JP2000119767A - Metal-ceramic composite material for casting, and its manufacture - Google Patents

Metal-ceramic composite material for casting, and its manufacture

Info

Publication number
JP2000119767A
JP2000119767A JP29174498A JP29174498A JP2000119767A JP 2000119767 A JP2000119767 A JP 2000119767A JP 29174498 A JP29174498 A JP 29174498A JP 29174498 A JP29174498 A JP 29174498A JP 2000119767 A JP2000119767 A JP 2000119767A
Authority
JP
Japan
Prior art keywords
composite material
powder
ceramic
casting
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29174498A
Other languages
Japanese (ja)
Inventor
Yoshibumi Takei
義文 武井
Hiroyuki Tsuto
宏之 津戸
Tatsuya Shiogai
達也 塩貝
Kazunari Naito
一成 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP29174498A priority Critical patent/JP2000119767A/en
Publication of JP2000119767A publication Critical patent/JP2000119767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-ceramic composite material for casting, capable of reducing the wear amount of a tool at screw hole working and excellent in workability, and its manufacturing, method. SOLUTION: In the metal-ceramic composite material for casting, formed by composing an aluminum alloy as a matrix material with a ceramic powder as a reinforcement, the ceramic powder has 15-25 vol.% powder filling rate and is uniformly dispersed in the composite material. Further, JIS 2 class M4 screw holes not smaller than 60 holes in number can be made by the use of a single cemented carbide rolled tap tool (OT-NRTM4×0.7) alone in a product made of this composite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属に強化材を複
合させた金属−セラミックス複合材料及びその製造方法
に関し、特に鋳造用の金属−セラミックス複合材料及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite material obtained by compounding a metal with a reinforcing material and a method for producing the same, and more particularly to a metal-ceramic composite material for casting and a method for producing the same.

【0002】[0002]

【従来の技術】セラミックス繊維または粒子で強化され
たセラミックスと金属の複合材料は、セラミックスと金
属の両方の特性を兼ね備えており、例えばこの複合材料
は、高剛性、低熱膨張性、耐摩耗性等のセラミックスの
優れた特性を、延性、高靭性、高熱伝導性等の金属の優
れた特性を備えている。このように、従来から難しいと
されていたセラミックスと金属の両方の特性を備えてい
るため、機械装置メーカ等の業界から次世代の材料とし
て注目されている。
2. Description of the Related Art A ceramic-metal composite material reinforced with ceramic fibers or particles has both characteristics of ceramic and metal. For example, this composite material has high rigidity, low thermal expansion property, abrasion resistance, etc. It has the excellent properties of metal such as ductility, high toughness, and high thermal conductivity. As described above, since it has both the characteristics of ceramics and metal, which have been considered difficult, it has been drawing attention as a next-generation material from industries such as mechanical device manufacturers.

【0003】この複合材料、特に金属としてアルミニウ
ムをマトリックスとする複合材料の製造方法は、粉末冶
金法、高圧鋳造法、真空鋳造法等の方法が従来から知ら
れている。しかし、これらの方法は、強化材であるセラ
ミックスの含有量を多くできない、あるいはニアネット
成形が困難である、もしくはコストが極めて高いなどの
理由により、いずれも満足できるものではなかった。
As a method for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, methods such as powder metallurgy, high pressure casting, and vacuum casting have been conventionally known. However, none of these methods is satisfactory because the content of the ceramics as a reinforcing material cannot be increased, or near-net molding is difficult, or the cost is extremely high.

【0004】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法が特に注目されている。この方法は、SiCやA
23などのセラミックス粉末で形成されたプリフォー
ムに、Mgを含むアルミニウムインゴットを接触させ、
これをN2雰囲気中で700〜900℃に加熱して溶融
したアルミニウム合金をプリフォームに含浸させる方法
である。これは、MgとN2との化学反応を利用してセ
ラミックス粉末への溶融金属の濡れ性を改善することに
より、加圧しなくても金属をプリフォームに含浸できる
ようにした優れた方法である。
Accordingly, recently, a non-pressurized metal infiltration method developed by Rankside Company of the United States has attracted particular attention as a manufacturing method for solving the above problem. This method uses SiC or A
An aluminum ingot containing Mg is brought into contact with a preform formed of a ceramic powder such as l 2 O 3 ,
This is a method in which the preform is impregnated with a molten aluminum alloy by heating the same to 700 to 900 ° C. in an N 2 atmosphere. This is an excellent method in which the preform can be impregnated with metal without applying pressure by improving the wettability of the molten metal to the ceramic powder by utilizing the chemical reaction between Mg and N 2. .

