to each other in the measurement data and the shape data 11. As described in step S103, the measurement data is a point group indicating the coordinates of the surface of the measurement object 1, and the shape data 11 is data including the coordinates of the surface of the measurement object 1.

または、処理部8は、計測データの各点における曲率を計算し、この曲率が予め設定した範囲を超える場合に、計測対象物1の表面に欠陥があると判定することもできる。   Alternatively, the processing unit 8 can calculate the curvature at each point of the measurement data, and determine that the surface of the measurement object 1 has a defect if the curvature exceeds a preset range.

欠陥の有無の判定に用いる値は、距離や曲率である必要はなく、取得したデータの中から曲線の形状を示すデータを抽出し、これらのデータの各座標成分を微分した値でもよい。   The value used to determine the presence or absence of a defect does not have to be a distance or a curvature, and may be a value obtained by extracting data indicating the shape of a curve from the acquired data and differentiating each coordinate component of these data.

ステップS4の終了後の計測対象物1は、走査部5により、図1に示していない搬出部に移動される。搬出部は、欠陥なしと判定された計測対象物1を、合格品として表面検査装置の外部に搬出し、欠陥ありと判定された計測対象物1を、合格品と区分けして、不良品として表面検査装置の外部に搬出する。この際、検査員が欠陥の位置や形状を把握できるように、処理部8に接続された表示部が、ステップS3の計測で取得した計測データで表される形状の物体を3次元で表示し、欠陥ありとの判定を導いたデータが表す箇所に色をつけて表示したり、この箇所を枠で囲って表示したりしてもよい。   The measurement object 1 after the end of step S4 is moved by the scanning unit 5 to the unloading unit not shown in FIG. The carry-out unit carries out the measurement object 1 determined as having no defect as a passable product to the outside of the surface inspection apparatus, divides the measurement object 1 determined as having a defect as a passable product as a defective product. Take it out of the surface inspection device. At this time, the display unit connected to the processing unit 8 three-dimensionally displays the object of the shape represented by the measurement data acquired in the measurement of step S3 so that the inspector can grasp the position and the shape of the defect. Alternatively, a color may be displayed on a portion represented by data derived as a result of the determination that there is a defect, or the portion may be displayed surrounded by a frame.

本実施例による表面検査装置は、予め決められた計測回数n(すなわち、予め決められた検査時間)で、計測対象物1の可能な限り広い領域を、データの欠損がないように計測することができる。このため、計測対象物1が複雑な形状を有する量産鋳造品であっても、表面形状を自動で正確かつ高速に計測して、欠陥の有無を判定できる。また、本実施例による表面検査装置は、計測すべき領域を特定できるので、計測対象物1の計測しなかった領域を把握することもできるという効果も有する。   The surface inspection apparatus according to the present embodiment measures the widest possible area of the measurement object 1 such that there is no loss of data at a predetermined number of times of measurement n (that is, a predetermined inspection time). Can. Therefore, even if the measurement object 1 is a mass-produced cast product having a complicated shape, the surface shape can be measured automatically and accurately at high speed to determine the presence or absence of a defect. Moreover, since the surface inspection apparatus according to the present embodiment can specify the area to be measured, it also has the effect of being able to grasp the area not measured of the measurement object 1.

本発明の実施例2による表面検査装置について説明する。   A surface inspection apparatus according to a second embodiment of the present invention will be described.

図9は、本発明の実施例2による表面検査装置の構成を示す図である。本実施例による表面検査装置は、実施例1による表面検査装置において、処理部8に接続された指定部13をさらに備える。   FIG. 9 is a view showing the configuration of a surface inspection apparatus according to a second embodiment of the present invention. The surface inspection apparatus according to the present embodiment further includes a designation unit 13 connected to the processing unit 8 in the surface inspection apparatus according to the first embodiment.

指定部13は、計測対象物1の形状データ11の各格子セルに設定された優先度を保存する。優先度は、計測対象物1の表面の部分(格子セル)ごとの検査の必要性の高さを示す数値であり、例えば、検査の必要性が高いほど値が大きい。各格子セルの優先度は、検査員が予めまたは計測対象物1の検査中に指定部13に入力することができる。   The designation unit 13 stores the priority set for each grid cell of the shape data 11 of the measurement object 1. The priority is a numerical value indicating the height of the necessity of inspection for each part (lattice cell) of the surface of the measurement object 1. For example, the higher the necessity for inspection, the larger the value. The priority of each grid cell can be input to the designating unit 13 in advance by the inspector or during the inspection of the measurement object 1.

