JP2000119780A - Shape memory alloy combined material and shape memory alloy spring - Google Patents

Shape memory alloy combined material and shape memory alloy spring

Info

Publication number
JP2000119780A
JP2000119780A JP10313995A JP31399598A JP2000119780A JP 2000119780 A JP2000119780 A JP 2000119780A JP 10313995 A JP10313995 A JP 10313995A JP 31399598 A JP31399598 A JP 31399598A JP 2000119780 A JP2000119780 A JP 2000119780A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
composite material
spring
combined material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10313995A
Other languages
Japanese (ja)
Inventor
Koichi Hino
耕一 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10313995A priority Critical patent/JP2000119780A/en
Publication of JP2000119780A publication Critical patent/JP2000119780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape memory alloy combined material producing shape memory effects at a plurality of temperatures and functioning by stages with the change in temperature and also to provide a shape memory alloy spring functioning using this shape memory alloy combined material. SOLUTION: The shape memory alloy combined material 1 is constituted by twisting together a plurality of shape memory alloy wires 2, 3 different from each other in phase transition temperature, particularly shape memory alloy wires composed essentially of Ni-Ti alloy having 49.0-52.0 atomic% Ni content. The shape memory ally spring is formed by using this shape memory alloy combined material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状記憶合金複合
体、およびこれを用いた形状記憶合金ばねに関する。
The present invention relates to a shape memory alloy composite and a shape memory alloy spring using the same.

【0002】[0002]

【従来の技術】ある種の合金は、熱弾性型マルテンサイ
ト変態の逆変態に付随して顕著な形状記憶効果を示す。
相変態による形状変化の効果が顕著にあらわれるコイル
ばねの形態として、多分野において応用されつつある。
Ti−Ni系合金は、形状記憶効果を示す合金の一つで
あることが知られている。Ti−Ni系合金において、
形状記憶効果を示す温度は、Niの組成に依存し、任意
に制御することができる。
BACKGROUND OF THE INVENTION Certain alloys exhibit a remarkable shape memory effect associated with the inverse of the thermoelastic martensitic transformation.
It is being applied in various fields as a form of a coil spring in which the effect of shape change due to phase transformation is remarkable.
It is known that a Ti-Ni-based alloy is one of the alloys having a shape memory effect. In a Ti-Ni-based alloy,
The temperature at which the shape memory effect is exhibited depends on the Ni composition and can be arbitrarily controlled.

【0003】形状記憶合金の利用形態の一つとして、温
度センサが挙げられる。環境の温度変化を、形状記憶合
金の相変態に転換し、形状の変化として検出する原理に
もとづく。
[0003] One of the uses of the shape memory alloy is a temperature sensor. It is based on the principle that a temperature change in the environment is converted into a phase transformation of a shape memory alloy and detected as a change in shape.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Ti−
Ni系において、相変態温度はTiおよびNiの組成に
依存して定まるために、1種類のみの組成からなるTi
−Ni系形状記憶合金を用いる場合は、一の温度におい
て形状記憶効果があらわれることは自明である。したが
って、1種類の組成のTi−Ni系形状記憶合金ばね
は、単一機能をなすにとどまる。
However, Ti-
In a Ni-based alloy, the phase transformation temperature is determined depending on the composition of Ti and Ni.
It is obvious that a shape memory effect appears at one temperature when using a Ni-based shape memory alloy. Therefore, a Ti-Ni-based shape memory alloy spring having one type of composition only performs a single function.

【0005】本発明は、複数の温度において、形状記憶
効果をあらわし、すなわち、温度の変化に伴って段階的
に動作する形状記憶合金複合材料、および、この形状記
憶合金複合材料を用いて機能する形状記憶合金ばねを提
供することを目的とする。
The present invention exhibits a shape memory effect at a plurality of temperatures, that is, a shape memory alloy composite material that operates stepwise with a change in temperature, and functions using the shape memory alloy composite material. An object of the present invention is to provide a shape memory alloy spring.