【0005】そして、この製造方法で作製した複合材料
をさらに溶融し、それを融解アルミニウム合金で鋳造可
能なまで希釈した鋳造用の金属−セラミックス複合材料
の製造方法も提案されている。この方法は、中間素材と
なる複合材料中のセラミックス粉末の濡れ性がMgの添
加ですでに改善されているので、それを別の融解したア
ルミニウム合金で希釈しても、またその希釈したセラミ
ックス粉末の充填率を難しいとされる30〜35vol
%に上げても流動性が確保され、鋳型に鋳込むことでさ
らなる大型品やより複雑な形状品の複合材料を作製する
ことができる優れた方法である。その鋳造には、砂型/
金型を用いた重力鋳造、ロストワックスに代表される精
密鋳造、ダイキャストなど、一般にアルミニウム鋳造に
使われる鋳造方法であれば、そのままの方法で鋳造する
ことができる。
[0005] There has also been proposed a method for producing a metal-ceramic composite material for casting, in which the composite material produced by this production method is further melted and diluted so that it can be cast with a molten aluminum alloy. In this method, since the wettability of the ceramic powder in the composite material as the intermediate material has already been improved by the addition of Mg, it can be diluted with another molten aluminum alloy, or the diluted ceramic powder can be used. 30-35vol is considered difficult to fill
%, The fluidity is secured, and it is an excellent method that can be used to produce a composite material of a larger product or a more complicated shape by casting into a mold. The casting includes a sand mold /
If it is a casting method generally used for aluminum casting, such as gravity casting using a mold, precision casting typified by lost wax, die casting, etc., the casting can be performed as it is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
複合材料は、強化材としてセラミックス粉末を複合して
いるため、ネジ穴加工をするのが極めて難しく、セラミ
ックス粉末の充填率が高い非加圧金属浸透法によって作
製される複合材料は言うまでもなく、セラミックス粉末
の充填率が低い先の鋳造用複合材料においても、ネジ穴
加工ができるもののその加工時の工具摩耗量が多く、加
工コストが極めて高くなるという問題があった。
However, since these composite materials are composites of ceramic powder as a reinforcing material, it is extremely difficult to drill a screw hole, and the non-pressurized metal infiltration with a high filling rate of ceramic powder is high. Needless to say, even in the case of the composite material for casting, which has a low filling rate of ceramic powder, not only the composite material produced by the method but also the screw hole processing is possible, but the tool wear amount during the processing is large and the processing cost is extremely high There was a problem.

【0007】本発明は、上述した鋳造用金属−セラミッ
クス複合材料が有する課題に鑑みなされたものであっ
て、その目的は、ネジ穴加工時の工具摩耗量が少なく、
加工コストが低い鋳造用金属−セラミックス複合材料を
提供し、その製造方法をも提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the metal-ceramic composite material for casting, and has as its object to reduce the amount of tool wear during drilling a screw hole.
An object of the present invention is to provide a metal-ceramic composite material for casting with low processing cost and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、セラミックス粉末の
充填率を限定し、かつそのセラミックス粉末の分散を良
くすれば、ネジ穴加工時の工具摩耗量が少なく、加工コ
ストが低い鋳造用金属−セラミックス複合材料が得られ
るとの知見を得て本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, if the filling rate of ceramic powder is limited and the dispersion of the ceramic powder is improved, the screw hole drilling time is reduced. The present inventors have found that a metal-ceramic composite material for casting with low tool wear and low processing cost can be obtained, and have completed the present invention.

