JPH06138264A - Actuator - Google Patents

Actuator

Info

Publication number
JPH06138264A
JPH06138264A JP29102992A JP29102992A JPH06138264A JP H06138264 A JPH06138264 A JP H06138264A JP 29102992 A JP29102992 A JP 29102992A JP 29102992 A JP29102992 A JP 29102992A JP H06138264 A JPH06138264 A JP H06138264A
Authority
JP
Japan
Prior art keywords
shape memory
actuator
alloy
memory alloy
superelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29102992A
Other languages
Japanese (ja)
Other versions
JP3261629B2 (en
Inventor
Hiroshi Ishikawa
洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP29102992A priority Critical patent/JP3261629B2/en
Publication of JPH06138264A publication Critical patent/JPH06138264A/en
Application granted granted Critical
Publication of JP3261629B2 publication Critical patent/JP3261629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent fluctuation of an operating point by using a shape memory material with superelastic characteristics as the return spring of an actuator driven by the shape memory material. CONSTITUTION:An actuator comprises a shape memory alloy 1 and a superelastic material 2 both of which have one end secured and are joined together at the other ends in such a manner as to pull a weight 3 from each other. The shape memory alloy 1 is composed of Ti 50 and Ni 50 and is fabricated by hot and cold working so as to have a diameter of about 75mu and a length of about 50mm and by processing for 30 minutes. The superelastic material 2 is composed of Ti 49 and Ni 51 and about 40mu in diameter and about 40mm in length, having the stress value required for deflecting the alloy 1 by 10% and showing superelasticity in the range of about 2 to 5% of the amount of deflection, while matching with the stress values in the range where it shows superelasticity. When current is made to flow through the alloy 1, the alloy 1 is heated to provide a certain generative force and the spring action of the superelastic material 2 enables effective use of the generative force, so that the operating point of the actuator is seldom varied even with changes in ambient temperature and that the actuator exhibits stable characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアクチュエータに関す
る。
FIELD OF THE INVENTION This invention relates to actuators.

【0002】[0002]

【従来の技術】近年、形状記憶合金素子(以下、SMA
と呼ぶ)に電流を流して加熱することにより作動させ、
錘(荷重)を駆動させるアクチュエータは、最近様々な
分野から注目を集めている。例えば、自動車部品へこの
アクチュエータを適用させた場合には温度センサとして
の機能も兼ねているため、部品数を減らす意味でも大き
な効果が期待できることから多くの提案があるが、実際
に実用化されているものは極めて少ないのが実状であ
る。
2. Description of the Related Art In recent years, shape memory alloy elements (hereinafter referred to as SMA
It is activated by applying an electric current to
Actuators for driving weights have recently attracted attention from various fields. For example, when this actuator is applied to automobile parts, it also functions as a temperature sensor, so there are many proposals from which large effects can be expected in the sense of reducing the number of parts. The reality is that very few are present.

【0003】SMAを用いたアクチュエータの作動原理
を説明する。使用温度が室温付近とすると、SMAに対
して電流を流して加熱させる際、逆変態点開始温度As
点近傍までは作動せず、それ以上の温度から逆変態点終
了温度Afまでの範囲において大きな応力差(SMAへ
の通電の前後に発生する応力差、言い換えれば、荷重
差)が生じることによって作動する。
The operating principle of an actuator using SMA will be described. When the operating temperature is near room temperature, the reverse transformation point start temperature As when heating the SMA by passing an electric current through it
It does not operate up to the vicinity of the point, but operates due to a large stress difference (stress difference generated before and after energization of SMA, in other words, load difference) in the range from that temperature to the reverse transformation point end temperature Af. To do.