【0006】[0006]

【課題を解決するための手段】本発明は、相変態温度が
互いに異なる複数の形状記憶合金材料、とくに、Niの
組成が49.0at%ないし52.0at%を有するNi
−Ti系合金を主成分とする形状記憶合金線がより合わ
されて構成されている形状記憶合金複合材料である。
SUMMARY OF THE INVENTION The present invention relates to a plurality of shape memory alloy materials having different phase transformation temperatures, in particular, Ni having a Ni composition of 49.0 at% to 52.0 at%.
-A shape memory alloy composite material formed by twisting shape memory alloy wires mainly composed of a Ti-based alloy.

【0007】本発明において、形状記憶合金複合材料
は、線同士、管同士、あるいは線と管とがより合わされ
ていてもよい。
In the present invention, the shape memory alloy composite material may be formed by twisting the wires, the tubes, or the wires and the tubes.

【0008】本発明は、また、この形状記憶合金複合材
料を用いて形成されている形状記憶合金ばねである。
[0008] The present invention is also a shape memory alloy spring formed using the shape memory alloy composite material.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、本発明の実施の形態による形状記
憶合金複合材料を模式的に示す図である。図1におい
て、形状記憶合金複合材料1は、直径が0.5mm、組
成が50.0at%Ni−Tiで、40℃に相変態点を
有する形状記憶合金線2、および、直径が0.5mm、
組成が50.2at%Ni−Tiで、60℃に相変態点
を有する形状記憶合金線3をより合わせて作製される。
2種類の形状記憶合金線2,3からなるより線を、直径
0.8mmまで伸線加工をし、一体化することによって
形状記憶合金複合材料1が得られる。
FIG. 1 is a diagram schematically showing a shape memory alloy composite material according to an embodiment of the present invention. In FIG. 1, the shape memory alloy composite material 1 has a diameter of 0.5 mm, a composition of 50.0 at% Ni—Ti, a shape memory alloy wire 2 having a phase transformation point at 40 ° C., and a diameter of 0.5 mm. ,
It is manufactured by twisting shape memory alloy wires 3 having a composition of 50.2 at% Ni-Ti and having a phase transformation point at 60 ° C.
The shape memory alloy composite material 1 is obtained by drawing a wire consisting of two types of shape memory alloy wires 2 and 3 to a diameter of 0.8 mm and integrating them.

【0011】つぎに、本発明の他の実施の形態による形
状記憶合金ばね4について説明する。前記で得た、直径
0.8mmの線材をなす形状記憶合金複合材料1を用
い、中心径6mmの形状記憶合金ばね4に加工後、温度
500℃で30分間保持する熱処理を行った。図2は、
本発明の実施の形態による形状記憶合金ばね4を示す図
である。図3は、定ひずみ下の形状記憶合金ばねについ
て、温度と荷重の関係を測定した結果を示す図である。
Next, a shape memory alloy spring 4 according to another embodiment of the present invention will be described. Using the obtained shape memory alloy composite material 1 having a diameter of 0.8 mm as a wire rod, the shape memory alloy spring 4 having a center diameter of 6 mm was processed, and then heat treated at a temperature of 500 ° C. for 30 minutes. FIG.
It is a figure showing shape memory alloy spring 4 by an embodiment of the invention. FIG. 3 is a diagram showing the results of measuring the relationship between temperature and load for a shape memory alloy spring under constant strain.

【0012】図3から、形状記憶合金複合材料を構成す
る2種類の形状記憶合金線の各相変態温度に対応して、
形状記憶合金ばねは、40℃および60℃において、そ
れぞれ急峻な荷重変化が認められる。
FIG. 3 shows that the two types of shape memory alloy wires constituting the shape memory alloy composite material correspond to the respective phase transformation temperatures.
In the shape memory alloy spring, a steep load change is observed at 40 ° C. and 60 ° C., respectively.