【0009】即ち本発明は、(1)基材であるアルミニ
ウム合金に強化材であるセラミックス粉末を複合させた
鋳造用金属−セラミックス複合材料において、該セラミ
ックス粉末が、15〜25体積%の粉末充填率を有し、
かつそれが複合材料中に均一に分散されたセラミックス
粉末であり、該複合材料が、それから作られる製品にJ
IS2級M4ネジ穴を超硬転造タップ工具(OT−NR
TM4×0.7)1本で60穴以上開けることのできる
複合材料であることを特徴とする鋳造用金属−セラミッ
クス複合材料(請求項1)とし、また、(2)基材であ
るアルミニウム合金に強化材であるセラミックス粉末を
複合させる鋳造用金属−セラミックス複合材料の製造方
法において、該セラミックス粉末を複合させる方法が、
先ず容器内にセラミックス粉末とMg粉末またはMg合
金粉末との混合粉末を充填し、その混合粉末にアルミニ
ウム合金を浸透させて中間素材である複合材料を作製し
た後、得られた複合材料と先のアルミニウム合金とをセ
ラミックス粉末の充填率が15〜25体積%となるよう
所定量坩堝に入れ、それをアルミニウム合金の融点より
50〜150℃高い温度で溶融して撹拌し、冷却して複
合させる方法であることを特徴とする鋳造用金属−セラ
ミックス複合材料の製造方法(請求項2)とすることを
要旨とする。以下さらに詳細に説明する。
That is, the present invention provides (1) a metal-ceramic composite material for casting in which a ceramic powder as a reinforcing material is combined with an aluminum alloy as a base material, wherein the ceramic powder is filled with 15 to 25% by volume of a powder. Have a rate,
And it is a ceramic powder uniformly dispersed in a composite material, said composite material being used in a product made therefrom.
IS2 class M4 screw hole with carbide rolled tapping tool (OT-NR
(TM4 × 0.7) a metal-ceramic composite material for casting (Claim 1), characterized in that it is a composite material capable of forming 60 holes or more with one piece, and (2) an aluminum alloy as a base material A method for producing a metal-ceramic composite material for casting in which a ceramic powder as a reinforcing material is compounded, wherein the method of compounding the ceramic powder is
First, a mixed powder of ceramic powder and Mg powder or Mg alloy powder is filled in a container, and an aluminum alloy is infiltrated into the mixed powder to produce a composite material as an intermediate material. A method in which a predetermined amount of an aluminum alloy and a ceramic powder is put into a crucible so that the filling rate of the ceramic powder is 15 to 25% by volume, the mixture is melted at a temperature higher than the melting point of the aluminum alloy by 50 to 150 ° C., stirred, cooled, and combined. It is a gist of the present invention to provide a method for producing a metal-ceramics composite material for casting (claim 2). This will be described in more detail below.

【0010】上記で述べたように本発明の鋳造用複合材
料としては、複合材料中のセラミックス粉末を、15〜
25体積%の粉末充填率を有し、かつそれが複合材料中
に均一に分散されたセラミックス粉末とし、成した複合
材料が、それから作られる製品にJIS2級M4ネジ穴
を超硬転造タップ工具(OT−NRTM4×0.7)1
本で60穴以上開けることのできる複合材料とする鋳造
用金属−セラミックス複合材料とした(請求項1)。
[0010] As described above, as the composite material for casting of the present invention, the ceramic powder in the composite material is used for 15 to 15 times.
Ceramic powder having a powder filling rate of 25% by volume and uniformly dispersed in a composite material, and the composite material formed is made of a JIS class M4 screw hole with a carbide rolling tapping tool in a product made therefrom. (OT-NRTM4 × 0.7) 1
A metal-ceramic composite material for casting is used as a composite material capable of forming 60 or more holes in a book (claim 1).