【0004】また、一般にアクチュエータ作動後、元の
位置に回復させるためのバイアスバネとしてステンレス
バネを用いている。
Further, generally, a stainless spring is used as a bias spring for recovering the original position after the actuator is operated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ステン
レスバネは温度の変化によってその寸法及び形状がほと
んど変化しないものを使用する場合、SMAを実際に作
動させた時に利用できる発生力(加熱方法が通電による
場合においては通電前後の応力差又は荷重差)というも
のは、ステンレスバネを変形させるためにも使われてし
まうので、錘を駆動するための発生力はかなり小さくな
ってしまうという欠点がある。
However, when a stainless spring whose size and shape hardly change due to temperature change is used, the generated force that can be used when the SMA is actually operated (heating method depends on energization). In some cases, the stress difference or load difference before and after energization is also used for deforming the stainless spring, so that there is a drawback in that the generated force for driving the weight becomes considerably small.

【0006】しかも、SMAは環境温度の変化により応
力値が変動し、それに伴ってSMAの長さが変動する。
一方、ステンレスバネはこのような温度特性がないた
め、SMAの温度による変位変化が、そのまま作動点
(作動位置であり接合部分)の変動を招いて、誤動作の
原因になるという欠点がある。
In addition, the stress value of SMA fluctuates due to the change of environmental temperature, and the length of SMA fluctuates accordingly.
On the other hand, since the stainless steel spring does not have such temperature characteristics, there is a drawback that a change in displacement due to the temperature of the SMA directly causes a change in the operating point (the operating position and the joint portion), which causes a malfunction.

【0007】そこで、本発明の技術的課題は、錘を駆動
するための発生力を有効に利用でき、環境温度が変化し
ても、作動点の変動のほとんどないアクチュエータを得
ることである。
Therefore, a technical object of the present invention is to obtain an actuator in which the generated force for driving the weight can be effectively utilized and the operating point hardly changes even when the environmental temperature changes.

【0008】[0008]

【課題を解決するための手段】本発明によれば、温度変
化で形状の変化する形状記憶合金よりなる部材を、被駆
動部を変位させる駆動源とし、該駆動源を復旧させるた
めのバネを備えたアクチュエータにおいて、前記バネと
して、超弾性特性を有する形状記憶材を用いたことを特
徴とするアクチュエータが得られる。
According to the present invention, a member made of a shape memory alloy whose shape changes with temperature changes is used as a drive source for displacing a driven part, and a spring for restoring the drive source is used. In the actuator provided, an actuator characterized in that a shape memory material having superelasticity is used as the spring is obtained.

【0009】このアクチュエータにおいて、前記部材は
それ自身に電流が流されることにより自ら発熱し形状記
憶効果を示す形状記憶合金であることを特徴とするアク
チュエータが得られる。
In this actuator, an actuator is obtained, characterized in that the member is a shape memory alloy which itself generates heat when an electric current is applied to the member and exhibits a shape memory effect.

【0010】[0010]

【実施例】以下、本発明の一実施例によるアクチュエー
タを図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An actuator according to an embodiment of the present invention will be described below with reference to the drawings.

【0011】図1を参照して、本発明の一実施例による
アクチュエータは、一端が夫々固定され、他端が夫々錘
(荷重)3を取り合うように接合する形状記憶合金材1
と超弾性材2とから成る。
With reference to FIG. 1, an actuator according to an embodiment of the present invention has a shape memory alloy material 1 in which one end is fixed and the other end is joined so as to hold a weight (load) 3 respectively.
And a super elastic material 2.

【0012】形状記憶合金材1はTi50Ni50の合
金で、通常の熱間加工、冷却加工によりφ75μ×50
mmの線状で30分処理して作製する。
The shape memory alloy material 1 is an alloy of Ti50Ni50, and is φ75 μ × 50 by ordinary hot working and cooling working.
It is manufactured by treating the wire with a linear shape of mm for 30 minutes.

【0013】一方、超弾性材2は、Ti49Ni51
(φ40μ×40mm)で、形状記憶合金材1を1%歪
せるために必要な応力値(荷重値)を備えると共に、歪
量約2%から5%の範囲で超弾性を示すもので、その超
弾性を示す状態の範囲の応力値と一致させたものであ
る。
On the other hand, the super elastic material 2 is made of Ti49Ni51.
(Φ40 μ × 40 mm), which has a stress value (load value) necessary for straining the shape memory alloy material 1 by 1% and exhibits superelasticity in a strain amount range of about 2% to 5%. It is made to match the stress value in the range of the state showing superelasticity.

