JPH1038708A - Shape memory alloy actuator - Google Patents

Shape memory alloy actuator

Info

Publication number
JPH1038708A
JPH1038708A JP19893696A JP19893696A JPH1038708A JP H1038708 A JPH1038708 A JP H1038708A JP 19893696 A JP19893696 A JP 19893696A JP 19893696 A JP19893696 A JP 19893696A JP H1038708 A JPH1038708 A JP H1038708A
Authority
JP
Japan
Prior art keywords
spring
shape memory
memory alloy
alloy
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19893696A
Other languages
Japanese (ja)
Inventor
Tadashi Seto
正 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP19893696A priority Critical patent/JPH1038708A/en
Publication of JPH1038708A publication Critical patent/JPH1038708A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a shape memory alloy actuator in which the working temperature is widened while eliminating fluctuation in the working point due to temperature fluctuation by employing a shape memory alloy spring as one drive source and a parallel bias spring of a super resilient allay spring material and a resilient metal spring material as the other drive source. SOLUTION: A resilient alloy spring 12 is coupled in parallel with a super resilient alloy spring 13 to produce a bias spring 14. A shape memory allay spring 11 is composed of a Ti50Ni50 alloy and produced through ordinary hot working and cold working. A sample thereof is fixed at one end thereof and boded, at the other end thereof, to one end of the bias spring 14. The bias spring 14 is stretched and strain is applied to the shape memory alloy spring 11 and then the bias spring 14 is fixed at the other end thereof. Since a super resilient alloy element is employed in combination with a conventional spring material in the bias spring for recovering a shape memory alloy element, the working temperature can be set freely over a wide range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は形状記憶合金アクチ
ュエーターに関する。
The present invention relates to a shape memory alloy actuator.

【0002】[0002]

【従来の技術】近年形状記憶合金素子を用いたアクチュ
エーターが大変注目されており、熱エンジンやロボット
ハンドのアイデアから家屋用換気装置等の実用品にいた
るまで種々の提案がなされている。
2. Description of the Related Art In recent years, actuators using a shape memory alloy element have received a great deal of attention, and various proposals have been made from ideas of heat engines and robot hands to practical products such as ventilation equipment for houses.

【0003】形状記憶合金アクチュエーターの作動原理
は次の通りである。形状記憶合金は或る設定温度になる
とマルテンサイト変態の逆変態を起こし、予め記憶処理
された形状に回復する。つまり、形状記憶合金自体ある
いは形状記憶合金の環境温度が設定温度を超えた場合、
形状回復に伴い荷重差が生じて作動するというものであ
る。また、アクチュエーターを反復使用する場合には、
作動後の回復にバイアス回路が必要になる。
The operating principle of a shape memory alloy actuator is as follows. When a certain set temperature is reached, the shape memory alloy undergoes a reverse transformation of the martensitic transformation and recovers to a previously memorized shape. In other words, if the environmental temperature of the shape memory alloy itself or the shape memory alloy exceeds the set temperature,
It operates by generating a load difference with the shape recovery. If the actuator is used repeatedly,
A bias circuit is required for recovery after operation.

【0004】この形状記憶合金アクチュエーターの特徴
は、形状記憶合金素子そのものに温度センサー機能とア
クチュエーター機能の2つの機能を兼ね備えていること
により部品点数を減らすことが可能なので、アクチュエ
ーターを小型化できることにある。
A feature of the shape memory alloy actuator is that the shape memory alloy element itself has both a temperature sensor function and an actuator function, so that the number of parts can be reduced, so that the actuator can be downsized. .

【0005】しかしながらこの様な特徴を有しているの
にも拘らず実際に実用化されているものは少ないのが実
状である。
However, in spite of having such features, few of them are actually put to practical use.

【0006】[0006]

【発明が解決しようとする課題】上記のように実用化が
遅れているのには大きく分けて2つの理由がある。第1
の理由は、形状記憶合金は環境温度の変化によりわずか
にに応力値が変動し、それに伴って形状記憶合金素子の
長さが変動するのに対し、バイアスばねについてはこの
ような温度特性がないことにある。
There are two main reasons why the practical application is delayed as described above. First
The reason is that the shape memory alloy slightly fluctuates in stress value due to a change in environmental temperature, and the length of the shape memory alloy element fluctuates accordingly, whereas the bias spring does not have such temperature characteristics. It is in.

【0007】すなわち、形状記憶合金の温度変化による
変位がそのまま作動点の変位になるために、アクチュエ
ーターとしては誤作動の原因となる。
That is, since the displacement due to the temperature change of the shape memory alloy becomes the displacement of the operating point as it is, it causes a malfunction as an actuator.

