JPH0645836B2 - TiPd type shape memory alloy - Google Patents

TiPd type shape memory alloy

Info

Publication number
JPH0645836B2
JPH0645836B2 JP2051663A JP5166390A JPH0645836B2 JP H0645836 B2 JPH0645836 B2 JP H0645836B2 JP 2051663 A JP2051663 A JP 2051663A JP 5166390 A JP5166390 A JP 5166390A JP H0645836 B2 JPH0645836 B2 JP H0645836B2
Authority
JP
Japan
Prior art keywords
tipd
shape memory
alloy
temperature
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2051663A
Other languages
Japanese (ja)
Other versions
JPH03253529A (en
Inventor
和幸 江南
清 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2051663A priority Critical patent/JPH0645836B2/en
Publication of JPH03253529A publication Critical patent/JPH03253529A/en
Publication of JPH0645836B2 publication Critical patent/JPH0645836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温作動機能を有するTiPd系形状記憶合金
において、原子量の大きいTa,WでPdの一部を置換
した安価な形状記憶合金に関するものである。
TECHNICAL FIELD The present invention relates to a TiPd-based shape memory alloy having a high temperature operation function, which is an inexpensive shape memory alloy in which a part of Pd is replaced by Ta and W having a large atomic weight. Is.

[従来の技術] 等原子比近傍のTiNi合金が熱弾性型マルテンサイト
変態の逆変態に付随して顕著な形状記憶効果を示すこと
はよく知られている。最近では、その応用分野も拡が
り、アクチュエータ,温度センサー,アーチワイヤー,
ブラジャー等多岐の分野において実用化されている。
[Prior Art] It is well known that TiNi alloys in the vicinity of an equiatomic ratio show a remarkable shape memory effect accompanying the reverse transformation of the thermoelastic martensitic transformation. Recently, the fields of application have expanded to include actuators, temperature sensors, arch wires,
It has been put to practical use in various fields such as brassieres.

形状記憶効果を示す合金は、TiNi合金、TiNiX
合金(X=CU,Cr,Fe,Al,V,Co…)およ
びCu−Zn−Al等のCU基合金,Au−Cd合金,
Ag−Cd合金等数十種に及んでいる。その中で、実用
合金として供しているのは、TiNi合金と一部TiN
iX合金のみである。しかし,これらの合金の形状回復
温度は繰り返しを考慮しない用途においても100℃が
最大であり,繰り返しの必要な可逆的な使用では70℃
が限界である。
Alloys showing shape memory effect are TiNi alloy, TiNiX
Alloys (X = CU, Cr, Fe, Al, V, Co ...) and CU-based alloys such as Cu—Zn—Al, Au—Cd alloys,
It reaches dozens of types such as Ag-Cd alloys. Among them, TiNi alloy and some TiN are offered as practical alloys.
iX alloy only. However, the maximum shape recovery temperature of these alloys is 100 ° C even in applications that do not consider repetition, and 70 ° C for reversible use that requires repetition.
Is the limit.

この形状回復温度を高める手段として,Ti−Pd合金
を素子として用いることが研究されている。TiPd合
金およびTiPd合金のPdの一部をFe,Cu,C
o,Niで置換したTiPdX合金が500℃程度の温
度で作動することはオランダより出願された特開昭46
−1502号公報に示されている。また,最近の研究
で,形状記憶素子として重要なPd量と形状回復温度の
関係および機械的性質について明らかにされつつある。
(ISIJinternational vol29.(1989)No.5)。
Using Ti—Pd alloy as an element has been studied as a means for increasing the shape recovery temperature. A part of Pd of TiPd alloy and TiPd alloy is Fe, Cu, C
It has been filed by the Netherlands that the TiPdX alloy substituted with o and Ni operates at a temperature of about 500 ° C.
-1502. In addition, recent studies have revealed the relationship between the amount of Pd and the shape recovery temperature, which are important for shape memory elements, and the mechanical properties.
(ISIJ international vol29. (1989) No.5).