【0014】形状記憶合金材1に電流を流すと形状記憶
合金材1自身に熱が発生し、形状記憶合金材1にある一
定の発生力(80g)が得られる。このときに流す電流
値を従来例のステンレスバネのものと比較して表1に示
す。ステンレスバネはばね定数が10g重/mmで温度
変化してもほとんど変化しないので、上述の接合部の位
置は、使用温度範囲においてほとんど変化しない。
When an electric current is passed through the shape memory alloy material 1, heat is generated in the shape memory alloy material 1 itself, and a certain generated force (80 g) in the shape memory alloy material 1 is obtained. The value of the electric current passed at this time is shown in Table 1 in comparison with that of the conventional stainless spring. Since the stainless steel spring has a spring constant of 10 gf / mm and hardly changes even when the temperature changes, the position of the above-mentioned joint hardly changes in the operating temperature range.

【0015】[0015]

【表1】 [Table 1]

【0016】本発明の実施例によるアクチュエータを0
℃から50℃まで変化させたときの作動点の位置の変化
についても25℃の時の位置を基準ポイントとして実験
した。形状記憶合金材1は、変態点が、オーステナイト
状態からマルテンサイト状態への転移が開始する温度M
s点=33℃、この転移が終わる温度Mf点=14℃、
マルテンサイト状態からオーステナイト状態への転移で
ある逆変態が開始する温度As点=50℃、この転移が
終わるAf点=70℃のものを使用した。
The actuator according to the embodiment of the present invention is
The change in the position of the operating point when the temperature was changed from 50 ° C to 50 ° C was also tested with the position at 25 ° C as the reference point. The shape memory alloy material 1 has a transformation point at a temperature M at which the transformation from the austenite state to the martensite state starts.
s point = 33 ° C., temperature at which this transition ends Mf point = 14 ° C.,
A temperature at which the reverse transformation, which is a transformation from the martensite state to the austenite state, starts at As point = 50 ° C. and Af point at which this transformation ends = 70 ° C. was used.

【0017】下記表2にその結果を示す。+は中立点が
形状記憶合金材1側にシフトしたことを示し、−はその
反対にシフトしたことを示す。
The results are shown in Table 2 below. "+" Indicates that the neutral point has shifted to the shape memory alloy material 1 side, and "-" indicates that it has shifted to the opposite side.

【0018】[0018]

【表2】 [Table 2]

【0019】本発明の実施例と比較例のステンレスバネ
とを比較すると、明らかに作動点(作動させる原点位
置)については、ステンレスバネは著しく変化している
にもかかわらず、本発明の実施例によるアクチュエータ
ではほとんど変化しておらず環境温度が変化しても、非
常に安定していることが分かる。
Comparing the embodiment of the present invention with the stainless steel of the comparative example, it is apparent that the working point (origin position for actuation) of the present invention is remarkably changed in spite of the fact that the embodiment of the present invention is changed. It can be seen that the actuator according to (1) hardly changes and is very stable even if the environmental temperature changes.

【0020】[0020]

【発明の効果】本発明によれば、作動後の元の位置に回
復させるためのバイアスバネとして超弾性材を用いたこ
とにより、錘を駆動するための発生力を有効に利用で
き、環境温度が変化しても、作動点の変動がほとんどな
い、常に一定の荷重及び変位特性を有する安定した特性
を示すという効果がある。
According to the present invention, by using a super elastic material as a bias spring for recovering the original position after the operation, the generated force for driving the weight can be effectively utilized, and the ambient temperature can be effectively used. Has the effect of exhibiting stable characteristics with almost constant load and displacement characteristics, with almost no change in the operating point.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるアクチュエータの原理
図である。
FIG. 1 is a principle diagram of an actuator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 形状記憶合金材 2 超弾性材 3 錘(荷重) 1 Shape memory alloy material 2 Super elastic material 3 Weight (load)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度変化で形状の変化する形状記憶合金
よりなる部材を、被駆動部を変位させる駆動源とし、該
駆動源を復旧させるためのバネを備えたアクチュエータ
において、前記バネとして、超弾性特性を有する形状記
憶材を用いたことを特徴とするアクチュエータ。
1. An actuator comprising a member made of a shape memory alloy, the shape of which changes with temperature change, as a drive source for displacing a driven part, and a spring for restoring the drive source, wherein the spring is An actuator characterized by using a shape memory material having elastic characteristics.
【請求項2】 請求項1に記載のアクチュエータにおい
て、前記部材はそれ自身に電流が流されることにより自
ら発熱し形状記憶効果を示す形状記憶合金であることを
特徴とするアクチュエータ。
2. The actuator according to claim 1, wherein the member is a shape memory alloy exhibiting a shape memory effect by itself generating heat when an electric current is applied to the member.
JP29102992A 1992-10-29 1992-10-29 Actuator Expired - Fee Related JP3261629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29102992A JP3261629B2 (en) 1992-10-29 1992-10-29 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29102992A JP3261629B2 (en) 1992-10-29 1992-10-29 Actuator