【0013】前述の形状記憶合金複合体は、Ni−Ti系
合金を主成分とし、Niの組成が49.0at%〜52.
0at%の範囲で、互いに異なる2種類以上の組成の形
状記憶合金材料が複合して構成される。形状記憶合金と
して、Ti−Ni系合金を主成分とし、Niが49.0
at%〜52.0at%の範囲の組成が最も好ましい。
なお、第3元素を添加したTi−Ni系合金、熱処理に
よって変態温度が調整可能な他の形状記憶合金について
も、同様に本発明を適用することができる。
The above-mentioned shape memory alloy composite has a Ni-Ti alloy as a main component and a Ni composition of 49.0 at% to 52.0 at%.
Within the range of 0 at%, two or more different shape memory alloy materials having different compositions are combined. As a shape memory alloy, a Ti-Ni alloy is used as a main component, and Ni is 49.0%.
A composition in the range of at% to 52.0 at% is most preferred.
The present invention can be similarly applied to a Ti-Ni-based alloy to which a third element is added and other shape memory alloys whose transformation temperature can be adjusted by heat treatment.

【0014】管の形状記憶合金材料を含む形状記憶合金
複合材料も、前記と同様の手段によって得ることができ
る。
[0014] A shape memory alloy composite material including the shape memory alloy material of the tube can be obtained by the same means as described above.

【0015】複数の形状記憶合金線がより合わされ、一
体化された形状記憶合金複合材料を用いた形状記憶合金
ばねは、周りの温度変化を検出するために利用すること
ができる。他方、管の形状記憶合金材料を含む形状記憶
合金複合材料を用いた形状記憶合金ばねは、周りの温度
変化のみならず、管の内部を移動する流体の温度変化を
検出することも可能である。
A shape memory alloy spring using a shape memory alloy composite material in which a plurality of shape memory alloy wires are twisted and integrated can be used to detect a change in surrounding temperature. On the other hand, a shape memory alloy spring using a shape memory alloy composite material including a shape memory alloy material for a tube can detect not only a change in the surrounding temperature but also a change in the temperature of a fluid moving inside the tube. .

【0016】このように相変態温度が異なる2種類の形
状記憶合金線がより合わされ、一体化された形状記憶合
金複合材料を用いた形状記憶合金ばねは、互いに異なる
二温度で動作する、2段機能をもつアクチュエーターと
して利用することができる。3種類、あるいはそれ以上
の種類の形状記憶合金線をより合わせて構成した形状記
憶合金複合材料、および形状記憶合金ばねの作製もでき
る。多段機能のアクチュエーターの実現により、一層複
雑な機能を担わせることが可能となり、その応用の拡大
が期待される。
[0016] The shape memory alloy spring using the shape memory alloy composite material in which the two types of shape memory alloy wires having different phase transformation temperatures are twisted and integrated is operated at two different temperatures. It can be used as an actuator with functions. Shape memory alloy composite materials formed by twisting three or more types of shape memory alloy wires, and shape memory alloy springs can also be manufactured. The realization of an actuator having a multi-stage function enables more complex functions to be performed, and its application is expected to expand.

【0017】[0017]

【発明の効果】以上、説明したように、本発明によれ
ば、複数の温度において、形状記憶効果をあらわし、温
度の変化に伴なって段階的に動作する形状記憶合金複合
材料、およびこの形状記憶合金複合材料を用いて機能す
る形状記憶合金ばねを得ることができる。
As described above, according to the present invention, a shape memory alloy composite material exhibiting a shape memory effect at a plurality of temperatures and operating stepwise as the temperature changes, and the shape A shape memory alloy spring that functions using the memory alloy composite material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による形状記憶合金複合材
料を模式的に示す図。
FIG. 1 is a view schematically showing a shape memory alloy composite material according to an embodiment of the present invention.

【図2】本発明の実施の形態による形状記憶合金ばねを
示す図。
FIG. 2 is a view showing a shape memory alloy spring according to the embodiment of the present invention.

【図3】定ひずみ下の形状記憶合金ばねについて、温度
と荷重の関係を示す図。
FIG. 3 is a diagram showing the relationship between temperature and load for a shape memory alloy spring under constant strain.