[発明が解決しようとする課題] しかしながら、高温作動素子として有望視されているT
iPd合金はほぼ等原子近傍のためPdの重量パーセン
トは約70パーセントとなり,貴金属のPd使用量が多
いことで素子の原料費が極めて高く,実用上の障害とな
っている。
[Problems to be Solved by the Invention] However, T which is regarded as a promising high temperature actuating element
Since the iPd alloy is almost equiatomic, the weight percentage of Pd is about 70%, and the large amount of Pd used as a noble metal causes a very high raw material cost of the device, which is a practical obstacle.

また、200℃前後の作動素子を得るために,V,C
r,Fe,Co,若しくはCuでPdを置換しても,そ
の量はせいぜい25%が限界であり,原料コストがやは
り問題となる。
Moreover, in order to obtain an operating element at around 200 ° C., V, C
Even if Pd is replaced with r, Fe, Co, or Cu, the amount thereof is limited to 25% at most, and the raw material cost is still a problem.

そこで,本発明の技術的課題は上記欠点に鑑み,TiP
d系合金の持つ高温作動機能を実質的に保ち,且つ,実
用的なコストとすることができる新規の形状記憶合金を
提供することにある。
Therefore, in view of the above-mentioned drawbacks, the technical problem of the present invention is TiP.
It is an object of the present invention to provide a novel shape memory alloy that can substantially maintain the high temperature operation function of a d-based alloy and can be at a practical cost.

[課題を解決するための手段] 本発明によれば,45.0〜51.0[at%]のP
d,及び残部Tiから成るTiPd合金に対し,Pdの
一部をW,Taのうちの少なくとも一種で1.0〜2
5.0[at%]置換したTiPd系形状記憶合金が得
られる。
[Means for Solving the Problems] According to the present invention, P of 45.0 to 51.0 [at%] is used.
For a TiPd alloy consisting of d and the balance Ti, a part of Pd is at least one of W and Ta and is 1.0 to 2
A TiPd-based shape memory alloy with 5.0 [at%] substitution is obtained.

又,本発明によれば,45.0〜51.0[at%]の
Pd,及び残部Tiから成るTiPd合金におけるPd
の一部をX元素{但し,Xは0.01〜10[at%]
のV,0.01〜10[at%]のCr,0.01〜1
2[at%]のMn,0.01〜3.7[at%]のN
i,0.01〜16[at%]のFe,0.01〜20
[at%]のCo,0.01〜25.5[at%]のC
uのうちの少なくとも一種とする}で置換したTiPd
X合金に対し,Pdの残部をW,Taのうちの少なくと
も一種で1.0〜25.0[at%]置換したTiPd
系形状記憶合金が得られる。
Further, according to the present invention, Pd in the TiPd alloy consisting of 45.0 to 51.0 [at%] and the balance Ti is Pd.
Part of X element (where X is 0.01 to 10 [at%])
V, 0.01-10 [at%] Cr, 0.01-1
2 [at%] Mn, 0.01 to 3.7 [at%] N
i, 0.01 to 16 [at%] Fe, 0.01 to 20
[At%] of Co, 0.01 to 25.5 [at%] of C
TiPd substituted with at least one of u}
TiPd obtained by substituting the balance of Pd with at least one of W and Ta for the alloy X by 1.0 to 25.0 [at%].
A system shape memory alloy is obtained.

[実施例] 以下,本発明の実施例につき説明する。最初に,本発明
の一実施例に係るTiPd系形状記憶合金の概要を簡単
に説明する。
[Examples] Examples of the present invention will be described below. First, an outline of a TiPd-based shape memory alloy according to an embodiment of the present invention will be briefly described.

このTiPd系形状記憶合金は,45.0〜51.0
[at%(原子%)]のPd,及び残部Tiから成るT
iPd合金に対し,Pdの一部をW,Taのうちの少な
くとも一種で1.0〜25.0[at%]置換して得ら
れる。
This TiPd-based shape memory alloy is 45.0-51.0.
[At% (atomic%)] Pd and the balance T consisting of Ti
It is obtained by substituting 1.0 to 25.0 [at%] of at least one of W and Ta for Pd with respect to the iPd alloy.

そこで,以下はこのTiPd系形状記憶合金の製造工程
を説明する。
Therefore, the manufacturing process of this TiPd-based shape memory alloy will be described below.