【0008】第2の理由は、これまでに実用化された形
状記憶合金としてはTiNi系およびCu基合金が代表
的であるが、これらの合金の変態温度はTiNi系でマ
イナス100℃〜80℃であり、Cu基合金で10〜1
60℃の温度範囲に限られる上に、バイアス回路を設け
た場合には、バイアスを変化させる為に形状記憶合金の
発生力(荷重差)が費やされるため、実際に形状記憶合
金アクチュエーターが作動する温度範囲は狭まってくる
ことである。
[0008] The second reason is that TiNi-based and Cu-based alloys are typical of shape memory alloys that have been put into practical use so far, and the transformation temperature of these alloys is minus 100 ° C to 80 ° C for TiNi-based. And a Cu-based alloy of 10 to 1
In addition to the temperature range of 60 ° C., when a bias circuit is provided, the shape memory alloy actuator (actually operates the shape memory alloy actuator) because the generated force (load difference) of the shape memory alloy is consumed to change the bias. The temperature range is narrowing.

【0009】つまり、形状記憶合金をアクチュエーター
として使用するには或る限られた温度域に限定されてし
まう。
That is, the use of a shape memory alloy as an actuator is limited to a certain limited temperature range.

【0010】以上の2つの理由が、形状記憶合金を利用
したアクチュエーターの実用化を阻んでいる原因であ
る。本発明は、温度変化による作動点の変位がなく、使
用温度範囲の広い形状記憶合金アクチュエーターを提供
しようとするものである。
The above two reasons are factors preventing the practical use of an actuator using a shape memory alloy. An object of the present invention is to provide a shape memory alloy actuator having a wide operating temperature range without displacement of an operating point due to a temperature change.

【0011】[0011]

【課題を解決するための手段】本発明によれば、温度変
化によって可逆的動作を行う形状記憶合金アクチュエー
ターであって、駆動源の一方を形状記憶効果を持つ形状
記憶合金ばねで構成し、駆動源の他方を、超弾性効果を
もつ超弾性合金ばね材と使用温度範囲に応じて選択され
たばね力を持つ弾性金属ばね材の並列の組合せからなる
バイアスばねで構成することを特長とする形状記憶合金
アクチュエーターが得られる。
According to the present invention, there is provided a shape memory alloy actuator which performs a reversible operation according to a temperature change, wherein one of the driving sources is constituted by a shape memory alloy spring having a shape memory effect, and A shape memory characterized in that the other of the sources is constituted by a bias spring comprising a parallel combination of a superelastic alloy spring material having a superelastic effect and an elastic metal spring material having a spring force selected according to a use temperature range. An alloy actuator is obtained.

【0012】また本発明によれば、前記超弾性合金ばね
材がばね力の調整可能な超弾性合金ばね材であることを
特徴とする形状記憶合金アクチュエーターが得られる。
According to the present invention, there is provided a shape memory alloy actuator characterized in that the superelastic alloy spring material is a superelastic alloy spring material whose spring force is adjustable.

【0013】[0013]

【発明の実施の形態】図1に本発明の一実施の形態であ
る形状記憶合金アクチュエーターの構成を示す。図にお
いて11は形状記憶合金ばね、12は従来から使われて
いる弾性合金ばね、13はこの発明で特に用いた超弾性
合金ばねである。弾性合金ばね12と超弾性合金ばね1
3を並列に結合したものがバイアスばね14である。
FIG. 1 shows a configuration of a shape memory alloy actuator according to an embodiment of the present invention. In the figure, 11 is a shape memory alloy spring, 12 is a conventionally used elastic alloy spring, and 13 is a superelastic alloy spring particularly used in the present invention. Elastic alloy spring 12 and superelastic alloy spring 1
3 are connected in parallel to form a bias spring 14.

【0014】形状記憶合金ばね11はTi50Ni50
の合金で、通常の熱間加工、冷間加工により直径75μ
m 長さ50mmの線を作製した。この線を、所定の温度で
30分直線状に記憶処理し、サンプルを作製した。
The shape memory alloy spring 11 is made of Ti50Ni50
Alloy with a diameter of 75μ by normal hot working and cold working
m A line having a length of 50 mm was prepared. This line was linearly stored at a predetermined temperature for 30 minutes to prepare a sample.

【0015】このサンプルの一端を固定し、他端をバイ
アスばね14の一端と接合してバイアスばね14を引っ
張ることにより、形状記憶合金ばね11に1%の歪を与
えた状態でバイアスばね14の他端を固定する。超弾性
合金ばね13はTi49Ni51(φ40μm ,40m
m)で、これは形状記憶合金ばね11を1%歪ませるた
めに必要な応力値が、超弾性合金ばね13の歪量が約2
%から5%の範囲にて超弾性効果を示す応力値と一致さ
せたものである。
One end of the sample is fixed, the other end is joined to one end of the bias spring 14, and the bias spring 14 is pulled. Fix the other end. The superelastic alloy spring 13 is made of Ti49Ni51 (φ40 μm, 40 m
m), the stress value required for distorting the shape memory alloy spring 11 by 1% is approximately 2%.
% In the range of 5% to 5%.

