JP2000096124A - Blowing method for restraining sticking of metal in converter type refining furnace - Google Patents

Blowing method for restraining sticking of metal in converter type refining furnace

Info

Publication number
JP2000096124A
JP2000096124A JP10265296A JP26529698A JP2000096124A JP 2000096124 A JP2000096124 A JP 2000096124A JP 10265296 A JP10265296 A JP 10265296A JP 26529698 A JP26529698 A JP 26529698A JP 2000096124 A JP2000096124 A JP 2000096124A
Authority
JP
Japan
Prior art keywords
furnace
metal
blowing
nozzle
skull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10265296A
Other languages
Japanese (ja)
Inventor
Ichiro Kikuchi
一郎 菊地
Hideshige Tanaka
秀栄 田中
Kanji Hide
寛治 日出
Taizo Sera
泰三 瀬良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10265296A priority Critical patent/JP2000096124A/en
Publication of JP2000096124A publication Critical patent/JP2000096124A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To melt and remove skull stuck to a furnace opening part and side wall in the furnace without damaging a refractory by adjusting pure oxygen flow rate in the gaseous oxygen jetted from nozzles for melting the skull arranged on the outer peripheral surface of a lance according to the dust concn. in exhaust gas generated during blowing molten iron. SOLUTION: The lance 5 is inserted into the furnace through the furnace opening part 4 from the upper part of a converter 3, in which the molten iron 1 and slag-making material 2 are charged. In the lance 5, an oxygen nozzle 6 for blow-refining is disposed at the lower end part and also, the nozzle 7 for melting the skull on the furnace opening part, is disposed at a prescribed position in the upper part from the lower end part, and the jetting direction from the nozzle 7 for melting the skull is made to downward or in the longitudinal direction in the range of about 40-90 deg. angle formed with the axial line 10 in the longitudinal direction of the perpendicular lance. The dust concn. in the exhaust gas 11 from the converter is measured with an exhaust gas dust concn. meter 12 and the pure oxygen flow rate in the gaseous oxygen jetted from the nozzle 7 for melting the skull, is adjusted according to this concn. to restrain the stuck quantity of the skull 8 stuck on the furnace opening part 4 and its constricting part 4a and the skull 8' stuck on the sidewall in the furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は転炉型精錬炉におい
て、炉内への原料装入操作を円滑に行なうと共に、炉口
装置や炉内側壁の円滑な保全を図るために、炉口及び炉
内側壁への地金付着を抑制する転炉吹錬方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter type refining furnace, in which the raw material charging operation into the furnace is performed smoothly, and the furnace port and the furnace inner wall are smoothly maintained. The present invention relates to a converter blowing method for suppressing adhesion of metal to the inner wall of a furnace.

【0002】[0002]

【従来の技術】転炉精錬において、吹錬中に発生するス
ピッティング、スロッピングにより飛散した溶鋼及びス
ラグの一部は炉口や炉内側壁に地金として付着する。付
着した地金はヒ−トを続けるにつれて成長し、その大き
さがある限度以上になると溶銑及びスクラップ装入の障
害になるばかりでなく、吹錬中の浴中への落下や溶融流
下により浴の成分組成や温度の変動をきたし、操業に大
きな支障をきたす。このような付着地金は適切に除去し
ないと、下地の耐火物まで損傷する危険性もある。そこ
で、上記付着地金は操業に支障をきたす大きさ以上にな
る前に除去する必要がある。
2. Description of the Related Art In converter refining, a part of molten steel and slag scattered by spitting and slopping generated during blowing is adhered to a furnace port and a furnace inner wall as metal. The deposited metal grows as the heat continues, and when its size exceeds a certain limit, it not only hinders the charging of hot metal and scrap, but also falls into the bath during blowing and melts down. Fluctuates in the composition of the components and the temperature, causing a major hindrance to the operation. If such adhered metal is not properly removed, there is a risk of damaging the underlying refractory. Therefore, it is necessary to remove the deposit metal before it becomes larger than the size that hinders the operation.