表−1に示す合金をアルゴンアーク炉により溶解し,約
1000℃の温度で熱間加工して,約1.0mm厚の短冊状試料
とした。
The alloys shown in Table-1 were melted in an argon arc furnace and
Hot working was performed at a temperature of 1000 ° C to obtain strip-shaped samples with a thickness of approximately 1.0 mm.

これらの試料はそれぞれ,1000℃×1.0hrの溶体化処理
后,変態温度測定および形状記憶性チェックが行われ
た。
Each of these samples was subjected to solution treatment at 1000 ° C for 1.0 hr, and then the transformation temperature was measured and shape memory was checked.

変態温度は4端子法による電気抵抗測定によって求めら
れ,形状記憶性チェックは,室温(20℃)で各々の
試験片をU字型に変形し,電気抵抗測定によって求めら
れた,逆変態終了温度以上の温度に加熱した時の形状の
回復性を見ることによって行われた。
The transformation temperature is determined by measuring the electrical resistance by the four-terminal method, and the shape memory check is performed by transforming each test piece into a U shape at room temperature (20 ° C) and measuring the electrical resistance. This was done by observing the shape recoverability when heated to the above temperature.

マルテンサイト変態開始温度(Ms温度)とTi50Pd50-x
Xxの式で表わすWおよびTa添加量の関係を第1図に示
したが,第3元素添加量と伴にMs温度はほぼ直線的に
低下する。しかし,その傾向はFe,Cr等の場合に比
べ小さい。これまでの研究でFeを10at%添加した合
金では,Ms温度は約150℃,Cr10at%添加の場
合には約0℃となることが知られているが,本発明によ
るWおよびTaの添加合金ではMs温度はそれぞれ10
at%添加で約475℃,460℃を示している。また,
原子量で見るとWおよびTaは3d遷移金属近傍のもの
に比べ約3倍大きく,本発明の目的の一つであるPd添
加重量の低減の効果は3d遷移金属近傍のものに比べ3
倍大きいことが云える。
Martensite transformation start temperature (Ms temperature) and Ti 50 Pd 50-x
The relationship between W and the amount of Ta added represented by the formula of X x is shown in FIG. 1, and the Ms temperature decreases almost linearly with the amount of the third element added. However, the tendency is smaller than that of Fe, Cr, etc. It has been known from previous studies that the alloy containing 10 at% of Fe has an Ms temperature of about 150 ° C. and the alloy containing 10 at% of Cr has an Ms temperature of about 0 ° C. However, alloys containing W and Ta according to the present invention are known. Then, the Ms temperature is 10 each
It shows about 475 ° C. and 460 ° C. with addition of at%. Also,
In terms of atomic weight, W and Ta are about three times larger than those in the vicinity of 3d transition metal, and the effect of reducing the weight of Pd added, which is one of the objects of the present invention, is 3 times that in the vicinity of 3d transition metal.
It can be said that it is twice as large.

形状記憶特性について調べた結果を表−1に示している
が,本発明の請求にかかる合金はいづれも、ほぼ完全な
形状記憶特性を示した。試験片作製に係る1000℃での熱
間加工性について調べた結果を表−1に併せて示してい
るが,WおよびTaの添加量はいづれも25%を越える
と難しくなる。また,PdについてもTi50Pd50の等原子
比を離れるにつれ難しくなる傾向を示す。
The results of examining the shape memory characteristics are shown in Table 1. The alloys according to the claims of the present invention showed almost perfect shape memory characteristics. Table 1 also shows the results of an examination of the hot workability at 1000 ° C. for the production of the test piece. However, it becomes difficult if the added amounts of W and Ta exceed 25%. Moreover, Pd also tends to become difficult as the equiatomic ratio of Ti 50 Pd 50 is increased.