【符号の説明】[Explanation of symbols]

1 形状記憶合金複合材料 2,3 形状記憶合金線 4 形状記憶合金ばね DESCRIPTION OF SYMBOLS 1 Shape memory alloy composite material 2, 3 Shape memory alloy wire 4 Shape memory alloy spring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 相変態温度が互いに異なる複数の形状記
憶合金材料がより合わされて構成されていることを特徴
とする形状記憶合金複合材料。
1. A shape memory alloy composite material comprising a plurality of shape memory alloy materials having mutually different phase transformation temperatures, which are combined.
【請求項2】 前記複数の形状記憶合金材料は、線、お
よび/または、管から構成されていることを特徴とする
請求項1に記載の形状記憶合金複合材料。
2. The shape memory alloy composite material according to claim 1, wherein the plurality of shape memory alloy materials are composed of wires and / or tubes.
【請求項3】 前記形状記憶合金複合材料は、Niの組
成が49.0at%ないし52.0at%を有するNi−
Ti系合金を主成分とすることを特徴とする請求項1ま
たは請求項2記載の形状記憶合金複合材料。
3. The shape-memory alloy composite material according to claim 1, wherein the Ni composition has a Ni composition of 49.0 at% to 52.0 at%.
3. The shape memory alloy composite material according to claim 1, wherein a Ti-based alloy is a main component.
【請求項4】 請求項1ないし請求項3のいずれかに記
載の形状記憶合金複合材料を用いて形成されていること
を特徴とする形状記憶合金ばね。
4. A shape memory alloy spring formed using the shape memory alloy composite material according to claim 1. Description:
JP10313995A 1998-10-15 1998-10-15 Shape memory alloy combined material and shape memory alloy spring Pending JP2000119780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313995A JP2000119780A (en) 1998-10-15 1998-10-15 Shape memory alloy combined material and shape memory alloy spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313995A JP2000119780A (en) 1998-10-15 1998-10-15 Shape memory alloy combined material and shape memory alloy spring

Publications (1)

Publication Number Publication Date
JP2000119780A true JP2000119780A (en) 2000-04-25

Family

ID=18047967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313995A Pending JP2000119780A (en) 1998-10-15 1998-10-15 Shape memory alloy combined material and shape memory alloy spring

Country Status (1)

Country Link
JP (1) JP2000119780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318207B1 (en) * 2010-05-13 2013-10-15 서울대학교산학협력단 Shape memory alloy double spring and shape memory alloy actuator having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318207B1 (en) * 2010-05-13 2013-10-15 서울대학교산학협력단 Shape memory alloy double spring and shape memory alloy actuator having the same

Similar Documents

Publication Publication Date Title
JP6596077B2 (en) Thermal actuator device
Hsieh et al. Martensitic transformation of quaternary Ti50. 5− XNi49. 5ZrX/2HfX/2 (X= 0–20 at.%) shape memory alloys
Pequegnat et al. Dynamic actuation of a novel laser-processed NiTi linear actuator
JP2000119780A (en) Shape memory alloy combined material and shape memory alloy spring
JP2000104134A (en) Shape memory alloy composite body and its production
Uchil et al. Dilatometric study of martensitic transformation in NiTiCu and NiTi shape memory alloys
JPH1038708A (en) Shape memory alloy actuator
JPH0676641B2 (en) Shape memory alloy
Shim et al. Effect of Nb addition on martensitic transformation behavior of AuTi-15Co based biomedical shape memory alloys
JPH059686A (en) Production of shape memory niti alloy
JPS59162262A (en) Production of spring having two-way shape memory effect
JPS62211339A (en) Ni-ti-cr shape memory alloy
Khovaylo et al. Structural and mechanical properties of melt spun ribbons of Fe43. 5Mn34Al15Ni7. 5 Heusler alloy
JPS6059054A (en) Thermal response element
JPH0645836B2 (en) TiPd type shape memory alloy
JPH06138264A (en) Actuator
JP2002105566A (en) Coil spring having shape memory effect and its production method
CIMPOEŞU et al. Thermo-elastic response of a NiTi SMA at compression solicitation
Langbein et al. Generation of smart structures on the basis of in situ configuration of shape memory alloys
Meisner et al. Shape memory effect in Ti sub 50 Ni sub 50-x Zr sub x alloys
JPS63196750A (en) Extensible material for garment
Degeratu et al. Practical aspects regarding the design of intelligent systems using the shape memory alloy spring
Furgiuele et al. Force-deflection characteristics of SMA-based Belleville springs
JPH09176765A (en) Shape memory alloy wire for clothing
JPH07124262A (en) Guide wire for catheter