【0011】強化材として用いるセラミックス粉末に
は、SiC粉末、Al23粉末、AlN粉末あるいはS
34粉末などがあるが、それらの粉末充填率を15〜
25体積%としたのは、15体積%より低いと、要求さ
れる剛性(ヤング率で100GPa以上)を得ることが
できず、逆に25体積%より高いと、ネジ穴加工に用い
る工具の摩耗量が多くなり、この鋳造用複合材料から作
られる製品にJIS2級M4ネジ穴を超硬転造タップ工
具1本で60穴以上開けることができなく、加工性が悪
くなることによる。そして、それらセラミックス粉末の
均一分散性も大きく影響し、それが良くないとネジ穴加
工が難しくなり、例えば後述するようにセラミックス粉
末の沈降が生じて均一な分散ができないと、沈降した部
分が粉末充填率の高い部分となり、ネジ穴を上から下に
貫通して開ける場合には、粉末充填率の高い下部の部分
が障害となって貫通するネジ穴を開けることが難しくな
る。また、ネジ穴をその側部を上から順に平行して開け
る場合にも、同様の粉末充填率の高い側部の下部の部分
のネジ穴加工が難しくなる。
The ceramic powder used as the reinforcing material includes SiC powder, Al 2 O 3 powder, AlN powder or S
i 3 N 4 powder and the like, and their powder filling rate is 15 to
The reason for setting the volume at 25% by volume is that if the volume is lower than 15% by volume, the required rigidity (100 GPa or more in Young's modulus) cannot be obtained. This is due to the fact that the JIS Class 2 M4 screw hole cannot be formed in a product made from this composite material for casting with a single carbide-rolled tapping tool in an amount of 60 or more, resulting in poor workability. The uniform dispersibility of these ceramic powders also has a significant effect, and if it is not good, screw hole drilling becomes difficult.For example, if the ceramic powder sediments as described below and cannot be uniformly dispersed, the sedimented portion will become powdery. When the screw hole is formed by penetrating the screw hole from the top to the bottom with a high filling rate, the lower part having a high powder filling rate becomes an obstacle and it is difficult to form a screw hole that penetrates. Also, when a screw hole is formed by opening the side portions in parallel from the top, it becomes difficult to machine the screw hole in the lower portion of the side having the same high powder filling rate.

【0012】その複合材料の製造方法としては、セラミ
ックス粉末を複合させる方法を、先ず容器内にセラミッ
クス粉末とMg粉末またはMg合金粉末との混合粉末を
充填し、その混合粉末にアルミニウム合金を浸透させて
中間素材である複合材料を作製した後、得られた複合材
料と先のアルミニウム合金とをセラミックス粉末の充填
率が15〜25体積%となるよう所定量坩堝に入れ、そ
れをアルミニウム合金の融点より50〜150℃高い温
度で溶融して撹拌し、冷却して複合させる方法とする鋳
造用金属−セラミックス複合材料の製造方法とした(請
求項2)。
As a method of producing the composite material, a method of combining ceramic powder is described. First, a mixed powder of ceramic powder and Mg powder or Mg alloy powder is filled in a container, and an aluminum alloy is infiltrated into the mixed powder. After preparing a composite material as an intermediate material by heating, the obtained composite material and the aluminum alloy are put into a crucible in a predetermined amount so that the filling rate of the ceramic powder is 15 to 25% by volume, and the melting point of the aluminum alloy is lowered. A method for producing a metal-ceramic composite material for casting is a method of melting and stirring at a temperature higher by 50 to 150 ° C., cooling, and compounding (claim 2).

【0013】この製造方法は、セラミックス粉末にアル
ミニウム合金を浸透させて先ず中間素材である複合材料
を作製し、その複合材料を同じアルミニウム合金でセラ
ミックス粉末の充填率が15〜25体積%となるよう、
かつそのセラミックス粉末が均一に分散されるよう希釈
して鋳造用複合材料を作製するものであり、そのために
は希釈するときのアルミニウム合金の溶融温度をその融
点より50〜150℃高い温度で溶融する必要があり、
その温度より低いと、湯流れ性が低下し湯回り不良が発
生し易く、逆にその温度より高いと、凝固するまでの時
間が長く、アルミニウム合金と強化材との比重差によっ
てセラミックス粉末の沈降が生じ均一な分散ができな
い。
In this manufacturing method, first, an aluminum alloy is infiltrated into a ceramic powder to produce a composite material as an intermediate material, and the composite material is made of the same aluminum alloy so that the filling rate of the ceramic powder is 15 to 25% by volume. ,
In addition, the ceramic powder is diluted so that the ceramic powder is uniformly dispersed to produce a casting composite material. For this purpose, the melting temperature of the aluminum alloy at the time of dilution is melted at a temperature 50 to 150 ° C. higher than its melting point. Need
If the temperature is lower than this temperature, the flowability of the molten metal decreases, and poor run-off tends to occur.On the other hand, if the temperature is higher than that temperature, the time until solidification is long, and the sedimentation of the ceramic powder due to the difference in specific gravity between the aluminum alloy and the reinforcing material. And uniform dispersion cannot be achieved.