【0003】炉口地金を除去する伝統的方法としては、
スクラップシュ−トを炉口地金部にぶつけ物理的に除去
する方法がある。しかしながら、この方法はスクラップ
シュ−トを炉口地金部に直接ぶつけるため、その衝撃で
炉口レンガの脱落をおこす危険性がある。また、特開平
4−354814号公報には、非操業中に専用の地金溶
解用ランスを炉口から炉内に挿入し、炉口に付着した地
金を溶解・除去する方法が開示されている(先行技術1
という)。しかしながら、この方法は、転炉の非吹錬時
に実施しなければならないので、非製鋼時間の増大を招
き転炉生産性を著しく阻害する。そこで、転炉生産性を
阻害することのないように、吹錬中に炉内発生する排ガ
スを2次燃焼させ炉口や炉内側壁地金を溶解除去する方
法が提案されている。例えば、特公平7−26141号
公報には、全酸素底吹き転炉において、通常吹錬1ヒー
トに対してスラグレス吹錬1ヒートの割合で操業し、そ
の際、底吹き吹錬中に上吹きランスから酸素ガスを炉内
に導入し、炉口近傍に付着している地金を溶解・除去す
る方法が開示されている(先行技術2という)。この方
法によれば、生産性を確保しつつ炉口地金の溶解・除去
ができる。しかしながら、炉内二次燃焼を利用するの
で、二次燃焼率を制御することが困難であり、耐火物を
損傷させ易いという難点がある。更に、特開平8−12
7812号公報には、ランス下端から吹錬用酸素ガスを
溶銑に吹きつけつつ、当該ランスの外周部から炉内側壁
に向けて酸素ガスを噴射して炉内付着地金を溶解・除去
する方法が開示されている(先行技術3という)。この
方法でも、付着地金が少なくなった場合には、耐火物を
損傷させる恐れがある。
[0003] Traditional methods of removing furnace slabs include:
There is a method in which a scrap is hit against an ingot metal part and physically removed. However, in this method, since the scraps are directly hit on the metal slab, there is a risk that the bricks may fall off due to the impact. Further, Japanese Patent Application Laid-Open No. 4-354814 discloses a method of inserting a dedicated metal melting lance into a furnace from a furnace port during non-operation to melt and remove the metal adhered to the furnace port. (Prior art 1
). However, since this method must be performed when the converter is not blown, the time required for non-steel making is increased and converter productivity is significantly impaired. Therefore, a method has been proposed in which exhaust gas generated in the furnace during blowing is subjected to secondary combustion so as to dissolve and remove the furnace opening and the inner wall metal of the furnace so as not to impair converter productivity. For example, Japanese Patent Publication No. Hei 7-26141 discloses that in a total oxygen bottom-blowing converter, operation is performed at a ratio of one slagless blowing to one heat of normal blowing, and at that time, the upper blowing is performed during the bottom blowing. A method is disclosed in which oxygen gas is introduced into a furnace from a lance to dissolve and remove metal that has adhered to the vicinity of the furnace port (referred to as prior art 2). According to this method, it is possible to melt and remove the furnace mouth metal while securing the productivity. However, since the secondary combustion in the furnace is used, it is difficult to control the secondary combustion rate, and there is a problem that the refractory is easily damaged. Further, JP-A-8-12
No. 7812 discloses a method in which oxygen gas for blowing is blown from a lower end of a lance to hot metal while oxygen gas is injected from an outer peripheral portion of the lance toward a furnace inner wall to dissolve and remove ingots in the furnace. (Referred to as Prior Art 3). Also in this method, when the amount of deposited metal decreases, the refractory may be damaged.