Publications (2)

Publication Number Publication Date
JPH06138264A true JPH06138264A (en) 1994-05-20
JP3261629B2 JP3261629B2 (en) 2002-03-04

Family

ID=17763529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29102992A Expired - Fee Related JP3261629B2 (en) 1992-10-29 1992-10-29 Actuator

Country Status (1)

Country Link
JP (1) JP3261629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145457A1 (en) * 2010-05-17 2011-11-24 国立大学法人東京農工大学 Actuator
JP2014098552A (en) * 2012-02-06 2014-05-29 Daikin Ind Ltd Cooling/heating module and air conditioner
CN113559333A (en) * 2021-06-07 2021-10-29 中国科学院金属研究所 Medical nickel-titanium alloy with high anticoagulation function without surface treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145457A1 (en) * 2010-05-17 2011-11-24 国立大学法人東京農工大学 Actuator
US9016057B2 (en) 2010-05-17 2015-04-28 Tokyo University Of Agricultural And Technology Actuator
JP2014098552A (en) * 2012-02-06 2014-05-29 Daikin Ind Ltd Cooling/heating module and air conditioner
CN113559333A (en) * 2021-06-07 2021-10-29 中国科学院金属研究所 Medical nickel-titanium alloy with high anticoagulation function without surface treatment
CN113559333B (en) * 2021-06-07 2022-11-08 中国科学院金属研究所 Medical nickel-titanium alloy with high anticoagulation function without surface treatment

Also Published As

Publication number Publication date
JP3261629B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
Stöckel The shape memory effect-phenomenon, alloys and applications
US9664182B2 (en) Shape memory alloy actuating element with improved fatigue resistance
JPH02142627A (en) Instrument for composite joint
JPS61192921A (en) Deflection pivot device and manufacture thereof
US20020118090A1 (en) Shape memory alloy actuators activated by strain gradient variation during phase transformation
CN106715899B (en) Heat-sensitive actuator device
JPH06138264A (en) Actuator
US6371463B1 (en) Constant-force pseudoelastic springs and applications thereof
Stoeckel et al. Use of Ni-Ti shape memory alloys for thermal sensor-actuators
US6664702B2 (en) Pseudoelastic springs with concentrated deformations and applications thereof
JPH1038708A (en) Shape memory alloy actuator
JP2019089306A (en) Shape memory composite
Stoeckel et al. Actuation and control with shape memory alloys
JPS6153467A (en) Form memory actuating body
JP3033583B2 (en) Temperature sensor and actuator
JPH07167036A (en) Actuator
Jee et al. New method for improving properties of SMA coil springs
US20220287387A1 (en) Garment Pump
JPS60166766A (en) Heat-sensitive actuator
US20040201444A1 (en) Shape memory alloy actuators activated by strain gradient variation during phase transformation
JPH04370374A (en) Actuator
JP2000088982A (en) Actuator
JPH0532495Y2 (en)
Song et al. Robust tracking control of a shape memory alloy wire actuator
JPH02241990A (en) Shape memory alloy actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011121

LAPS Cancellation because of no payment of annual fees