【0014】[0014]

【発明の実施の形態】本発明の製造方法をさらに詳しく
述べると、先ず強化材であるSiC、Al23、Al
N、Si34などのセラミックス粉末を用意する。これ
にMgまたはMg合金粉末を適量加え、混合する。得ら
れた混合粉末を容器内に充填し、その上にアルミニウム
合金のインゴットを載せ、N2雰囲気中で非加圧で70
0〜900℃の温度でアルミニウム合金を浸透させ、冷
却して中間素材である複合材料を作製する。
DETAILED DESCRIPTION OF THE INVENTION The manufacturing method of the present invention will be described in more detail. First, reinforcing materials such as SiC, Al 2 O 3 , Al
A ceramic powder such as N, Si 3 N 4 is prepared. An appropriate amount of Mg or Mg alloy powder is added thereto and mixed. The obtained mixed powder was filled into the container, place the aluminum alloy ingot thereon, 70 in a non-pressurized with N 2 atmosphere
An aluminum alloy is infiltrated at a temperature of 0 to 900 ° C. and cooled to produce a composite material as an intermediate material.

【0015】なお、先のランクサイド社法ではアルミニ
ウム合金を非加圧で浸透させているが、これを高圧で浸
透させても十分浸透可能で問題ないので、その場合には
先ず容器中のセラミックス粉末を700〜900℃の温
度で予熱しておき、その容器内に700〜900℃の温
度で加熱溶融したアルミニウム合金を注入し、50〜1
00MPaの圧力をかけてアルミニウム合金を浸透させ
てもよい。
In the above-mentioned Rankside method, the aluminum alloy is infiltrated under no pressure. However, even if the aluminum alloy is infiltrated at high pressure, the aluminum alloy can be sufficiently infiltrated and there is no problem. The powder is preheated at a temperature of 700 to 900 ° C., and an aluminum alloy that is heated and melted at a temperature of 700 to 900 ° C. is poured into the container, and 50 to 1
The aluminum alloy may be permeated by applying a pressure of 00 MPa.

【0016】得られた複合材料を坩堝内にて所定温度で
再溶融し、それに別に融解したアルミニウム合金を添加
し、アルミニウム合金の融点より50〜150℃高い温
度で溶融してセラミックス粉末の充填率を15〜25体
積%に希釈する。これをさらに撹拌機で十分撹拌し、セ
ラミックス粉末を十分に均一に分散させた後、冷却する
ことによって鋳造用金属−セラミックス複合材料を作製
する。所定量の複合材料と先のアルミニウム合金のイン
ゴットを坩堝内に入れ、これらを所定温度で溶融して撹
拌機で撹拌しても問題ない。得られた鋳造用複合材料を
冷却せずにそのまま鋳造し、目的の製品である複合材料
を作製してもよいし、冷却して一旦インゴット形状に形
成し、それを再度溶融して鋳造し、目的の製品である複
合材料を作製してもよい。
The obtained composite material is re-melted in a crucible at a predetermined temperature, a separately melted aluminum alloy is added thereto, and the mixture is melted at a temperature 50 to 150 ° C. higher than the melting point of the aluminum alloy. Is diluted to 15-25% by volume. This is further sufficiently stirred by a stirrer to sufficiently disperse the ceramic powder, and then cooled to produce a metal-ceramic composite material for casting. There is no problem if a predetermined amount of the composite material and the above-mentioned aluminum alloy ingot are put into a crucible, melted at a predetermined temperature, and stirred by a stirrer. The obtained composite material for casting may be cast as it is without cooling to produce a composite material as a target product, or may be cooled and formed once into an ingot shape, and then melted and cast again. A composite material that is a target product may be manufactured.

【0017】以上の方法で鋳造用の金属−セラミックス
複合材料を作製すれば、ネジ穴加工時の工具摩耗量が少
ない、加工性に優れた鋳造用の金属−セラミックス複合
材料が得られる。
When a metal-ceramic composite material for casting is produced by the above-described method, a metal-ceramic composite material for casting having excellent workability with a small amount of tool wear during drilling of a screw hole is obtained.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0019】(実施例1、2) (1)中間素材である複合材料の作製 強化材として実施例1では、独ESK(ELEKTRO
SCHMELZWERK KEMPTEM GMBH)
社の市販SiC粉末(C#700D Dark、平均粒
径17μm)を用意し、実施例2では、NORTON社
の市販SiC粉末(F600、平均粒径9μm)を用意
し、それらにMg粉末を2重量%添加し、V型混合機で
15分混合した。得られた混合粉末をそれぞれ200×
400×200mmのグラフォイル製の容器に充填した
後、その上に混合粉末の1.2倍量のアルミニウム合金
(10重量%Siを含む)のインゴットを置き、電気炉
にセットした。これをN2気流中で800℃の温度で1
2時間保持し、アルミニウム合金を非加圧浸透させた
後、冷却して複合材料を作製した。
(Examples 1 and 2) (1) Preparation of composite material as intermediate material In Example 1, ESK (ELEKTRO) was used as a reinforcing material.
SCHMELZWERK KEMPTEM GMBH)
A commercially available SiC powder (C # 700D Dark, average particle size 17 μm) was prepared. In Example 2, a commercial SiC powder (F600, average particle size 9 μm) from NORTON was prepared, and Mg powder was added to them by 2 weight%. % And mixed by a V-type mixer for 15 minutes. Each of the obtained mixed powders was 200 ×
After filling into a 400 x 200 mm container made of graphoil, an ingot of an aluminum alloy (containing 10 wt% Si) in an amount 1.2 times the mixed powder was placed thereon, and set in an electric furnace. This is placed in a stream of N 2 at 800 ° C. for 1 hour.
After holding for 2 hours and allowing the aluminum alloy to permeate without pressure, the mixture was cooled to produce a composite material.

【0020】(2)鋳造用複合材料の作製 得られた複合材料と先のアルミニウム合金のインゴット
を鋳造用複合材料中のSiC粉末の充填率が20vol
%となるよう所定量坩堝内に入れ、それらを800℃の
温度で溶融し、それをさらに700℃で2時間撹拌して
鋳造用複合材料の溶湯を作製した。それをそのまま50
×50×H500mmの砂型に流し込み、鋳造してその
鋳造物を評価に供した。
(2) Preparation of Composite Material for Casting The ingot of the obtained composite material and the aluminum alloy was filled with a filling rate of 20 vol. Of SiC powder in the composite material for casting.
% Were put into a crucible, melted at a temperature of 800 ° C., and further stirred at 700 ° C. for 2 hours to prepare a molten metal of a composite material for casting. 50 as it is
It was poured into a sand mold of × 50 × H500 mm, cast, and the cast was subjected to evaluation.

【0021】(3)評価 得られた50×50×H500mm形状の鋳造物の上部
及び下部より50×50×t5mmの板を切り出し、そ
れからさらにそれぞれ3×4×40mmの試験片を切り
出し、JIS R 1602により、ヤング率を測定
し、粉末の均一分散性を調べ、ヤング率に差がない、あ
るいは差が少ないものを均一分散性良とし、ヤング率に
大きな差があるものを均一分散性不良とした。また、そ
の鋳造物の面出しを行った後、その50×500mmの
面に超硬転造タップ工具(OT−NRTM4×0.7)
によるタップ加工を上部と下部の2個所行い、JIS2
級が合格するタップ加工数の平均を求めた。それらの結
果を表1に示す。
(3) Evaluation A 50 × 50 × t5 mm plate was cut out from the upper and lower parts of the obtained casting having a shape of 50 × 50 × H500 mm, and a test piece of 3 × 4 × 40 mm was further cut out from the plate. According to 1602, the Young's modulus is measured, and the uniform dispersibility of the powder is examined. If the Young's modulus is not different or the difference is small, it is regarded as having good uniform dispersibility. did. After the casting was surfaced, the 50 × 500 mm surface was subjected to a carbide roll tapping tool (OT-NRTM4 × 0.7).
Tapping at two places, upper and lower, according to JIS2
The average of the number of tappings that passed the class was determined. Table 1 shows the results.

【0022】(比較例1〜4)比較のために、比較例1
では、SiC粉末の充填率を10vol%にした他は、
比較例2では、その充填率を30vol%にした他は、
比較例3では、溶湯温度を800℃にした他は、比較例
4では、その温度を600℃にした他は実施例1と同様
に鋳造用複合材料を作製し、評価した。それらの結果も
表1に示す。
(Comparative Examples 1 to 4) For comparison, Comparative Example 1
Then, except that the filling rate of the SiC powder was set to 10 vol%,
In Comparative Example 2, except that the filling rate was 30 vol%,
In Comparative Example 3, a casting composite material was produced and evaluated in the same manner as in Example 1 except that the temperature of the molten metal was set to 800 ° C., and in Comparative Example 4, except that the temperature was set to 600 ° C. The results are also shown in Table 1.

【0023】[0023]

【表1】[Table 1]

【0024】表1から明らかなように、実施例1、2に
おいては、SiC粉末の充填率が本発明の範囲にあり、
そのSiC粉末の分散性が良好であるので、超硬転造タ
ップ工具1本でJIS2級M4ネジ穴を上部、下部とも
ほぼ変わらない60穴以上開けることのできるほど加工
性が良好であった。このことは、SiC粉末の充填率を
限定し、かつそのSiC粉末の分散を良くすれば、ネジ
穴加工時の工具摩耗量が少ない、加工性に優れた鋳造用
金属−セラミックス複合材料が得られることを示してい
る。
As is apparent from Table 1, in Examples 1 and 2, the filling rate of the SiC powder was within the range of the present invention.
Since the dispersibility of the SiC powder was good, the workability was so good that it was possible to form 60 or more JIS class M4 screw holes, which were almost the same at the upper and lower parts, with one carbide-tapped tapping tool. This means that if the filling rate of the SiC powder is limited and the dispersion of the SiC powder is improved, a metal-ceramic composite material for casting having excellent workability with a small amount of tool wear during screw hole processing can be obtained. It is shown that.

【0025】これに対して比較例1では、SiC粉末の
充填率が低すぎたので、ヤング率が低く、要求される剛
性を満たすことができなった。また、比較例2では、S
iC粉末の充填率が高すぎたので、タップの摩耗量が大
きく、タップ加工数が実施例より大きく減少した。さら
に、比較例3では、溶湯温度が高すぎたので、SiC粉
末が沈降して分散が悪く、上部は粉末充填率が低くなっ
てネジ穴を60穴以上開けることができるものの、ヤン
グ率が100GPaより低くなり、下部は粉末充填率が
高くなってタップ加工数が大きく減少した。さらにま
た、比較例4では、溶湯温度が低すぎたので、湯流れ性
が悪く、湯回り不良が生じた。
On the other hand, in Comparative Example 1, since the filling rate of the SiC powder was too low, the Young's modulus was low and the required rigidity could not be satisfied. In Comparative Example 2, S
Since the filling rate of the iC powder was too high, the amount of tap abrasion was large, and the number of tappings was significantly reduced as compared with the example. Further, in Comparative Example 3, since the temperature of the molten metal was too high, the SiC powder settled out and dispersion was poor, and the powder filling rate was low at the upper part, so that 60 or more screw holes could be formed, but the Young's modulus was 100 GPa. In the lower part, the powder filling rate in the lower part was increased, and the number of tappings was greatly reduced. Furthermore, in Comparative Example 4, since the temperature of the molten metal was too low, the flowability of the molten metal was poor, and poor running of the molten metal occurred.

【0026】[0026]

【発明の効果】以上の通り、本発明の鋳造用金属−セラ
ミックス複合材料であれば、加工性に優れた鋳造用金属
−セラミックス複合材料とすることができるようになっ
た。このことにより、これを再溶融して鋳造すれば、超
硬転造タップ工具(OT−NRTM4×0.7)1本で
JIS2級M4ネジ穴を60穴以上開けることのできる
ほど加工性が良好で加工コストを大きく下げた最終製品
である複合材料も提供できるようになった。 │ 整理番号 TKS252 化学式等を記載した書面 明細書
As described above, the metal-ceramic composite material for casting of the present invention can be obtained as a metal-ceramic composite material for casting having excellent workability. As a result, if this is re-melted and cast, the workability is so good that 60 or more JIS Class 2 M4 screw holes can be drilled with one carbide-rolled tapping tool (OT-NRTM4 × 0.7). As a result, it has become possible to provide a composite material, which is a final product with significantly reduced processing costs. │ Reference number TKS252 Document describing chemical formula etc.

【表1】 [注]比較例3のネジ穴加工数は、鋳造物下部の加工数である。[Table 1] [Note] The number of processed screw holes in Comparative Example 3 is the number of processed holes in the lower part of the casting.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材であるアルミニウム合金に強化材で
あるセラミックス粉末を複合させた鋳造用金属−セラミ
ックス複合材料において、該セラミックス粉末が、15
〜25体積%の粉末充填率を有し、かつそれが複合材料
中に均一に分散されたセラミックス粉末であり、該複合
材料が、それから作られる製品にJIS2級M4ネジ穴
を超硬転造タップ工具(OT−NRTM4×0.7)1
本で60穴以上開けることのできる複合材料であること
を特徴とする鋳造用金属−セラミックス複合材料。
1. A casting metal-ceramic composite material in which a ceramic powder as a reinforcing material is composited with an aluminum alloy as a base material, wherein the ceramic powder is 15% or less.
A ceramic powder having a powder filling rate of 2525% by volume and uniformly dispersed in a composite material, and the composite material is provided with a JIS class M4 screw hole in a product made therefrom with a carbide-rolled tap. Tool (OT-NRTM4 x 0.7) 1
A metal-ceramic composite material for casting, which is a composite material capable of forming 60 or more holes in a book.
【請求項2】 基材であるアルミニウム合金に強化材で
あるセラミックス粉末を複合させる鋳造用金属−セラミ
ックス複合材料の製造方法において、該セラミックス粉
末を複合させる方法が、先ず容器内にセラミックス粉末
とMg粉末またはMg合金粉末との混合粉末を充填し、
その混合粉末にアルミニウム合金を浸透させて中間素材
である複合材料を作製した後、得られた複合材料と先の
アルミニウム合金とをセラミックス粉末の充填率が15
〜25体積%となるよう所定量坩堝に入れ、それをアル
ミニウム合金の融点より50〜150℃高い温度で溶融
して撹拌し、冷却して複合させる方法であることを特徴
とする鋳造用金属−セラミックス複合材料の製造方法。
2. A method for producing a metal-ceramic composite material for casting in which a ceramic powder as a reinforcing material is compounded with an aluminum alloy as a base material, the method of compounding the ceramic powder is as follows. Filled with powder or mixed powder with Mg alloy powder,
After the aluminum alloy is infiltrated into the mixed powder to prepare a composite material as an intermediate material, the obtained composite material and the aluminum alloy are filled with a ceramic powder at a filling rate of 15%.
A predetermined amount of 金属 25% by volume in a crucible, which is melted at a temperature 50-150 ° C. higher than the melting point of the aluminum alloy, stirred, cooled and combined to form a composite metal; Manufacturing method of ceramic composite material.
JP29174498A 1998-10-14 1998-10-14 Metal-ceramic composite material for casting, and its manufacture Pending JP2000119767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29174498A JP2000119767A (en) 1998-10-14 1998-10-14 Metal-ceramic composite material for casting, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29174498A JP2000119767A (en) 1998-10-14 1998-10-14 Metal-ceramic composite material for casting, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000119767A true JP2000119767A (en) 2000-04-25

Family

ID=17772852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29174498A Pending JP2000119767A (en) 1998-10-14 1998-10-14 Metal-ceramic composite material for casting, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000119767A (en)

Similar Documents

Publication Publication Date Title
US20130189151A1 (en) Particulate aluminium matrix nano-composites and a process for producing the same
CN109957685A (en) A kind of high dispersive TiB2/ A356 composite material and preparation method thereof
JPH02182844A (en) Preparation of composite material
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
JP4167317B2 (en) Method for producing metal / ceramic composite material for casting
JP2000119767A (en) Metal-ceramic composite material for casting, and its manufacture
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JP2000087156A (en) Metal-ceramic composite material for casting and its manufacture
JPH11172348A (en) Metal-ceramics composite and its production
JP2007204808A (en) Method for forming metal matrix composite
JP2000288714A (en) Production of metal-ceramics composite material
CN109136606A (en) A kind of enhanced self-lubricating Cu-base composites and its preparation method and application
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JP4217279B2 (en) Method for producing metal-ceramic composite material
CN109136605A (en) A kind of self-propagating synthesis of copper-based composite granule and its application
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2002146451A (en) Metal-ceramics composite material for casting, and method for producing the same
JP4053110B2 (en) Metal-ceramic composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JP2000054090A (en) Metal-ceramics composite and its manufacture
Singh Saini et al. Fabrication and microstructure study of aluminum matrix composites reinforced with SiC and B4C particulates
JPH10219369A (en) Composite material of ceramics and metal, and its production
JPH11264035A (en) Production of metal-ceramics composite material for casting