【0004】[0004]

【発明が解決しようとする課題】上述したように、従来
技術によれば、精錬炉の生産性を確保しつつ炉内付着地
金を除去することは可能となった。しかしながら、炉口
や炉内側壁に付着した地金を下地の耐火物に対して損傷
を与えないようにして溶解・除去する技術の開発は十分
とはいえない。その原因は、吹錬中の炉内における付着
状況の判定が困難であるために、経験的に酸素ガスを吹
き込んで付着地金を溶解したり、付着を抑制したりして
いたからであると考えられる。
As described above, according to the prior art, it has become possible to remove in-furnace ingots while ensuring the productivity of the smelting furnace. However, the development of a technique for melting and removing ingots adhering to the furnace port and the inner wall of the furnace without damaging the refractory on the foundation is not sufficient. It is considered that the reason is that it was difficult to judge the adhesion state in the furnace during blowing, so that oxygen gas was empirically blown to dissolve the adhesion metal or to suppress the adhesion. .

【0005】そこで、本発明者らは、転炉炉口や炉内側
壁地金の溶解除去技術の開発に際して、生産性を確保す
ることを前提とし、適当な厚さの地金付着に留め、地金
の溶解を過度に行なって耐火物に損傷を与えないように
する方法を開発することを課題とした。そして、この発
明の目的は、転炉における溶鋼の生産性を確保すること
を前提とし、炉口や炉内側壁の耐火物を溶損させること
なく、地金の付着状態を良好に管理する吹錬方法を提供
することにある。
[0005] In view of the above, the inventors of the present invention have developed a technique for dissolving and removing ingots of a converter furnace mouth and an inner wall of a furnace, on the premise that productivity is ensured. An object of the present invention was to develop a method for preventing the refractory from being damaged by excessive melting of the metal. The object of the present invention is to ensure the productivity of molten steel in a converter, and to prevent the refractory on the furnace port and the inner wall of the furnace from being melted and to properly manage the state of adhesion of the metal. To provide a refining method.

【0006】[0006]

【課題を解決するための手段】ところで、広範囲に急速
に形成される傾向のある炉内付着地金、特に炉口絞り部
に付着する地金を、下地耐火物の損傷を回避しつつ、均
一に効率よく溶解するためには、1ヒート内において地
金付着量が多く発生する時期にある程度重点的に地金付
着を抑制すると共に付着地金を溶解・除去することが重
要であることに着眼した。そして、本発明者等は、転炉
内の付着地金は、炉内から発生するダスト量が多いとき
に多量に形成されること、そしてこの時期に適切な地金
溶解用酸素ガスを吹き込むことにより上記課題は解決す
るとの見通しを得た。
Means for Solving the Problems In the meantime, in-furnace ingots tending to be formed rapidly over a wide area, particularly ingots adhering to a narrowed portion of a furnace opening, are uniformly removed while avoiding damage to the refractory underlayer. In order to dissolve the metal efficiently, it is important to control the metal adhesion and to dissolve and remove the metal in a time when the amount of metal ingot is large in one heat. did. The present inventors have found that a large amount of ingots in the converter are formed when the amount of dust generated from the furnace is large, and that appropriate oxygen gas for melting the ingots is blown at this time. As a result, the above problem was expected to be solved.

【0007】この発明は上記知見に基づきなされたもの
であり、この発明の転炉型精錬炉における地金付着抑制
吹錬方法は、溶銑を主たる鉄源として、上吹き又は上底
吹き酸素により精錬を行なう転炉型精錬炉において、吹
錬用ノズルが下端に設けられ、地金溶解用ノズルが外周
面に設けられ、上記地金溶解用ノズルからは酸素ガス又
はパージガスを吹錬用酸素ガスとは独立に制御して供給
することができるランスを用い、炉口及び/又は炉内側
壁に地金が付着するのを抑制する吹錬方法において、前
記溶銑の吹錬中に発生する精錬炉排ガス中のダスト濃度
を測定し、得られた上記ダスト濃度に応じて地金溶解用
ノズルから噴射する酸素ガス中の純酸素流量を調整して
流すことに特徴を有するものである。ここで、地金溶解
用ノズルから噴射する酸素ガスとは、一般に純酸素であ
るが、酸素含有ガスであればよく、ガスの到達距離を長
くするために、不活性ガスを混入させることも可能であ
る。また、地金が付着するのを抑制するとは、付着した
地金を溶解・除去すること、及び付着しようとしている
地金の付着を防止することを含む。なお、吹錬用酸素ガ
スには、通常工業用純酸素ガスを使用する。
The present invention has been made on the basis of the above-mentioned findings, and a method for suppressing the adhesion of metal in a converter type refining furnace according to the present invention uses a hot metal as a main iron source by refining by top blowing or top and bottom blowing oxygen. In the converter type refining furnace, a blowing nozzle is provided at the lower end, a smelting nozzle is provided on the outer peripheral surface, and oxygen gas or purge gas is blown from the smelting nozzle to the oxygen gas for blowing. In a blowing method that uses a lance that can be controlled and supplied independently and suppresses the adhesion of metal to the furnace opening and / or the inner wall of the furnace, the refining furnace exhaust gas generated during the blowing of the hot metal The method is characterized in that the dust concentration in the inside is measured, and the pure oxygen flow rate in the oxygen gas injected from the smelting nozzle is adjusted to flow according to the obtained dust concentration. Here, the oxygen gas injected from the metal melting nozzle is generally pure oxygen, but may be any oxygen-containing gas, and may be mixed with an inert gas to lengthen the gas reach. It is. In addition, suppressing the adhesion of the metal includes dissolving and removing the metal that has adhered, and preventing the metal that is about to adhere from being adhered. Incidentally, industrial oxygen gas is generally used as the oxygen gas for blowing.

【0008】[0008]

【発明の実施の形態】次に、この発明の望ましい実施の
形態を説明する。図1は、この発明の方法を実施するた
めに用いる設備例の概念図である。
Next, a preferred embodiment of the present invention will be described. FIG. 1 is a conceptual diagram of an example of equipment used to carry out the method of the present invention.

【0009】溶銑1及び造滓材2が装入された転炉3の
上方から、炉口4を通って炉内にランス5を挿入する。
ランス5には、下端に吹錬用酸素ノズル6を備え、下端
から上方の所定位置に、地金溶解用ノズル7を備えてい
る。地金溶解用ノズル7からのガス噴射方向は、鉛直に
設定されるランスの長手方向軸心線10とのなす角度が
40〜90°の範囲内の下向き乃至水平方向である。こ
れにより、炉口4及びその絞り部4aに付着した地金
(特に断らない限り「炉口地金」8という)、並びに炉
内側壁に付着した地金「炉内側壁地金」(特に断らない
限り炉口地金と炉内側壁地金とを合わせて「地金」とい
う)のいずれをも溶解・除去する。ランス5の構造とし
ては、吹錬用酸素ノズル6に酸素ガスを供給する酸素供
給管、地金溶解用ノズル7に酸素ガス及び/又はパージ
ガスを供給する酸素・パージガス供給管、並びにランス
の冷却用給水管及び排水管の四重管構造となっている。
こうして、地金溶解用酸素の供給経路を、吹錬用酸素の
供給経路から独立させて制御し得るようにしてある。炉
口4の上部は排ガスフード9と摺動シールされており、
転炉排ガス11は炉口4からダクトを通って回収され
る。ダクトの途中には、転炉排ガス11中のダスト濃度
を測定するダスト濃度計12が設けられている。
A lance 5 is inserted into the furnace through the furnace port 4 from above the converter 3 in which the hot metal 1 and the slag material 2 are charged.
The lance 5 is provided with a blowing oxygen nozzle 6 at the lower end and a metal melting nozzle 7 at a predetermined position above the lower end. The gas injection direction from the metal melting nozzle 7 is a downward or horizontal direction in which the angle between the lance and the longitudinal axis 10 of the lance set vertically is in the range of 40 to 90 °. As a result, the sliver attached to the furnace port 4 and its narrowed portion 4a (hereinafter referred to as "furnace slab" 8 unless otherwise specified) and the slab attached to the furnace inner wall "furnace inner wall slab" (particularly rejected) Unless otherwise stated, the furnace mouth metal and the furnace inner wall metal are collectively referred to as “metal”. The structure of the lance 5 includes an oxygen supply pipe for supplying oxygen gas to the blowing oxygen nozzle 6, an oxygen / purge gas supply pipe for supplying oxygen gas and / or purge gas to the metal melting nozzle 7, and a cooling lance. It has a quadruple structure with a water supply pipe and a drain pipe.
In this way, the supply path of the metal for melting metal can be controlled independently of the supply path of the oxygen for blowing. The upper part of the furnace port 4 is slidably sealed with the exhaust gas hood 9,
The converter exhaust gas 11 is recovered from the furnace port 4 through a duct. A dust concentration meter 12 for measuring the dust concentration in the converter exhaust gas 11 is provided in the middle of the duct.

【0010】上記設備を用いて、吹錬用酸素ノズル6か
ら所定の流量の酸素ガスを噴射して溶銑1を精錬する。
一方、地金溶解用ノズル7から酸素ガスを噴射して、炉
口4及びその絞り部に付着した地金8、並びに炉内側壁
に付着した地金8’を溶解し、除去する。ここで、吹錬
期間中連続的にダスト濃度計12により排ガス11中の
ダスト濃度を測定し、ダスト濃度に応じて地金溶解用酸
素ガス中の純酸素流量を調整して送酸する。このよう
に、地金溶解用酸素をダスト濃度に応じて流すのは、排
ガス中のダスト濃度が高いときに炉口地金の形成速度が
大きいからである。本発明者等は上記ダスト濃度と地金
形成速度との関係を下記の通り見いだした。
Using the above equipment, molten iron 1 is refined by injecting a predetermined flow rate of oxygen gas from blowing oxygen nozzle 6.
On the other hand, oxygen gas is injected from the metal melting nozzle 7 to melt and remove the metal 8 attached to the furnace port 4 and its narrowed portion and the metal 8 'attached to the inner wall of the furnace. Here, the dust concentration in the exhaust gas 11 is measured continuously by the dust concentration meter 12 during the blowing period, and the flow rate of the pure oxygen in the oxygen gas for dissolving the metal is adjusted according to the dust concentration to feed the acid. The reason why the metal for melting metal is caused to flow in accordance with the dust concentration is that the rate of forming the furnace mouth metal is high when the dust concentration in the exhaust gas is high. The present inventors have found the relationship between the above dust concentration and the metal forming speed as follows.

【0011】図2は、ダスト濃度計12を用い、脱炭吹
錬1ヒートの経過時間とダスト発生量との関係を測定し
た結果である。これによれば、ダストの発生量は吹錬の
初期に多い。そして、図3は、従来の吹錬方法におい
て、吹錬初期のダスト発生量と一定ヒート数の操業期間
中に、炉口地金を除去した回数との関係を示す。これに
よれば、初期ダスト発生量が多くなるほど、炉口地金除
去頻度が多くなる。従って、図2及び図3より、炉口地
金は、吹錬初期のダスト発生量が多い時期にその付着形
成速度が早いことがわかる。
FIG. 2 shows the result of measurement of the relationship between the elapsed time of one heat of decarburization blowing and the amount of dust generated using the dust concentration meter 12. According to this, the amount of generated dust is large in the early stage of blowing. FIG. 3 shows the relationship between the amount of dust generated at the beginning of blowing and the number of times the furnace mouth metal was removed during the operation period with a fixed number of heats in the conventional blowing method. According to this, as the initial dust generation amount increases, the furnace port metal removal frequency increases. Therefore, it can be seen from FIGS. 2 and 3 that the rate of formation of the furnace mouth metal is high at the early stage of blowing when the amount of generated dust is large.

【0012】地金溶解操作を行なうに当たっては、地金
形成速度に応じて地金溶解用酸素ガス中の純酸素流量を
大きくする。即ち、地金形成速度が大きくなれば、地金
溶解用酸素ガス中の純酸素流量を大きくする。そのため
には、ダスト濃度計12により排ガス11のダスト濃度
を測定し、これが大きいほど地金溶解用酸素ガス中の純
酸素流量を大きくする。こうすることにより、地金の溶
解を過度に行なうことなく、適当な厚さの地金付着に抑
制して、地金の付着状態を良好に管理することができ
る。ここで、地金溶解用ノズルから流す酸素ガスとは、
一般に純酸素であるが、酸素含有ガスであればよく、ガ
スの到達距離を長くするために、不活性ガスを混入させ
ることも可能である。また、地金を溶解・除去すると
は、付着しようとしている地金の付着を防止することを
含む。なお、吹錬用酸素ガスには、通常工業用純酸素ガ
スを使用する。
In performing the ingot dissolving operation, the flow rate of pure oxygen in the ingot dissolving oxygen gas is increased according to the ingot forming speed. That is, as the metal forming speed increases, the flow rate of pure oxygen in the metal gas for melting metal increases. For that purpose, the dust concentration of the exhaust gas 11 is measured by the dust concentration meter 12, and the larger this is, the larger the pure oxygen flow rate in the metal gas for dissolving the metal is. By doing so, it is possible to suppress the adhesion of the base metal having an appropriate thickness without excessively dissolving the base metal, and to manage the state of adhesion of the base metal satisfactorily. Here, the oxygen gas flowing from the metal melting nozzle is
Generally, it is pure oxygen, but any oxygen-containing gas may be used. In order to extend the gas reach, it is possible to mix an inert gas. In addition, dissolving and removing the ingot includes preventing the ingot from adhering. Incidentally, industrial oxygen gas is generally used as the oxygen gas for blowing.

【0013】また、ダスト発生速度が小さいために地金
溶解操作をしない時期、例えば、吹錬末期には、地金溶
解用ノズル7からはパージガスを流し、ノズルの目詰ま
りを防止する。地金溶解用酸素の噴射方向については、
ランスの長手方向軸心線10に対する角度θが、40〜
90°の角度をなして下向き乃至水平方向にすると、上
述した地金溶解・除去の作用・効果が大きい。
In addition, at the time when the ingot melting operation is not performed due to the low dust generation speed, for example, at the end of blowing, a purge gas is supplied from the ingot melting nozzle 7 to prevent clogging of the nozzle. Regarding the injection direction of oxygen for melting metal,
The angle θ of the lance with respect to the longitudinal axis 10 is 40 to
If the angle is 90 ° and the direction is downward or horizontal, the action and effect of dissolving and removing the base metal described above are large.

【0014】[0014]

【実施例】この発明を実施例により更に詳細に説明す
る。試験方法は、300t転炉に溶銑310t及びスク
ラップ10t、並びに造滓材を所定量装入し、上吹きラ
ンスで脱炭精錬をした。用いた設備は図1に示したもの
に準じる。上吹きランスとして、下端に吹錬用酸素ノズ
ルを配し、下端から同一高さの外周面に地金溶解用酸素
ノズルを等間隔に8孔を、下端から2000mmの高さ
毎に2段配した8孔×2段型のものを用いた。ノズルの
形状及び諸元、並びにノズルの取付け角を種々変えた。
吹錬用酸素の流量は、750〜1000Nm3 /min
の範囲内で、そして地金溶解用酸素の流量は、その時点
における吹錬用酸素の流量の3〜10%の範囲内で流し
た。
The present invention will be described in more detail with reference to examples. The test method was such that a predetermined amount of 310 t of hot metal, 10 t of scrap, and slag-making material were charged into a 300 t converter, and decarburization and refining were performed with an upper blowing lance. The equipment used conforms to that shown in FIG. As an upper blowing lance, an oxygen nozzle for blowing is arranged at the lower end, and eight holes are provided at equal intervals on the outer peripheral surface from the lower end. 8 holes x 2 steps type was used. The shape and specifications of the nozzle and the mounting angle of the nozzle were variously changed.
The flow rate of blowing oxygen is 750 to 1000 Nm 3 / min.
And the flow rate of the oxygen for dissolving the metal was in the range of 3 to 10% of the flow rate of the oxygen for blowing at that time.

【0015】一方、排ガス中ダスト濃度をその濃度計で
吹錬期間を通して測定した。地金溶解用酸素の流量Q
(Nm3 /min)を排ガス中ダスト濃度q(mg/N
3 )に対して、一次関数の関係で流した。但し、吹錬
末期に行なうサブランスによる分析試料採取及び測温の
実施以降の時期は、原則として地金溶解用酸素ガスを停
止し、パージガスに切り替えた。
On the other hand, the dust concentration in the exhaust gas was measured by a densitometer throughout the blowing period. Oxygen flow rate Q
(Nm 3 / min) to the dust concentration q (mg / N
m 3 ) with a linear function. However, in the period after the analysis sample collection and temperature measurement by the sublance performed at the end of blowing, the oxygen gas for dissolving the metal was stopped in principle and switched to the purge gas.

【0016】上記地金溶解を行なう吹錬方法によるヒー
トを10チャージ出鋼し、次いで地金溶解を行なわない
吹錬方法によるヒートを20チャージ出鋼するサイクル
を10回繰り返した。そして、地金溶解実施ヒートの出
鋼後に炉口及び炉内側壁の地金付着状況を目視観察し
た。その結果、炉内の付着地金状態は下地の耐火物が損
傷を受けることなく、良好に管理されていることを確認
した。
A cycle in which the heat by the blowing method for melting the metal was discharged for 10 charges, and then the heat for the blowing method without melting the metal was discharged for 20 charges was repeated 10 times. Then, after the tapping of the ingot melting heat was performed, the ingot adhesion on the furnace port and the inner wall of the furnace was visually observed. As a result, it was confirmed that the state of the deposited metal in the furnace was well controlled without damaging the refractory of the foundation.

【0017】[0017]

【発明の効果】以上述べたように、この発明によれば、
転炉型精錬炉における生産性を阻害することなく、炉口
耐火物の損傷を抑制しつつ、効率的に炉口地金の付着を
抑制する方法を提供することができ、工業上有用な効果
がもたらされる。
As described above, according to the present invention,
It is possible to provide a method for efficiently suppressing the adhesion of the furnace mouth metal while suppressing damage to the furnace mouth refractory without impairing the productivity in the converter type refining furnace, which is an industrially useful effect. Is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を実施するために用いる設備例
の概念図である。
FIG. 1 is a conceptual diagram of an example of equipment used to carry out a method of the present invention.

【図2】脱炭吹錬1ヒート中におけるダスト発生量の推
移を示すグラフである。
FIG. 2 is a graph showing changes in the amount of dust generated during one heat of decarburization blowing.

【図3】初期ダスト発生量と炉口地金除去頻度の関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of initial dust generation and the frequency of furnace mouth metal removal.

【符号の説明】[Explanation of symbols]

1 溶銑 2 造滓材 3 転炉 4 炉口 4a 絞り部 5 ランス 6 吹錬用酸素ノズル 7 炉口地金溶解用ノズル 8 炉口地金 8’ 炉内側壁地金 9 炉口フード 10 軸心線 11 転炉排ガス 12 排ガスダスト濃度計 DESCRIPTION OF REFERENCE NUMERALS 1 hot metal 2 slag-making material 3 converter 4 furnace port 4a squeezed portion 5 lance 6 blowing oxygen nozzle 7 furnace port smelting nozzle 8 furnace port slab 8 'furnace side wall metal 9 furnace port hood 10 shaft center Wire 11 converter exhaust gas 12 exhaust gas dust concentration meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日出 寛治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 瀬良 泰三 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K002 AB01 AC05 AC07 AD02 AF03 BA10 BB10 BE03 BF01 BF02 BF03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kanji Hiji 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Taizo Sera 1-2-1, Marunouchi, Chiyoda-ku, Tokyo No. Nihon Kokan Co., Ltd. F-term (reference) 4K002 AB01 AC05 AC07 AD02 AF03 BA10 BB10 BE03 BF01 BF02 BF03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を主たる鉄源として、上吹き又は上
底吹き酸素により精錬を行なう転炉型精錬炉において、
吹錬用ノズルが下端に設けられ、地金溶解用ノズルが外
周面に設けられ、前記地金溶解用ノズルからは酸素ガス
又はパージガスを吹錬用酸素ガスとは独立に制御して供
給することができるランスを用い、炉口及び/又は炉内
側壁に地金が付着するのを抑制する吹錬方法において、
前記溶銑の吹錬中に発生する精錬炉排ガス中のダスト濃
度を測定し、得られた前記ダスト濃度に応じて前記地金
溶解用ノズルから噴射する酸素ガス中の純酸素流量を調
整して流すことを特徴とする、転炉型精錬炉における地
金付着抑制吹錬方法。
1. A converter type refining furnace for performing refining by using top blown or top and bottom blown oxygen using molten iron as a main iron source,
A blowing nozzle is provided at a lower end, and a metal melting nozzle is provided on an outer peripheral surface, and an oxygen gas or a purge gas is supplied from the metal melting nozzle to be controlled independently of the oxygen gas for blowing. In a blowing method that uses a lance that is capable of preventing the metal from adhering to the furnace opening and / or the inner wall of the furnace,
The dust concentration in the exhaust gas of the refining furnace generated during the blowing of the hot metal is measured, and the pure oxygen flow rate in the oxygen gas injected from the metal melting nozzle is adjusted according to the obtained dust concentration to flow. A method for suppressing and blowing metal ingots in a converter type refining furnace.
JP10265296A 1998-09-18 1998-09-18 Blowing method for restraining sticking of metal in converter type refining furnace Pending JP2000096124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10265296A JP2000096124A (en) 1998-09-18 1998-09-18 Blowing method for restraining sticking of metal in converter type refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10265296A JP2000096124A (en) 1998-09-18 1998-09-18 Blowing method for restraining sticking of metal in converter type refining furnace

Publications (1)

Publication Number Publication Date
JP2000096124A true JP2000096124A (en) 2000-04-04

Family

ID=17415241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10265296A Pending JP2000096124A (en) 1998-09-18 1998-09-18 Blowing method for restraining sticking of metal in converter type refining furnace

Country Status (1)

Country Link
JP (1) JP2000096124A (en)

Similar Documents

Publication Publication Date Title
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP4737176B2 (en) Method for controlling adhesion of metal in the refining furnace
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JP4016502B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP2000096124A (en) Blowing method for restraining sticking of metal in converter type refining furnace
JP2011179041A (en) Method for removing metal in converter
JP4016500B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP3297797B2 (en) Lance and method of removing ingots in furnace using the lance
JP2002332513A (en) Method for removing metal on nose of melting vessel furnace
JP4979514B2 (en) Hot metal dephosphorization method
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
JP4761938B2 (en) Blowing method for converter
JP4016501B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP3225747B2 (en) Vacuum degassing of molten steel
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2524083Y2 (en) Lance for blowing and furnace mouth metal cutting
JP2007046116A (en) Furnace body of converter
JP3733013B2 (en) Hot metal dephosphorization method
JP2007077491A (en) Blowing method for converter
JPH11140526A (en) Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace
JPH10251731A (en) Converter operating method capable of restraining metal from sticking on furnace opening hole
JPH10317044A (en) Converter blowing method of restraining stuck metal on furnace opening hole part
JP2917848B2 (en) Converter blasting and furnace mouth metal melting lance
JP3470571B2 (en) Method of suppressing adhesion of furnace mouth metal in converter type refining furnace