【0016】図2は上記の各ばねの発生荷重を示してい
る。超弾性合金ばね13の発生荷重Aは温度の上昇に対
してほぼ直線的に上昇する。弾性合金ばね12が例えば
ステンレス製のばね材の場合、ばねの発生荷重Bは温度
に対して変化しない。この2つのばねの発生荷重を加え
たものがバイアスばね14の発生荷重Cを示すことにな
る。Dは形状記憶合金ばね11の発生荷重を示す。なお
形状記憶合金ばね11の変態温度は、マルテンサイト変
態開始温度Ms=33℃、終了温度Mf=14℃、逆変
態開始温度As=50℃、終了温度Af=70℃であ
る。
FIG. 2 shows the generated load of each of the above-mentioned springs. The generated load A of the superelastic alloy spring 13 increases almost linearly with an increase in temperature. When the elastic alloy spring 12 is, for example, a spring material made of stainless steel, the generated load B of the spring does not change with temperature. The sum of the generated loads of the two springs indicates the generated load C of the bias spring 14. D indicates the generated load of the shape memory alloy spring 11. The transformation temperature of the shape memory alloy spring 11 is martensite transformation start temperature Ms = 33 ° C., end temperature Mf = 14 ° C., reverse transformation start temperature As = 50 ° C., end temperature Af = 70 ° C.

【0017】そしてこのようにバイアスに従来のばね材
12と超弾性合金ばね13を複合させて用いることによ
り、バイアスばねとして従来のばね材を単独に用いたと
きの作動温度T1に対して、T2にまで移動することに
なる。すなわち製作条件や線径を変えてばねの力を変え
ることにより使用温度範囲を容易に広げることが出来
る。
By using the conventional spring material 12 and the superelastic alloy spring 13 in combination with the bias, the operating temperature T1 when the conventional spring material is used alone as the bias spring is reduced by T2. It will move up to. That is, the operating temperature range can be easily expanded by changing the spring force by changing the manufacturing conditions and the wire diameter.

【0018】なお形状記憶合金ばね11の発生荷重を変
えても作動温度を変えることが出来るもので、また従来
から実際に行われてきたものであるが、図1で形状記憶
合金ばね11の発生荷重を変えることにより線Dの角度
を変えても、T1から僅かしか変化しないので使用温度
範囲を広くとることが出来ず、従って温度範囲のことな
る多種の素子を作る必要が生じる。しかしこの多種化は
工業的には決して好ましいことではない。
The operating temperature can be changed even when the load generated by the shape memory alloy spring 11 is changed, and the operation has been conventionally performed. Even if the angle of the line D is changed by changing the load, the temperature does not change much from T1, so that the operating temperature range cannot be widened. Therefore, it is necessary to manufacture various elements having different temperature ranges. However, this diversification is not industrially favorable.

【0019】[0019]

【発明の効果】以上説明したように本発明によるアクチ
ュエーターにおいては、形状記憶合金素子の作動後にお
いて回復させるためのバイアスとして、超弾性合金素子
を従来のばね材と組合わせて使用することにより、作動
温度を広い範囲で任意に設定することの可能となった。
As described above, in the actuator according to the present invention, by using a superelastic alloy element in combination with a conventional spring material as a bias for recovering after the shape memory alloy element is operated, The operating temperature can be set arbitrarily in a wide range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】図1の構成例における作動温度と発生荷重の関
係を各ばね材について示す図。
FIG. 2 is a diagram showing a relationship between an operating temperature and a generated load in each configuration of the configuration example of FIG.

【符号の説明】[Explanation of symbols]