図10は、本実施例による表面検査装置が実行するステップS2の手順を示すフローチャートである。本実施例でのステップS2は、ステップS201、ステップS202a、及びステップS203を有する。ステップS201とステップS203は、実施例1でのステップS201とステップS203と同じであるが、ステップS202aは、実施例1でのステップS202と異なる。また、ステップS201で、処理部8が、計測回数nに加えて、格子セルの優先度を指定部13から入力する点も、実施例1でのステップS201と異なる。以下、ステップS202aについて説明する。   FIG. 10 is a flowchart showing the procedure of step S2 performed by the surface inspection apparatus according to the present embodiment. Step S2 in this embodiment includes steps S201, S202a, and S203. Steps S201 and S203 are the same as steps S201 and S203 in the first embodiment, but step S202a is different from step S202 in the first embodiment. Further, in step S201, in addition to the number of times of measurement n, the processing unit 8 inputs the priority of the lattice cell from the specifying unit 13 as well, which is different from step S201 in the first embodiment. Hereinafter, step S202a will be described.

ステップS202aでは、処理部8が、各組の計測条件Cj(j=1,2,…,m)について計測すべき格子セル(計測すべき領域12)の優先度の和を計算し、この優先度の和が最大となる計測条件Cjを、計測回k(k回目の計測)の計測条件i(k=1,2,…,n)として決定する。 In step S202a, the processing unit 8 calculates the sum of the priorities of the grid cells (area 12 to be measured) to be measured for each set of measurement conditions Cj (j = 1, 2,..., M). the measurement condition Cj sum of time is maximized, the measurement times measurement condition of k (k-th measurement) i k (k = 1,2, ..., n) is determined as.

実施例2では、ステップS2の処理により、指定した計測回数nで計測対象物1の表面形状を計測するときに、条件決定指標として優先度(計測対象物1の表面の部分ごとの検査の必要性)を用いて、優先度が高い部分を計測する計測条件Cjを本計測の計測条件iとして優先的に選ぶ。このため、本実施例による表面検査装置では、計測対象物1の検査の必要性が高い部分を優先的に計測することができる。 In the second embodiment, when the surface shape of the measurement object 1 is measured with the designated number of times of measurement n by the process of step S2, priority (necessity of inspection for each portion of the surface of the measurement object 1) as a condition determination index sex) was used to preferentially select a measurement condition Cj for measuring the high priority portion as the measurement condition i k of the measurement. For this reason, in the surface inspection apparatus according to the present embodiment, it is possible to preferentially measure a portion where the necessity of the inspection of the measurement object 1 is high.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。   The present invention is not limited to the above embodiments, and various modifications are possible. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to the aspect having all the described configurations. Also, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment. In addition, it is possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, it is possible to delete part of the configuration of each embodiment or to add or replace another configuration.

1…計測対象物、2…測定機、3…ロボットアーム、4…回転ステージ、5…走査部、6…制御部、7…記憶部、8…処理部、9…ラインレーザ、10…計測データ、11…形状データ、12…計測すべき領域、13…指定部。   DESCRIPTION OF SYMBOLS 1 ... measurement object, 2 ... measurement machine, 3 ... robot arm, 4 ... rotation stage, 5 ... scanning part, 6 ... control part, 7 ... storage part, 8 ... processing part, 9 ... line laser, 10 ... measurement data 11: shape data 12: area to be measured 13: designation part.