これらのことにより,本発明が第3元素で置換する基本
TiPd合金のPd量を45.0〜51at%としたのは,4
5at%未満ではPd量を減らす効果はあるものの加工性
および形状記憶性に難点があり,51at%を越えると,
加工性を悪くするので,差したる効果は認められないこ
とによっている。またWおよびTaの置換量を1.0〜2
5at%としたのは,いづれも1at%未満では置換効果が
認められない。また25at%を越えると,置換の効果は
顕著に認められるものの,加工性,記憶性を悪くする傾
向を示すためである。
According to the above, the reason why the present invention sets the Pd amount of the basic TiPd alloy substituted with the third element to be 45.0 to 51 at% is
If it is less than 5 at%, there is an effect of reducing the amount of Pd, but there is a problem in workability and shape memory. If it exceeds 51 at%,
This is because the workability is deteriorated, so no difference effect is observed. Also, the substitution amount of W and Ta is 1.0 to 2
The reason why 5 at% is set is that the substitution effect is not recognized when the content is less than 1 at%. On the other hand, when it exceeds 25 at%, the effect of substitution is noticeable, but the workability and memory tend to deteriorate.

上述した実施例では,Pdの使用量低下の効果をW及び
Taに求めて置換し,その置換最大量を25.0at%と
して加工性,記憶性を保持できることを説明したが,そ
の置換処理の事前に予め3d遷移元素近傍のX元素(但
し,XはV,Cr,Mn,Ni,Fe,Co,Cuのう
ちの少なくとも一種とする)を変態温度点コントロール
要因として置換させておくこともできる。
In the above-described embodiment, it was explained that the effect of reducing the amount of Pd used could be obtained by replacing W and Ta, and the maximum amount of replacement could be set to 25.0 at% to maintain workability and memorability. It is also possible to previously substitute the X element near the 3d transition element (provided that X is at least one of V, Cr, Mn, Ni, Fe, Co, and Cu) as a transformation temperature point control factor. .

そこで,次に他の実施例に係るTiPd系形状記憶合金
の概要を簡単に説明する。
Therefore, the outline of the TiPd-based shape memory alloy according to another embodiment will be briefly described below.

このTiPd系形状記憶合金は,45.0〜51.0
[at%]のPd,及び残部Tiから成るTiPd合金
におけるPdの一部を上述したX元素{但し,Xは0.
01〜10[at%]のV,0.01〜10[at%]
のCr,0.01〜12[at%]のMn,0.01〜
3.7[at%]のNi,0.01〜16[at%]の
Fe,0.01〜20[at%]のCo,0.01〜2
5.5[at%]のCuのうちの少なくとも一種とす
る}で置換したTiPdX合金に対し,Pdの残部を
W,Taのうちの少なくとも一種で1.0〜25.0
[at%]置換して得られる。
This TiPd-based shape memory alloy is 45.0-51.0.
[At%] Pd, and a part of Pd in the TiPd alloy composed of the balance Ti described above is the X element {however, X is 0.
V of 01 to 10 [at%], 0.01 to 10 [at%]
Cr, 0.01-12 [at%] Mn, 0.01-
3.7 [at%] Ni, 0.01 to 16 [at%] Fe, 0.01 to 20 [at%] Co, 0.01 to 2
5.5 [at%] of at least one of Cu} for the TiPdX alloy substituted with at least one of W and Ta for the remainder of Pd 1.0 to 25.0
[At%] is obtained by substitution.

第2図は,このTiPd系形状記憶合金に係るTi50Pd
50-xXx合金におけるX元素の添加量x[at%]と形状
回復温度[℃]との関係を示したものである。
Figure 2 shows Ti 50 Pd related to this TiPd type shape memory alloy.
It shows the relationship between the added amount x [at%] of the X element in the 50-x X x alloy and the shape recovery temperature [° C].

第2図からは、X元素として用いるV,Cr,Mn,N
i,Fe,Co,Cuの置換量は,それぞれVに関して
は0.01〜10[at%],Crに関しては0.01
〜10[at%],Mnに関しては0.01/12[a
t%],Niに関しては0.01〜3.7[at%]、
Feに関しては0.1〜16[at%],Coに関して
は0.01〜20[at%],Cuに関しては0.01
〜25.5[at%]の範囲とすれば,TiPd系形状
記憶合金素材として適当なTiPdX合金となることが
判る。
From FIG. 2, V, Cr, Mn, N used as the X element
The substitution amounts of i, Fe, Co, and Cu are 0.01 to 10 [at%] for V and 0.01 for Cr, respectively.
-10 [at%], and Mn 0.01 / 12 [a]
t%], 0.01 to 3.7 [at%] for Ni,
0.1 to 16 [at%] for Fe, 0.01 to 20 [at%] for Co, and 0.01 for Cu.
It can be seen that a TiPdX alloy suitable as a TiPd-based shape memory alloy material can be obtained within a range of ˜25.5 [at%].