11 形状記憶合金ばね 12 従来のばね 13 超弾性合金ばね 14 バイアスばね A 超弾性合金ばね B 従来のばね C 従来のばね+超弾性合金ばね D 形状記憶合金ばね 11 Shape memory alloy spring 12 Conventional spring 13 Super elastic alloy spring 14 Bias spring A Super elastic alloy spring B Conventional spring C Conventional spring + super elastic alloy spring D Shape memory alloy spring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度変化によって可逆的動作を行う形状
記憶合金アクチュエーターであって、駆動源の一方を形
状記憶合金ばねで構成し、駆動源の他方を超弾性合金ば
ね材と弾性金属ばね材の並列の組合せからなるバイアス
ばねで構成していることを特徴とする形状記憶合金アク
チュエーター。
1. A shape memory alloy actuator performing a reversible operation according to a temperature change, wherein one of the drive sources is formed of a shape memory alloy spring, and the other of the drive sources is formed of a superelastic alloy spring material and an elastic metal spring material. A shape memory alloy actuator comprising a bias spring formed of a parallel combination.
【請求項2】 前記超弾性合金ばね材がばね力の調整可
能な超弾性合金ばね材であることを特徴とする形状記憶
合金アクチュエーター。
2. The shape memory alloy actuator according to claim 1, wherein said superelastic alloy spring material is a superelastic alloy spring material whose spring force is adjustable.
JP19893696A 1996-07-29 1996-07-29 Shape memory alloy actuator Withdrawn JPH1038708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19893696A JPH1038708A (en) 1996-07-29 1996-07-29 Shape memory alloy actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19893696A JPH1038708A (en) 1996-07-29 1996-07-29 Shape memory alloy actuator

Publications (1)

Publication Number Publication Date
JPH1038708A true JPH1038708A (en) 1998-02-13

Family

ID=16399440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19893696A Withdrawn JPH1038708A (en) 1996-07-29 1996-07-29 Shape memory alloy actuator

Country Status (1)

Country Link
JP (1) JPH1038708A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531407A (en) * 2007-06-27 2010-09-24 サエス ゲッターズ ソチエタ ペル アツィオニ Actuators with elements made of shape memory alloys over a wide operating temperature range
CN102037241A (en) * 2008-05-21 2011-04-27 柯尼卡美能达精密光学株式会社 Position control device, position control method, drive device and imaging device
JP5521553B2 (en) * 2008-01-29 2014-06-18 コニカミノルタ株式会社 Actuator mechanism
CN105804960A (en) * 2014-12-29 2016-07-27 北京有色金属研究总院 Preparation method of shape memory composite material driving mechanism
CN111749118A (en) * 2020-06-28 2020-10-09 东南大学 Prestressed SMA reinforced thin-wall UHPC I-beam and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531407A (en) * 2007-06-27 2010-09-24 サエス ゲッターズ ソチエタ ペル アツィオニ Actuators with elements made of shape memory alloys over a wide operating temperature range
US8443600B2 (en) 2007-06-27 2013-05-21 Saes Getters S.P.A. Actuator comprising elements made of shape memory alloy with broadened range of working temperatures
JP5521553B2 (en) * 2008-01-29 2014-06-18 コニカミノルタ株式会社 Actuator mechanism
CN102037241A (en) * 2008-05-21 2011-04-27 柯尼卡美能达精密光学株式会社 Position control device, position control method, drive device and imaging device
US8789765B2 (en) 2008-05-21 2014-07-29 Konica Minolta Opto, Inc. Position control device, position control method, drive device and imaging device
CN105804960A (en) * 2014-12-29 2016-07-27 北京有色金属研究总院 Preparation method of shape memory composite material driving mechanism
CN111749118A (en) * 2020-06-28 2020-10-09 东南大学 Prestressed SMA reinforced thin-wall UHPC I-beam and preparation method thereof

Similar Documents

Publication Publication Date Title
WO1995031945B1 (en) Improved tissue supporting devices
JP5523719B2 (en) High temperature shape memory alloy actuator
JPH0433862B2 (en)
JP6596077B2 (en) Thermal actuator device
JPH1038708A (en) Shape memory alloy actuator
US20020118090A1 (en) Shape memory alloy actuators activated by strain gradient variation during phase transformation
JP2019089306A (en) Shape memory composite
Stöckel Status and trends in shape memory technology
JPH02203225A (en) Temperature display device
JP3261629B2 (en) Actuator
JPS60166766A (en) Heat-sensitive actuator
JPS6153467A (en) Form memory actuating body
Huang et al. Simulation of novel microassembly using shape memory alloy
JPH031459A (en) Wiring connector using shape memory alloy
JP2000104134A (en) Shape memory alloy composite body and its production
JPH07150314A (en) Manufacture of coil spring having bidirectional shape memory effect
JPH06128709A (en) Thermomechanical treatment for shape memory alloy and shape memory alloy member
JP2000119780A (en) Shape memory alloy combined material and shape memory alloy spring
JPS59170246A (en) Production of titanium nickel alloy parts having reversible shape memory effect
JPS6214216B2 (en)
JPS6059054A (en) Thermal response element
JP2724815B2 (en) Shape memory alloy coil spring and method of manufacturing the same
JPS6146475A (en) Shape memory alloy device
JPH02116786A (en) Temperature sensor/actuator
JPH09109320A (en) Shape recovery device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007