Claims (8)

3次元形状の複数の計測対象物の表面形状を計測する光学測定機と、
前記計測対象物と前記光学測定機とを互いに相対的に移動させる移動部と、
前記計測対象物を回転移動させる回転ステージと、
前記移動部と前記回転ステージを制御する制御部と、
前記制御部と前記光学測定機を制御する処理部と、
を備え、
計測条件を、前記制御部が前記移動部と前記回転ステージを制御する条件とし、
予備的な計測を、前記光学測定機が前記計測対象物のうち一部の数の前記計測対象物に対して行う計測とし、
本計測を、前記光学測定機が前記計測対象物のうち少なくとも残りの数の前記計測対象物に対して行う計測とし、
条件決定指標を、前記本計測に用いる前記計測条件を決定するための指標とし、
前記処理部は、
複数の組の前記計測条件を入力し、
それぞれの組の前記計測条件で前記光学測定機が前記予備的な計測を行った結果を用いて、それぞれの組の前記計測条件に対して前記計測対象物の計測すべき領域を求め、
前記条件決定指標とそれぞれの組の前記計測条件に対する前記計測すべき領域とを用いて、複数の組の前記計測条件の中から計測回ごとの前記計測条件を決定する、
ように構成され、
前記光学測定機は、前記制御部が前記計測回ごとの前記計測条件に従って前記移動部と前記回転ステージを制御すると、前記本計測を行うように構成されている、
ことを特徴とする表面検査装置。
An optical measuring device that measures the surface shapes of a plurality of measurement objects having a three-dimensional shape;
A moving unit that moves the measurement object and the optical measurement device relative to each other;
A rotational stage which rotationally moves the measurement object;
A control unit that controls the moving unit and the rotation stage;
A processing unit that controls the control unit and the optical measuring instrument;
Equipped with
The measurement condition is a condition under which the control unit controls the moving unit and the rotation stage,
The preliminary measurement is performed by the optical measurement machine performing measurement on a part of the measurement objects among the measurement objects;
It is assumed that the main measurement is performed by the optical measurement machine on at least the remaining number of the measurement objects among the measurement objects;
The condition determination index is an index for determining the measurement condition used for the main measurement,
The processing unit is
Enter multiple sets of the measurement conditions,
Using the results of the preliminary measurement performed by the optical measuring device under each measurement condition of each set, the area to be measured of the object to be measured is determined for the measurement condition of each set;
The measurement condition for each measurement cycle is determined from among the plurality of sets of measurement conditions using the condition determination index and the area to be measured for the measurement conditions of each set.
Configured as
The optical measuring machine is configured to perform the main measurement when the control unit controls the moving unit and the rotation stage according to the measurement condition for each measurement cycle.
Surface inspection device characterized by.
計測点を、前記予備的な計測のデータを取得した、前記計測対象物の表面の地点とすると、
前記処理部は、
前記計測対象物の表面を表す格子セルの集合である形状データを入力し、
前記計測点の数密度が予め設定したしきい値より大きい格子セルを、それぞれの組の前記計測条件に対する前記計測すべき領域とする、
ように構成されている、
請求項1に記載の表面検査装置。
Assuming that the measurement point is a point on the surface of the measurement object from which data of the preliminary measurement has been acquired,
The processing unit is
Inputting shape data that is a set of grid cells representing the surface of the measurement object;
A grid cell whose number density of the measurement points is larger than a preset threshold value is set as the area to be measured for the measurement condition of each set.
Is configured as
The surface inspection apparatus according to claim 1.
前記条件決定指標は、前記計測対象物の前記計測すべき領域の面積であり、
前記処理部は、前記面積が最大となる前記計測条件を、複数の組の前記計測条件の中から前記計測回ごとに決定するように構成されている、
請求項1または2に記載の表面検査装置。
The condition determination index is an area of the area to be measured of the measurement object,
The processing unit is configured to determine, for each of the measurement times, the measurement condition with the largest area, from among a plurality of sets of the measurement conditions.
The surface inspection apparatus according to claim 1.
前記条件決定指標は、前記計測対象物の表面の部分ごとの検査の必要性を示す数値である優先度であり、
前記処理部は、前記優先度が最大となる前記計測条件を、複数の組の前記計測条件の中から前記計測回ごとに決定するように構成されている、
請求項1または2に記載の表面検査装置。
The condition determination index is a priority that is a numerical value indicating the necessity of inspection for each part of the surface of the measurement object,
The processing unit is configured to determine, for each of the measurement times, the measurement condition that maximizes the priority, from among a plurality of sets of the measurement conditions.
The surface inspection apparatus according to claim 1.
3次元形状の複数の計測対象物の表面形状を計測する光学測定機と、
前記計測対象物と前記光学測定機とを互いに相対的に移動させる移動部と、
前記計測対象物を回転移動させる回転ステージと、
前記移動部と前記回転ステージを制御する制御部と、
前記制御部と前記光学測定機を制御する処理部と、
が用いられ、
計測条件を、前記制御部が前記移動部と前記回転ステージを制御する条件とし、
予備的な計測を、前記光学測定機が前記計測対象物のうち一部の数の前記計測対象物に対して行う計測とし、
本計測を、前記光学測定機が前記計測対象物のうち少なくとも残りの数の前記計測対象物に対して行う計測とし、
条件決定指標を、前記本計測に用いる前記計測条件を決定するための指標とし、
複数の組の前記計測条件を前記処理部に入力する工程と、
前記処理部が、それぞれの組の前記計測条件で前記光学測定機が前記予備的な計測を行った結果を用いて、それぞれの組の前記計測条件に対して前記計測対象物の計測すべき領域を求める工程と、
前記処理部が、前記条件決定指標とそれぞれの組の前記計測条件に対する前記計測すべき領域とを用いて、複数の組の前記計測条件の中から計測回ごとの前記計測条件を決定する工程と、
前記光学測定機が、前記制御部が前記計測回ごとの前記計測条件に従って前記移動部と前記回転ステージを制御すると、前記本計測を行う工程と、
を有することを特徴とする表面検査方法。
An optical measuring device that measures the surface shapes of a plurality of measurement objects having a three-dimensional shape;
A moving unit that moves the measurement object and the optical measurement device relative to each other;
A rotational stage which rotationally moves the measurement object;
A control unit that controls the moving unit and the rotation stage;
A processing unit that controls the control unit and the optical measuring instrument;
Is used,
The measurement condition is a condition under which the control unit controls the moving unit and the rotation stage,
The preliminary measurement is performed by the optical measurement machine performing measurement on a part of the measurement objects among the measurement objects;
It is assumed that the main measurement is performed by the optical measurement machine on at least the remaining number of the measurement objects among the measurement objects;
The condition determination index is an index for determining the measurement condition used for the main measurement,
Inputting a plurality of sets of the measurement conditions into the processing unit;
The area where the processing object should measure the measurement object with respect to the measurement condition of each set, using the result of the optical measurement machine performing the preliminary measurement under the measurement condition of each set. Step of obtaining
Determining the measurement condition for each measurement cycle from among the plurality of sets of measurement conditions using the condition determination index and the area to be measured for the measurement condition of each set; ,
A step of performing the main measurement when the optical measurement machine controls the moving unit and the rotation stage according to the measurement condition of each measurement cycle by the control unit;
The surface inspection method characterized by having.
計測点を、前記予備的な計測のデータを取得した、前記計測対象物の表面の地点とすると、
前記処理部が、それぞれの組の前記計測条件に対して前記計測対象物の計測すべき領域を求める工程では、前記処理部が、
前記計測対象物の表面を表す格子セルの集合である形状データを入力し、
前記計測点の数密度が予め設定したしきい値より大きい格子セルを、それぞれの組の前記計測条件に対する前記計測すべき領域とする、
請求項5に記載の表面検査方法。
Assuming that the measurement point is a point on the surface of the measurement object from which data of the preliminary measurement has been acquired,
In the process in which the processing unit determines an area to be measured of the measurement target for each set of the measurement conditions, the processing unit includes:
Inputting shape data that is a set of grid cells representing the surface of the measurement object;
A grid cell whose number density of the measurement points is larger than a preset threshold value is set as the area to be measured for the measurement condition of each set.
The surface inspection method according to claim 5.
前記条件決定指標は、前記計測対象物の前記計測すべき領域の面積であり、
前記処理部が、複数の組の前記計測条件の中から前記計測回ごとの前記計測条件を決定する工程では、前記処理部が、前記面積が最大となる前記計測条件を、複数の組の前記計測条件の中から前記計測回ごとに決定する、
請求項5または6に記載の表面検査方法。
The condition determination index is an area of the area to be measured of the measurement object,
In the process in which the processing unit determines the measurement condition for each of the measurement times among the plurality of sets of measurement conditions, the processing unit determines the plurality of sets of measurement conditions in which the area is maximized. Determined from the measurement conditions for each of the measurement times,
A surface inspection method according to claim 5 or 6.
前記条件決定指標は、前記計測対象物の表面の部分ごとの検査の必要性を示す数値である優先度であり、
前記処理部が、複数の組の前記計測条件の中から前記計測回ごとの前記計測条件を決定する工程では、前記処理部が、前記優先度が最大となる前記計測条件を、複数の組の前記計測条件の中から前記計測回ごとに決定する、
請求項5または6に記載の表面検査方法。
The condition determination index is a priority that is a numerical value indicating the necessity of inspection for each part of the surface of the measurement object,
In the process in which the processing unit determines the measurement condition for each of the measurement times among the plurality of sets of measurement conditions, the processing unit determines the measurement condition with the highest priority to be a plurality of sets of measurement conditions. It is determined for each of the measurement times among the measurement conditions,
A surface inspection method according to claim 5 or 6.
JP2017174758A 2017-09-12 2017-09-12 Surface inspection equipment and surface inspection method Active JP6884077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174758A JP6884077B2 (en) 2017-09-12 2017-09-12 Surface inspection equipment and surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174758A JP6884077B2 (en) 2017-09-12 2017-09-12 Surface inspection equipment and surface inspection method

Publications (2)

Publication Number Publication Date
JP2019049509A true JP2019049509A (en) 2019-03-28
JP6884077B2 JP6884077B2 (en) 2021-06-09

Family

ID=65905555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174758A Active JP6884077B2 (en) 2017-09-12 2017-09-12 Surface inspection equipment and surface inspection method

Country Status (1)

Country Link
JP (1) JP6884077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170305A (en) * 2020-02-17 2021-10-28 クリスタルメソッド株式会社 Information processor and information processing method
WO2021243360A1 (en) * 2020-05-29 2021-12-02 Lam Research Corporation Automated visual-inspection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233518A (en) * 1995-02-24 1996-09-13 Nikon Corp Three-dimensional shape measuring apparatus
JP2015190818A (en) * 2014-03-28 2015-11-02 石川県 Work support device, work support system, work support method and program
JP2017010327A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Information processing apparatus, information processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233518A (en) * 1995-02-24 1996-09-13 Nikon Corp Three-dimensional shape measuring apparatus
JP2015190818A (en) * 2014-03-28 2015-11-02 石川県 Work support device, work support system, work support method and program
JP2017010327A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Information processing apparatus, information processing method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170305A (en) * 2020-02-17 2021-10-28 クリスタルメソッド株式会社 Information processor and information processing method
WO2021243360A1 (en) * 2020-05-29 2021-12-02 Lam Research Corporation Automated visual-inspection system

Also Published As

Publication number Publication date
JP6884077B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US9488589B2 (en) Mapping damaged regions on objects
CN102084214B (en) Accurate image acquisition for structured-light system for optical shape and positional measurements
TWI567690B (en) System, program product, and related methods for registering three-dimensional models to point data representing the pose of a part
CN108332708B (en) Automatic detection system and detection method for laser level meter
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
US10958843B2 (en) Multi-camera system for simultaneous registration and zoomed imagery
KR20060127174A (en) Method for planing an inspection path for determining areas that are to be inspected
JPH1183438A (en) Position calibration method for optical measuring device
JP2009053136A (en) Three-dimensional measuring method and device
CN107796718A (en) Brineling system and method
JP2021193400A (en) Method for measuring artefact
EP2960621B1 (en) Shape inspection device
JP6884077B2 (en) Surface inspection equipment and surface inspection method
EP2913631A1 (en) Test apparatus and method
CN102538707A (en) Three dimensional localization device and method for workpiece
CN101701792B (en) Gauge block automatic verification system and verification method
JP4778855B2 (en) Optical measuring device
JP6650379B2 (en) Surface inspection device, surface inspection method and database
JP2016136563A (en) Overlay measurement apparatus and overlay measurement method
JP2016024067A (en) Measurement method and measurement device
JP2018091801A (en) Method and device for surface shape inspection
JP2016095243A (en) Measuring device, measuring method, and article manufacturing method
US20190113336A1 (en) Multi-Directional Triangulation Measuring System with Method
TW202016504A (en) Method of Detecting and Marking Defect
JP6507067B2 (en) Measuring method, measuring device and manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210511

R150 Certificate of patent or registration of utility model

Ref document number: 6884077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250