第3図は,このTiPd系形状記憶合金をW,Ta添加
量[at%]とマルテンサイト逆変態終了温度Af
[℃]との関係で示したものである。
FIG. 3 shows that the TiPd-based shape memory alloy was added with W and Ta [at%] and the martensite reverse transformation end temperature Af.
It is shown in relation to [° C].

第3図からは,X元素を添加すると変態温度点を顕著に
コントロールできることが判る。例えば,X元素がNi
の場合には1[at%]当たりで約16℃、Crであれ
ば1[at%]当たりで約30[℃]変態温度点を低下
させることができる。
From FIG. 3, it can be seen that the transformation temperature point can be remarkably controlled by adding X element. For example, if the X element is Ni
In this case, the transformation temperature point can be lowered by about 16 ° C. per 1 [at%], and by Cr, the transformation temperature point can be lowered by about 30 [° C.] per 1 [at%].

因みに,TiPdX合金に対してW,Taを添加して
も,先の実施例のTiPd系形状記憶合金と同様に形状
記憶の特性が維持されることが判った。
Incidentally, it has been found that even if W and Ta are added to the TiPdX alloy, the shape memory characteristics are maintained similarly to the TiPd-based shape memory alloys of the previous examples.

[発明の効果] 以上述べた通り,本発明によれば,TiPd合金の本質
的な特色である高温度作動素子としての特性を損なわ
ず,Pd量を低減させると共に,X元素を添加して変態
温度点をコントロールしているので,所要の変態点の素
子が得られるようになる。
[Effects of the Invention] As described above, according to the present invention, the Pd content is reduced without impairing the characteristics of the TiPd alloy as a high-temperature actuating element, which is an essential feature of the TiPd alloy. Since the temperature point is controlled, the element with the required transformation point can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明の一実施例に係るTiPd系形状記憶
合金をW,Ta添加量とマルテンサイト温度との関係で
示したもので、第2図は,本発明の他の実施例に係るT
iPd系形状記憶合金に用いられるTiPdX合金にお
けるX元素の添加量と形状回復温度との関係を示したも
ので、第3図は,本発明の他の実施例に係るTiPd系
形状記憶合金をW,Ta添加量とマルテンサイト逆変態
温度との関係で示したものである。
FIG. 1 shows a TiPd-based shape memory alloy according to one embodiment of the present invention in terms of the relationship between W and Ta addition amounts and martensite temperature. FIG. 2 shows another embodiment of the present invention. Related T
FIG. 3 shows the relationship between the amount of the X element added and the shape recovery temperature in the TiPdX alloy used for the iPd-based shape memory alloy. FIG. 3 shows the TiPd-based shape memory alloy according to another embodiment of the present invention. , Ta, and the martensitic reverse transformation temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】45.0〜51.0[at%]のPd,及
び残部Tiから成るTiPd合金に対し,Pdの一部を
W,Taのうちの少なくとも一種で1.0〜25.0
[at%]置換して得られたことを特徴とするTiPd
系形状記憶合金。
1. A TiPd alloy consisting of 45.0 to 51.0 [at%] of Pd and the balance of Ti is 1.0 to 25.0 with a part of Pd being at least one of W and Ta.
[At%] TiPd obtained by substitution
System shape memory alloy.
【請求項2】45.0〜51.0[at%]のPd,及
び残部Tiから成るTiPd合金におけるPdの一部を
X元素{但し,Xは0.01〜10[at%]のV,
0.01〜10[at%]のCr,0.01〜12[a
t%]のMn,0.01〜3.7[at%]のNi,
0.01〜16[at%]のFe,0.01〜20[a
t%]のCo,0.01〜25.5[at%]のCuの
うちの少なくとも一種とする}で置換したTiPdX合
金に対し,Pdの残部をW,Taのうちの少なくとも一
種で1.0〜25.0[at%]置換して得られたこと
を特徴とするTiPd系形状記憶合金。
2. A portion of Pd in a TiPd alloy consisting of 45.0 to 51.0 [at%] of Pd and the balance Ti is an X element (where X is 0.01 to 10 [at%] of Vd. ,
0.01-10 [at%] Cr, 0.01-12 [a
t%] of Mn, 0.01 to 3.7 [at%] of Ni,
0.01 to 16 [at%] Fe, 0.01 to 20 [a
t%] of Co and 0.01 to 25.5 [at%] of at least one of Cu, and the TiPdX alloy is replaced by at least one of W and Ta. A TiPd-based shape memory alloy obtained by substituting 0 to 25.0 [at%].
JP2051663A 1990-03-05 1990-03-05 TiPd type shape memory alloy Expired - Fee Related JPH0645836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2051663A JPH0645836B2 (en) 1990-03-05 1990-03-05 TiPd type shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2051663A JPH0645836B2 (en) 1990-03-05 1990-03-05 TiPd type shape memory alloy

Publications (2)

Publication Number Publication Date
JPH03253529A JPH03253529A (en) 1991-11-12
JPH0645836B2 true JPH0645836B2 (en) 1994-06-15

Family

ID=12893120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2051663A Expired - Fee Related JPH0645836B2 (en) 1990-03-05 1990-03-05 TiPd type shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0645836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886983A (en) * 2016-06-01 2016-08-24 洛阳双瑞精铸钛业有限公司 Roll type production method of titanium and palladium alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5911072B2 (en) 2011-07-15 2016-04-27 国立研究開発法人物質・材料研究機構 High temperature shape memory alloy and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1574470A (en) * 1976-09-30 1980-09-10 Borroughs Corp Intelligent input-output interface control unit for input-output system
JPS6260836A (en) * 1985-09-12 1987-03-17 Toshio Honma Shape memory alloy
JPS62211334A (en) * 1986-03-12 1987-09-17 Sumitomo Electric Ind Ltd Functional alloy and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886983A (en) * 2016-06-01 2016-08-24 洛阳双瑞精铸钛业有限公司 Roll type production method of titanium and palladium alloy

Also Published As

Publication number Publication date
JPH03253529A (en) 1991-11-12

Similar Documents

Publication Publication Date Title
EP2500443B1 (en) NI-TI semi-finished products and related methods
JP3884316B2 (en) Superelastic titanium alloy for living body
JP6156865B2 (en) Super elastic alloy
CN102690976A (en) Titanium-zirconium-niobium-iron shape memory alloy and preparation method thereof
US8801875B2 (en) Radiopaque alloy and medical device made of this alloy
JPH0645836B2 (en) TiPd type shape memory alloy
KR101837872B1 (en) Superelastic alloy
JP2009097064A (en) Ti-BASE ALLOY
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JPH11106880A (en) Production of shape-memory alloy cast member
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP2005281728A (en) SHAPE MEMORY ELEMENT MADE OF Ti-BASED ALLOY
JPH0860277A (en) Nickel-titanium alloy
JP6022892B2 (en) Au-based superelastic alloy
KR102256537B1 (en) Ti-Ni-Mo-Fe-Ag shape memory alloy
JP3271329B2 (en) Shape memory alloy
JPH0463139B2 (en)
WO2000073523A1 (en) Cr-BASE ALLOY EXCELLENT IN BALANCE BETWEEN STRENGTH AND DUCTILITY AT HIGH TEMPERATURE
JPH059686A (en) Production of shape memory niti alloy
JP2004204245A (en) Ti-Sc SHAPE MEMORY ALLOY
JPH0441639A (en) Ti-ni-c shape memory alloy and its manufacture
JPH0578765A (en) Tipd-based shape memory alloy
JPS62170443A (en) Shape memory alloy material and its production
JP2005105404A (en) Method of producing superelastic titanium alloy for living body, and titanium alloy for superelasticity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees