JPH11140526A - Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace - Google Patents

Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace

Info

Publication number
JPH11140526A
JPH11140526A JP30732397A JP30732397A JPH11140526A JP H11140526 A JPH11140526 A JP H11140526A JP 30732397 A JP30732397 A JP 30732397A JP 30732397 A JP30732397 A JP 30732397A JP H11140526 A JPH11140526 A JP H11140526A
Authority
JP
Japan
Prior art keywords
furnace
metal
oxygen
melting
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30732397A
Other languages
Japanese (ja)
Inventor
Ryo Kawabata
涼 川畑
Hideshige Tanaka
秀栄 田中
Ichiro Kikuchi
一郎 菊地
Satoshi Kodaira
悟史 小平
Shigeru Inoue
茂 井上
Kanji Hide
寛治 日出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30732397A priority Critical patent/JPH11140526A/en
Publication of JPH11140526A publication Critical patent/JPH11140526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for melting the deposited metal which secures the productivity of a converter while restraining the erosion of refractory in the converter and the deposition of metal at the furnace opening hole part and the side wall in the furnace. SOLUTION: Raw material consisting essentially of molten iron as iron source is charged into the converter type refining furnace 1, and a lance arranging oxygen nozzles 7 for melting the deposited metal on the outer periphery is inserted from the furnace opening hole part 14 of the refining furnace and the reaching height of blowing locuses of the oxygen for melting the deposited metal to the furnace opening hole part and the side wall in the furnace, is controlled so as to become lower than the heights of the deposited metals 8 and 16. Jetting direction of the oxygen jetting from the oxygen nozzles 7 for melting the stuck metal, is made to the downward direction of 40-90 deg. in the angle θ formed with the axial line in the longitudinal direction of the lance or the horizontal direction. Further, the molten iron having P concn. by pre- dephosphorizing to the P concn. demanded in a product or lower, is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は転炉型精錬炉におい
て、炉口及び炉内側壁地金の付着を抑制する精錬方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining method in a converter type refining furnace, which suppresses the adhesion of metal at the furnace port and the inner wall of the furnace.

【0002】[0002]

【従来の技術】転炉吹錬において、吹錬中発生するスピ
ッティング、スロッピングにより飛散した溶鋼、スラグ
の一部は炉口や炉内側壁に地金として付着する。付着し
た地金はヒ−トを続けるにつれ成長し、その大きさがあ
る限度以上になると溶銑及びスクラップ装入の障害にな
るばかりでなく、吹錬中の落下等により操業に大きな支
障を与える。よって炉口や炉内側壁に付着した地金(以
下、両方合わせて「炉内壁地金」という)は操業に支障
をきたす大きさ以上になる前に除去する必要がある。
2. Description of the Related Art In converter blowing, part of molten steel and slag scattered by spitting and slopping generated during the blowing adhere to a furnace port and a furnace inner wall as metal. The deposited metal grows as the heat continues, and if its size exceeds a certain limit, it not only hinders the charging of hot metal and scrap, but also greatly impedes the operation due to falling during blowing. Therefore, ingots adhering to the furnace opening and the inner wall of the furnace (hereinafter, both referred to as “inner wall ingots”) need to be removed before the metal becomes larger than the size that hinders the operation.

【0003】炉口地金を除去する伝統的方法としてス
クラップシュ−トを炉口地金部にぶつけ物理的に除去す
る方法(先行技術1)がある。しかしながらこの方法は
転炉非吹錬時に実施するため非製鋼時間の増大を招き転
炉生産性を著しく阻害する。又、スクラップシュ−トを
炉口地金部に直接ぶつけるため、その衝撃で炉口レンガ
の脱落をおこす可能性がある。
[0003] As a traditional method for removing the furnace slab metal, there is a method of hitting the scrap slab to the furnace slab metal and physically removing the scrap (Prior Art 1). However, since this method is carried out when the converter is not blown, it increases the non-steel making time and significantly impairs converter productivity. In addition, since the scraps are directly hit against the metal slab, the impact may cause the bricks of the furnace to fall off.

【0004】一方、物理的な除去方法以外にも吹錬中
に発生する排ガスを2次燃焼させ炉口地金を溶解除去す
る方法が種々提案されている。例えば特開平4-084346号
公報に開示された方法(先行技術2)がある。これは酸
素底吹き転炉において、通常吹錬1チャージに対して、
スラグレス吹錬を1チャージ程度の割合で行い、上吹ラ
ンスから酸素ガスを炉内に導入し、炉口近傍の地金を溶
解する方法であり、さらに炉内スラグ生成量が20kg/t
-steel以下が地金除去に効果があるとしている。
On the other hand, in addition to the physical removal method, various methods have been proposed in which exhaust gas generated during blowing is subjected to secondary combustion to dissolve and remove the furnace mouth metal. For example, there is a method (prior art 2) disclosed in JP-A-4-084346. This is an oxygen bottom blown converter.
This is a method in which slagless blowing is performed at a rate of about 1 charge, oxygen gas is introduced into the furnace from the upper blowing lance, and the metal in the vicinity of the furnace port is melted. In addition, the amount of slag generated in the furnace is 20 kg / t.
-Steel and below are said to be effective in removing ingots.

【0005】更に、例えば特開平6-248323号公報は、
吹錬中に、吹錬用主ランスの側壁に設けた吹錬用ランス
軸に対してθ=25〜40°の範囲内の角度で下向きに
取付けられた2次燃焼用酸素供給ノズルから湯面に向け
て2次燃焼用酸素を吹き付け、転炉排ガスを炉内で燃焼
させて炉口に付着した地金を除去する方法(先行技術
3)を開示している。
Further, for example, JP-A-6-248323 discloses that
During blowing, a secondary combustion oxygen supply nozzle mounted downward at an angle within the range of θ = 25 to 40 ° with respect to a blowing lance axis provided on a side wall of the main blowing lance, and a molten metal surface is formed. Discloses a method (prior art 3) of spraying oxygen for secondary combustion to burn the converter exhaust gas in the furnace to remove the metal that has adhered to the furnace opening.

【0006】特開昭61−139616号公報は、転
炉精錬中に、吹錬用ノズル及び炉口地金溶解用ノズルを
備えた吹錬用ランスを用いて、炉口地金溶解用ノズルか
ら転炉炉口に向けて空気を噴射させることにより炉口地
金を溶解・除去する方法(先行技術4)を開示してい
る。
[0006] Japanese Patent Application Laid-Open No. 61-139616 discloses that, during converter refining, a blowing lance provided with a blowing nozzle and a furnace port smelting nozzle is used to melt a furnace port smelting nozzle. Disclosed is a method (prior art 4) of melting and removing a furnace port metal by injecting air toward a converter furnace port.

【0007】また、特開平9−3519号公報は、転
炉精錬中に、吹錬用酸素ノズル、2次燃焼用ノズル及び
ランス地金溶解用ノズルを備えた吹錬用ランスを用い
て、2次燃焼用ノズルからは水平乃至下向きに酸素を噴
射させることにより炉口地金を溶解除去し、またランス
地金溶解用ノズルから少量の酸素を噴射させることによ
り、ランス自身に付着した地金を溶解除去する方法(先
行技術5)を開示している。
[0007] Japanese Patent Application Laid-Open No. 9-3519 discloses that during converter refining, a blowing lance having a blowing oxygen nozzle, a secondary combustion nozzle and a lance metal melting nozzle is used. From the nozzle for the next combustion, oxygen is injected horizontally or downward to melt and remove the furnace mouth metal, and by injecting a small amount of oxygen from the nozzle for melting the lance metal, the metal that has adhered to the lance itself is removed. A method for dissolving and removing (Prior Art 5) is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、先行
技術1では転炉生産性が低下し、また炉口レンガを損傷
する危険性がある。先行技術2〜4では、COガスを炉
内で二次燃焼させることにより炉口地金のみならず、炉
内耐火物の溶損が著しく炉寿命を極度に短くすると言う
問題点があった。
However, in the prior art 1, there is a danger that the converter productivity is reduced and the furnace bricks are damaged. The prior arts 2 to 4 have a problem that the secondary combustion of the CO gas in the furnace causes not only the furnace slab metal but also the refractories in the furnace to melt significantly and shorten the furnace life extremely.

【0009】更に、本発明者らは、転炉炉口地金の溶
解除去技術の開発に際して、炉口耐火物に対する損傷を
極力防止し、しかも効率的に行うために、下記点に着眼
した。
Further, the inventors of the present invention focused on the following points in order to minimize damage to the refractory at the furnace port and to carry out the processing efficiently, when developing a technique for dissolving and removing the metal at the furnace port of the converter furnace.

【0010】炉内壁地金溶解用ノズルより噴射した酸素
ガスを、効率よく地金の溶解に使い、しかも地金部に付
与する酸素ガスの運動エネルギーを小さくし、これに伴
って地金付着部の耐火物及びその周辺の耐火物に付与さ
れる酸素ガスの運動エネルギーを小さくして、これら耐
火物の部分における温度を過熱させないようにすること
が重要であることを着想した。
[0010] Oxygen gas sprayed from the nozzle for melting the ingot of the inner wall of the furnace is efficiently used for melting the ingot, and the kinetic energy of the oxygen gas applied to the ingot is reduced. It has been conceived that it is important to reduce the kinetic energy of oxygen gas given to the refractory and its surrounding refractories so that the temperature in these refractories is not overheated.

【0011】上記観点によれば、上記先行技術3〜5で
は、次の問題がある。先行技術3では、2次燃焼用酸素
の噴射方向が比較的鉛直下向きに近いので、炉内排ガス
に巻き込まれながらCOガスを2次燃焼させ、炉内から
炉口にかけての2次燃焼に大部分が消費される。従っ
て、その際発生する高熱による2000℃以上の高温ガ
スは、転炉炉口地金の溶解のみならず転炉炉口および炉
口耐火物に著しい損傷を与え易い。
According to the above viewpoints, the above-mentioned prior arts 3 to 5 have the following problems. In the prior art 3, since the injection direction of the oxygen for secondary combustion is relatively vertically downward, the CO gas is secondary-burned while being caught in the furnace exhaust gas, and most of the secondary combustion from the furnace to the furnace port is performed. Is consumed. Therefore, the high-temperature gas of 2000 ° C. or more due to the high heat generated at that time tends to cause not only melting of the converter port metal but also significant damage to the converter port and the furnace port refractory.

【0012】先行技術4によれば、炉口地金溶解用の酸
素源として空気を用いるので、酸素を噴射させる場合よ
りも噴射量が増加し、炉口耐火物の金物の溶損を防止す
ることができる。ところが、空気では酸素濃度が低いの
で、炉口地金の溶解に時間を要し効率が悪い。
According to the prior art 4, since air is used as an oxygen source for melting the furnace mouth metal, the injection amount is increased as compared with the case of injecting oxygen, and the melting of the hardware of the furnace mouth refractory is prevented. be able to. However, since the oxygen concentration in air is low, it takes time to dissolve the furnace mouth metal and the efficiency is poor.

【0013】先行技術5によれば、炉口地金溶解用の酸
素は2次燃焼用ノズルから水平方向乃至比較的水平方向
に近い角度で噴射されるので、噴射された酸素ガスの軌
跡が炉口地金に到達する。従って、炉口地金を酸化して
低融点の鉄酸化物を生成させるので、炉口地金は容易に
溶解除去される。しかしながら、2次燃焼用酸素の軌跡
が炉口地金部に到達するので、この部分は酸素ガスによ
り大きな運動エネルギーを付与される。そのため、炉口
耐火物に対する動圧が加わり、この部分の溶損が発生す
ることがあるので、その動圧の調整が必要である。
According to the prior art 5, since oxygen for melting the furnace mouth metal is injected from the secondary combustion nozzle at an angle close to a horizontal direction or a relatively horizontal direction, the trajectory of the injected oxygen gas is determined by the furnace. Reach the bullion. Accordingly, since the furnace mouth metal is oxidized to generate a low-melting iron oxide, the furnace mouth metal is easily dissolved and removed. However, since the trajectory of the secondary combustion oxygen reaches the furnace mouth metal part, a large kinetic energy is given to this part by the oxygen gas. For this reason, a dynamic pressure is applied to the furnace port refractory, which may cause erosion of this portion. Therefore, it is necessary to adjust the dynamic pressure.

【0014】この発明の目的は、転炉における溶鋼の生
産性を確保し、転炉耐火物に悪影響を与えることなく転
炉の炉口地金及び炉内側壁地金の付着を抑制し、また、
上記地金を溶解する方法を提供することにある。
It is an object of the present invention to secure the productivity of molten steel in a converter, to suppress the adhesion of the metal at the furnace opening and the inner wall of the furnace without adversely affecting the refractory of the converter. ,
An object of the present invention is to provide a method for dissolving the metal.

【0015】[0015]

【課題を解決するための手段】本発明者らは種々検討の
結果、上記の問題点を解決し以下の方法を開発した。請
求項1記載の炉口及び炉内側壁地金の付着を抑制する転
炉吹錬方法は、溶銑を主たる鉄源とした原料を転炉型精
錬炉に装入し、外周に地金溶解用酸素ノズルを設けたラ
ンスを上記精錬炉の炉口から挿入し、そして、上記原料
を上吹き酸素及び/又は底吹き酸素により吹錬する方法
において、上記地金溶解用酸素の吹込み軌跡の炉口及び
炉内側壁への到達点の高さが、上記炉口及び炉内側壁に
付着する地金の高さより低くなるよう制御することに特
徴を有するものである。
As a result of various studies, the present inventors have solved the above problems and developed the following method. A converter blowing method for suppressing the adhesion of the metal at the furnace port and the inner wall of the furnace according to claim 1 is a method of charging a raw material using molten iron as a main iron source into a converter type refining furnace and dissolving the metal on the outer periphery. In a method in which a lance provided with an oxygen nozzle is inserted from the furnace port of the refining furnace, and the raw material is blown with top-blown oxygen and / or bottom-blown oxygen, the furnace of the blowing trajectory of the ingot for melting metal ingot is used. The present invention is characterized in that the height of the arriving point to the port and the inner wall of the furnace is controlled to be lower than the height of the metal sticking to the furnace port and the inner wall of the furnace.

【0016】但し、ここで地金溶解用酸素の軌跡の炉内
壁への到達点とは、必ずしも炉内壁に到達することを指
すのではなく、炉壁に沿って上昇する場合も指す。請求
項2記載の炉口及び炉内側壁地金の付着を抑制する転炉
吹錬方法は、請求項1記載の方法において、上記地金溶
解用酸素ノズルから噴射させる酸素の噴射方向を、上記
ランスの長手方向軸心線とのなす角度が40〜90°の
範囲内であって、且つ下向き乃至水平方向にすることに
特徴を有するものである。
However, the point at which the trajectory of the oxygen for melting metal reaches the inner wall of the furnace does not necessarily mean that the trajectory reaches the inner wall of the furnace, but also indicates that the trajectory rises along the furnace wall. The converter blowing method for suppressing the adhesion of the furnace port and the furnace inner wall metal according to claim 2 is the method according to claim 1, wherein the injection direction of the oxygen injected from the metal melting oxygen nozzle is set to The angle between the lance and the longitudinal axis is in the range of 40 to 90 °, and the lance is directed downward or horizontally.

【0017】請求項3記載の炉口及び炉内側壁地金の付
着を抑制する転炉吹錬方法は、請求項1又は2記載の方
法において、溶銑のP濃度を成品で要求されるP濃度以
下に予め脱P精錬し、上記脱Pされた溶銑を主たる鉄源
原料とすることに特徴を有するものである。
The converter blowing method for suppressing the adhesion of the metal at the furnace port and the inner wall of the furnace according to claim 3 is the method according to claim 1 or 2, wherein the P concentration of the hot metal is adjusted to the P concentration required for the product. The present invention is characterized in that it is preliminarily de-P-refined and the hot metal de-P is used as a main iron source material.

【0018】[0018]

【発明の実施の形態】本発明者らは、炉口耐火物の損傷
を抑制しつつ、効率的に炉口地金の付着を抑制する方法
を開発するため鋭意研究を重ね、下記知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies to develop a method for efficiently suppressing the adhesion of metal at the furnace port while suppressing damage to the refractory at the furnace port, and obtained the following findings. Was.

【0019】(1)この発明の重要な特徴である、炉内
壁に付着した地金溶解用噴射酸素軌跡の炉内壁への到達
点の鉛直方向高さが、炉内壁に付着した地金の高さより
低くなるよう制御することに関して、以下説明する。
(1) An important feature of the present invention is that the vertical height of the point where the trajectory of the injection oxygen for metal ingot adhering to the furnace inner wall reaches the furnace inner wall is the height of the metal adhering to the furnace inner wall. The control to be lower than the above will be described below.

【0020】図1は、この発明を実施するために使用す
る装置例の概略縦断面図である。溶銑12及び造滓材1
3が装入された転炉1の上方から、炉口14を通って炉
内に吹錬用ランス5を挿入する。吹錬用ランス5には、
下端に吹錬用酸素ノズル6を備え、下端から上方の所定
の位置に炉内壁地金溶解用ノズル7を備えている。吹錬
用ランス5の構造としては、酸素供給管、冷却用給水管
及び冷却用排水管の三重管構造でも、あるいは、上記三
重管の酸素供給管から炉口地金溶解用酸素管を独立させ
た四重管構造のいずれでもよい。但し、四重管構造であ
れば炉口地金溶解用酸素の流量を制御し易いのでより望
ましい。
FIG. 1 is a schematic vertical sectional view of an example of an apparatus used to carry out the present invention. Hot metal 12 and slag material 1
A blowing lance 5 is inserted into the furnace through the furnace port 14 from above the converter 1 into which the furnace 3 is charged. The blowing lance 5
An oxygen nozzle 6 for blowing is provided at a lower end, and a nozzle 7 for melting metal ingot on a furnace inner wall is provided at a predetermined position above the lower end. As the structure of the blowing lance 5, a triple pipe structure of an oxygen supply pipe, a cooling water supply pipe, and a cooling drain pipe, or an oxygen pipe for melting a furnace port metal from the triple pipe oxygen supply pipe may be used. Or a quadruple tube structure. However, a four-tube structure is more preferable because the flow rate of the oxygen for melting the metal at the furnace port can be easily controlled.

【0021】先ず、炉内壁地金溶解用ノズル7から吐出
された酸素の軌跡を表わす曲線を数値計算により求め
た。噴流酸素の軌跡を求めるに当たっては、転炉の炉内
半径、吹錬用上吹き酸素の吐出流速、地金溶解用酸素の
吐出流速、及び地金溶解用ノズルの取付け角度を種々変
化させた。図2に、地金溶解用酸素の軌跡を例示する。
First, a curve representing the trajectory of the oxygen discharged from the nozzle 7 for melting the metal on the inner wall of the furnace was obtained by numerical calculation. In determining the trajectory of the jet oxygen, the inside radius of the converter, the discharge velocity of the top blown oxygen for blowing, the discharge velocity of the oxygen for dissolving the metal, and the mounting angle of the nozzle for dissolving the metal were varied. FIG. 2 illustrates the locus of oxygen for dissolving metal.

【0022】得られた曲線に基づき、地金溶解用酸素の
軌跡の炉内壁への到達点の鉛直方向高さについて調べ
た。但し、ここで地金溶解用酸素の軌跡の炉内壁への到
達点とは、必ずしも炉内壁に到達することを指すのでは
なく、炉壁に沿って上昇する場合も指す。図3は、地金
溶解用酸素ノズルの高さ位置と地金溶解用酸素の軌跡の
炉内壁への到達点の鉛直方向高さ位置との差(以下、Δ
C で表記する)と、地金溶解用酸素の吐出流速の鉛直
成分(以下、UOVで表記する)との関係をプロットした
グラフである。但し、Rは転炉の炉内半径を表わす。
ここで、地金溶解用酸素ノズルからの酸素吐出口の位置
を座標の原点にし、高さ方向の位置及び速度の向きは鉛
直上向きを正とし、そして水平方向の位置及び速度の向
きは炉内径炉壁方向を正とした。
Based on the obtained curve, the vertical height of the trajectory of the trajectory of the ingot for dissolving the metal to the inner wall of the furnace was examined. However, the point at which the trajectory of the metal melting oxygen reaches the inner wall of the furnace does not necessarily mean that the trajectory reaches the inner wall of the furnace, but also indicates that the trajectory rises along the furnace wall. FIG. 3 shows the difference between the height position of the metal melting oxygen nozzle and the vertical height position of the trajectory of the metal melting oxygen trajectory reaching the furnace inner wall (hereinafter, Δ
and h C at hereinafter), the vertical component of the discharge flow rate of the oxygen for bullion dissolved (hereinafter, a graph plotting the relationship between hereinafter) in U OV. Here, R represents the inside radius of the converter.
Here, the position of the oxygen discharge port from the metal dissolution oxygen nozzle is the origin of the coordinates, the position in the height direction and the direction of the velocity are positive in the vertical upward direction, and the position in the horizontal direction and the direction of the velocity are the furnace inner diameter. The furnace wall direction was positive.

【0023】なお、上記地金溶解用酸素の軌跡は、実操
業における操業条件を考慮し、UOV=85〜342m/
sの範囲内の各種水準、UOr=346〜480m/s
(但し、UOrは地金溶解用酸素の吐出流速の炉内半径方
向成分)の範囲内の各種水準、R=1〜3mの範囲内の
各種水準、そして炉内空塔速度は上向きで1.3〜9m
/sの範囲内の各種水準に変化させて求めたものであ
る。
Incidentally, the trajectory of the oxygen for dissolving the metal is expressed by U OV = 85 to 342 m / considering the operating conditions in the actual operation.
various levels in the range of s, U Or = 346-480 m / s
(However, U Or is a radial component in the furnace of the discharge flow rate of the metal melting oxygen in the furnace), various levels in the range of R = 1 to 3 m, and the superficial velocity in the furnace is 1 in the upward direction. .3-9m
/ S is obtained by changing to various levels within the range of / s.

【0024】地金溶解用酸素ノズルから吐出された酸素
の噴出流は、地金溶解用酸素の軌跡の炉内壁への到達点
において、自己の、即ち上記酸素噴出流の水平方向速度
成分が0(零)になる。この発明におけるの重要な特徴
である、炉内壁に付着した地金溶解用噴射酸素軌跡の炉
内壁への到達点の鉛直方向高さが、炉内壁に付着した地
金の高さより低いとは、上記到達点が炉内壁付着地金よ
りも低い位置にくることを指す。そして、以後の地金溶
解用酸素は、下方からのガス流れに伴って上昇し、地金
を溶解し、あるいは地金付着を抑制することになる。こ
のように、この発明においては、付着地金に付与される
地金溶解用噴射酸素の運動エネルギーを小さくし、地金
付着部及びその周辺の耐火物に付与される酸素ガスの運
動エネルギーも小さくして、これら耐火物の部分を過熱
させないようにして耐火物の溶損を抑制するものであ
る。なお、ここで、地金溶解用酸素の吹込み軌跡の最下
点の位置は、転炉内溶鋼の上表面よりも高いことが必要
である。
The jet of oxygen discharged from the metal-dissolving oxygen nozzle has its own, that is, the horizontal velocity component of the oxygen jet is zero at the point where the trajectory of the metal-dissolving oxygen reaches the inner wall of the furnace. (Zero). An important feature of the present invention is that the vertical height of the point at which the injection oxygen trajectory for ingot melting attached to the furnace inner wall reaches the furnace inner wall is lower than the height of the metal attached to the furnace inner wall, This indicates that the above-mentioned arrival point is located at a position lower than the ingot on the inner wall of the furnace. Then, the subsequent metal-dissolving oxygen rises with the gas flow from below, thereby dissolving the metal or suppressing the adhesion of the metal. As described above, in the present invention, the kinetic energy of the injection oxygen for ingot dissolution applied to the ingot is reduced, and the kinetic energy of oxygen gas applied to the refractory in the ingot and the surrounding area is also reduced. Thus, the refractory is prevented from being overheated to suppress the erosion of the refractory. Here, it is necessary that the position of the lowest point of the injection trajectory of the oxygen for ingot melting be higher than the upper surface of the molten steel in the converter.

【0025】このように、この発明の大きな特徴は、地
金溶解用噴射酸素軌跡の炉内壁への到達点の鉛直方向高
さが、炉内壁に付着した地金の高さより低くなるよう制
御することにより、付着地金の表面に効率よく接触し、
且つ耐火物の溶損を抑制することをねらった点にある。
かくして、地金溶解用酸素の一部が地金中の鉄と反応し
て低融点の鉄酸化物を生成し、炉口耐火物9の損傷を抑
制しつつ、炉口地金8を速やかに溶解・除去できること
をつきとめた。
As described above, a major feature of the present invention is that the height of the trajectory of the injection oxygen for ingot melting to the inner wall of the furnace in the vertical direction is controlled to be lower than the height of the ingot adhering to the inner wall of the furnace. As a result, it can efficiently contact the surface of the
In addition, it is intended to suppress the erosion of the refractory.
Thus, a part of the metal for melting metal reacts with the iron in the metal to form iron oxide having a low melting point, thereby suppressing damage to the furnace port refractory 9 and quickly forming the furnace port metal 8. We found that it can be dissolved and removed.

【0026】(2)次に、本発明者らは、種々検討の結
果、炉口に付着する地金の生成要因について以下の知見
を得、それを基に炉口地金付着を抑制する転炉吹錬方法
を開発した。
(2) Next, as a result of various studies, the present inventors have obtained the following knowledge on the factors that cause the formation of slabs adhering to the furnace opening, and based on the findings, have found that there is a method for suppressing the adhesion of slabs. Furnace blowing method was developed.

【0027】 炉口付着地金の生成量を定量的に把握
する方法として、図4に示すように転炉1から発生する
転炉排ガスの通路2にダスト濃度計3を設置し、排ガス
中ダスト濃度と炉口地金4の除去頻度の関係を調査し
た。その結果、図5に示すように、吹錬初期における排
ガスダスト量と、炉口地金除去頻度との間には極めて良
い相関が得られたので、地金付着を定量的に把握する手
法の一つとして用いた。
As a method of quantitatively grasping the amount of the metal produced on the furnace port, as shown in FIG. 4, a dust concentration meter 3 is installed in a passage 2 of the converter exhaust gas generated from the converter 1, and the dust in the exhaust gas is measured. The relationship between the concentration and the removal frequency of the furnace mouth metal 4 was investigated. As a result, as shown in FIG. 5, an extremely good correlation was obtained between the amount of exhaust gas dust in the early stage of blowing and the frequency of removal of the slab metal, so that the method of quantitatively grasping the metal splatter was used. Used as one.

【0028】図6に示すように、従来吹錬においては、
吹錬初期にダスト発生速度が大きい。従って、炉口地金
も吹錬初期に生成されている割合が多い。更に調査をし
た結果、図7、8に示すように溶銑中Si濃度と炉内残
留スラグ量の影響が大きいと言う知見を得た。
As shown in FIG. 6, in the conventional blowing,
Dust generation rate is high at the beginning of blowing. Therefore, a large amount of furnace mouth metal is generated in the early stage of blowing. As a result of further investigation, it was found that the influence of the Si concentration in the hot metal and the amount of residual slag in the furnace was large as shown in FIGS.

【0029】Siは溶銑中炭素よりも酸化されやすく、
脱炭吹錬の初期は脱珪素反応が優先的に起こる。この時
溶銑の自由表面近傍は稠密であり、酸素ガスの衝突また
は通過により非常にダスト(スプラッシュ)が発生しや
すい状態になっていると考えられる。一方、脱炭反応が
活発な時期に移行すると溶銑または溶鋼の自由表面近傍
は脱炭反応によって生じたCOガスが存在し泡状となっ
てダスト(スプラッシュ)が発生しにくい状態となると
考えられる。
Si is more easily oxidized than carbon in hot metal,
In the early stage of decarburization blowing, the silicon removal reaction occurs preferentially. At this time, the vicinity of the free surface of the hot metal is dense, and it is considered that dust (splash) is very likely to be generated by collision or passage of oxygen gas. On the other hand, when the decarburization reaction shifts to an active period, it is considered that CO gas generated by the decarburization reaction is present in the vicinity of the free surface of the hot metal or molten steel and becomes foamy, so that dust (splash) is hardly generated.

【0030】炉内残留スラグは、前ヒートの脱炭吹錬過
程で一度溶融した物であり、脱炭吹錬初期においても速
やかに溶解する。従って、初期に速やかに溶銑の自由表
面を覆い、ダストの発生を抑制できると考えられる。
The residual slag in the furnace is a substance once melted in the decarburization blowing process of the previous heat, and is quickly dissolved even in the early stage of the decarburization blowing. Therefore, it is considered that the free surface of the hot metal can be quickly covered at an early stage, and generation of dust can be suppressed.

【0031】以上より、この発明においては、溶銑Si
濃度を0.15%以下とし、前ヒートスラグを10kg/t
-steel以上炉内に残留させて吹錬することにより、地金
付着の抑制に一層効果が上がることがわかった。
As described above, in the present invention, the hot metal Si
Concentration is 0.15% or less, and heat slag is 10kg / t
It was found that by blowing the steel remaining in the furnace for more than -steel, the effect of suppressing the adhesion of ingot was further improved.

【0032】 従来吹錬の炉口付着地金を採取して詳
細に検討したところ、地金とスラグの小粒が混合した状
態であることが判明した。この状態で炉口に付着すると
相互に絡み合って強固に付着してしまう。炉内に存在す
るスラグ量と地金除去頻度の関係を調べた結果、図9に
示すように炉内に存在するスラグ量が少ないほど炉口地
金の付着が少ないと言う知見を得た。これは、炉内スラ
グ量が少ないほど炉口に付着した時点でスラグの割合が
少なくなり、特に初期に多く発生するダストは溶銑成分
とほぼ一致するので融点が低く、従って、炉口付着物中
から滴下するためであると考えられる。
[0032] The ingots attached to the furnace mouth of the conventional blowing were collected and examined in detail, and it was found that the ingots were in a state in which the ingots and small particles of slag were mixed. If it adheres to the furnace port in this state, it is entangled with each other and adheres firmly. As a result of examining the relationship between the amount of slag present in the furnace and the frequency of metal removal, it was found that as shown in FIG. 9, the smaller the amount of slag present in the furnace, the smaller the adhesion of the furnace opening metal. This is because the smaller the amount of slag in the furnace, the smaller the percentage of slag at the time it adheres to the furnace port, and the lower the melting point, especially since the dust generated in the initial stage almost coincides with the hot metal component. It is considered that this is because of dripping from

【0033】ただし、スラグ量が過度に少ない場合は溶
鉄のカバーとなるものが存在せず溶鉄飛散につながる。
しかし、本発明においては、前ヒートの残留スラグが少
なくとも10kg/t-steel以上炉内に存在しているので、
この問題は回避できる。
However, if the amount of slag is too small, there is no cover for the molten iron, which leads to the scattering of the molten iron.
However, in the present invention, since the residual slag of the pre-heat exists in the furnace at least 10 kg / t-steel or more,
This problem can be avoided.

【0034】以上より、この発明においては、溶銑Si
濃度を0.15%以下とし、前ヒートスラグを10kg/t
-steel以上炉内に残留させて吹錬することにより、地金
付着の抑制に一層効果が上がることがわかった。
As described above, in the present invention, hot metal Si
Concentration is 0.15% or less, and heat slag is 10kg / t
It was found that by blowing the steel remaining in the furnace for more than -steel, the effect of suppressing the adhesion of ingot was further improved.

【0035】以上により、本発明においては、炉内スラ
グを30kg/t-steel以下にして吹錬することにより、地
金付着の抑制に一層効果が上がることがわかった。 以上の開発に基づき、吹錬を連続したときの状況を
調査した。その結果、図10に示すように上記の条件を
適用した吹錬の割合が高いほど炉口地金除去頻度は低下
し、特にその適用比率が80%以上に達したときに顕著
な効果が得られた。
As described above, in the present invention, it was found that by blowing the slag in the furnace with the slag in the furnace being 30 kg / t-steel or less, the effect of suppressing the adhesion of the ingot was further improved. Based on the above development, the situation when blowing was continued was investigated. As a result, as shown in FIG. 10, the higher the ratio of blowing with the above conditions applied, the lower the frequency of furnace slab removal, and a remarkable effect is obtained especially when the application ratio reaches 80% or more. Was done.

【0036】 上記の開発において、予め溶銑中の燐
濃度を成品の燐濃度以下にしておくことにより地金付着
の抑制に一層効果があることがわかった。この発明にお
いては、燐濃度を成品の燐濃度以下に予備脱リンした溶
銑を使用することが望ましい。
In the above-mentioned development, it was found that by preliminarily setting the phosphorus concentration in the hot metal to be equal to or less than the phosphorus concentration of the product, the effect of suppressing the adhesion of the metal was further improved. In the present invention, it is desirable to use hot metal that has been preliminarily dephosphorized so that the phosphorus concentration is equal to or lower than that of the product.

【0037】 さて、この発明においては図1に示し
たように、溶銑12及び造滓材13が装入された転炉1
の上方から、炉口14を通って炉内に吹錬用ランス5を
挿入する。但し、溶銑12のSi濃度及び造滓材13の
投入量は、通常の精錬における基準で行ない、前ヒート
のスラグを残留させることはしない。吹錬用ランス5に
は、下端に吹錬用酸素ノズル6を備え、下端から上方の
所定の位置に炉口地金溶解用ノズル7を備えている。吹
錬用ランス5の構造としては、酸素供給管、冷却用給水
管及び冷却用排水管の三重管構造でも、あるいは、上記
三重管の酸素供給管から炉口地金溶解用酸素管を独立さ
せた四重管構造のいずれでもよい。但し、四重管構造で
あれば炉口地金溶解用酸素の流量を制御し易いのでより
望ましい。
Now, in the present invention, as shown in FIG. 1, a converter 1 into which a hot metal 12 and a slag material 13 are charged
From above, the blowing lance 5 is inserted into the furnace through the furnace port 14. However, the Si concentration of the hot metal 12 and the input amount of the slag-making material 13 are determined based on the standard in ordinary refining, and the slag from the previous heat is not left. The blowing lance 5 is provided with a blowing oxygen nozzle 6 at the lower end and a furnace port metal melting nozzle 7 at a predetermined position above the lower end. As the structure of the blowing lance 5, a triple pipe structure of an oxygen supply pipe, a cooling water supply pipe, and a cooling drain pipe, or an oxygen pipe for melting a furnace port metal from the triple pipe oxygen supply pipe may be used. Or a quadruple tube structure. However, a four-tube structure is more preferable because the flow rate of the oxygen for melting the metal at the furnace port can be easily controlled.

【0038】 次に、上記設備を用いて、吹錬用酸素
ノズル6から所定流量a(Nm3 /min)の酸素ガス
を噴射し、溶銑を精錬中、下記(1)式の関係を満たす
ように、炉口地金溶解用ノズル7から酸素ガスb(Nm
3 /min)を噴射する。
Next, oxygen gas having a predetermined flow rate a (Nm 3 / min) is injected from the oxygen nozzle 6 for blowing using the above-mentioned equipment, and during the refining of the hot metal, the relation of the following equation (1) is satisfied. Then, the oxygen gas b (Nm
3 / min).

【0039】 (b/a)×100=1〜50(%)--------------(1) 上記転炉は、精錬開始前の炉口14には、炉口地金8が
炉口耐火物9の表面に付着・形成されている。上記条件
で転炉吹錬を行うことにより、炉口地金8は徐々に溶解
除去される。この条件で吹錬すべきヒートは、転炉操業
にける非定常作業条件あるは非定常な工程運用、例え
ば、ヒート間の時間間隔が長くなって炉熱が低下したよ
うな場合等、与えられた条件等に応じて適宜行なうこと
により、一層効果を発揮する。
(B / a) × 100 = 1 to 50 (%) --- (1) The converter has a furnace port 14 before the start of refining. A base metal 8 is attached and formed on the surface of the furnace port refractory 9. By performing converter blowing under the above conditions, the furnace opening metal 8 is gradually dissolved and removed. Heat to be blown under these conditions is given under unsteady working conditions in the converter operation or unsteady process operation, for example, when the time interval between the heat becomes long and the furnace heat decreases. The effect is further enhanced by appropriately performing the operation according to the conditions and the like.

【0040】 一方、炉内壁地金溶解用酸素15の噴
射方向を、ランスの長手方向軸心線10に対する角度θ
が、40〜90°の角度をなして下向き乃至水平方向に
することにより、地金付着の抑制に一層効果があること
がわかった。この発明においては、上記角度θを、40
〜90°の範囲内にすることが望ましい。
On the other hand, the direction of injection of the oxygen 15 for melting the metal on the inner wall of the furnace is defined by the angle θ with respect to the longitudinal axis 10 of the lance.
However, it has been found that when the angle is in the downward direction or the horizontal direction at an angle of 40 to 90 [deg.], The effect of suppressing the adhesion of the base metal is further improved. In the present invention, the angle θ is set to 40
It is desirable to be within the range of 90 °.

【0041】 炉口地金を効率よく溶解除去するため
には、上述した条件の他に、操業及び設備条件等から決
まる、炉内ガス空塔速度、炉口地金溶解用酸素の流量及
び噴射圧力、炉口地金溶解用ノズルの径、形状、孔数及
び取付位置、炉口径、炉口の絞り角度、並びに、ランス
高さ等の因子が重要である。
In order to efficiently dissolve and remove the furnace mouth metal, in addition to the above-described conditions, the gas velocity in the furnace, the flow rate of the oxygen for melting the furnace mouth metal, and the injection are determined by the operation and equipment conditions. Factors such as the pressure, the diameter, shape, number of holes, and the mounting position of the nozzle for melting the furnace opening metal, the furnace opening, the throttle angle of the furnace opening, and the lance height are important factors.

【0042】上述した通り、この発明における酸素噴射
による炉口及び炉内側壁地金の溶解除去及び付着抑制
は、従来のように、主として炉内排ガスの2次燃焼で発
生する高熱を炉口地金に付与することにより行なう方
法、または、炉内排ガスの2次燃焼で発生する熱と、酸
素ガスを炉口地金部に直接衝突させて地金を溶解させる
こととを併用する方法に対して、酸素を地金部に直接衝
突させないようにして地金にソフトに接触させ、融点の
低い酸化鉄を生成させることにより除去することに主眼
をおく点に最大の特徴がある。
As described above, in the present invention, the melting and removal of the furnace mouth and the inner wall metal by the oxygen injection and the suppression of the adhesion are performed by using the high heat generated mainly by the secondary combustion of the furnace exhaust gas as in the prior art. To the method of applying to gold, or to the method of combining the heat generated by the secondary combustion of the furnace exhaust gas with the direct fusion of oxygen gas to the furnace mouth metal to melt the metal. The greatest feature is that the primary focus is on removing oxygen by causing it to softly contact the metal so as not to directly collide with the metal and generate iron oxide having a low melting point.

【0043】[0043]

【発明の効果】以上述べたように、この発明によれば、
転炉型精錬炉の炉口及び炉内側壁の地金付着を抑制する
と共に、付着した地金を溶解することが容易となり、従
来非精錬時間中に行っていた炉口付着地金の除去作業が
不要となり、そして転炉の生産性が大幅に向上する。こ
のような転炉吹錬方法を提供することができ、工業上有
用な効果がもたらされる。
As described above, according to the present invention,
In addition to suppressing the adhesion of ingots on the furnace port and the inner wall of the converter type refining furnace, it is easy to dissolve the ingots. Is not required, and the productivity of the converter is greatly improved. Such a converter blowing method can be provided, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において、炉口及び炉内側壁地金溶解用
ノズルを備えたランスを用いて吹錬する場合の設備例の
概念図である。
FIG. 1 is a conceptual diagram of an example of equipment in a case where blowing is performed using a lance having a furnace port and a nozzle for melting metal ingot on a furnace inner wall in the present invention.

【図2】地金溶解用酸素の吐出条件及び操業条件を変化
させた場合の地金溶解用酸素の軌跡を例示するグラフで
ある。
FIG. 2 is a graph exemplifying a trajectory of the oxygen for dissolving metal when the discharge condition and the operating condition of the oxygen for dissolving metal are changed.

【図3】地金溶解用酸素ノズルの高さ方向位置と地金溶
解用酸素の軌跡の炉内壁への到達点の鉛直方向高さとの
差(ΔhC )と、地金溶解用酸素の吐出流速の鉛直成分
(UOV)との関係をプロットしたグラフである。
FIG. 3 shows the difference (Δh C ) between the height position of the metal melting oxygen nozzle and the vertical height of the trajectory of the metal melting oxygen reaching the inner wall of the furnace, and the discharge of the metal melting oxygen. It is the graph which plotted the relationship with the vertical component ( UOV ) of the flow velocity.

【図4】一般的な脱炭吹錬の形態と、排ガス中ダスト濃
度測定の態様を説明する模式図である。
FIG. 4 is a schematic diagram illustrating a general form of decarburization blowing and a mode of measuring dust concentration in exhaust gas.

【図5】初期ダスト発生量と炉口地金除去頻度の関係を
示すグラフである。
FIG. 5 is a graph showing a relationship between an initial dust generation amount and a furnace mouth metal removal frequency.

【図6】脱炭吹錬1ヒート中におけるダスト発生量の推
移を示すグラフである。
FIG. 6 is a graph showing a change in the amount of dust generated during one heat of decarburization blowing.

【図7】脱炭吹錬初期3分のダスト発生量におよぼす溶
銑Si濃度の影響を示すグラフである。
FIG. 7 is a graph showing the effect of molten iron Si concentration on the amount of dust generated during the first three minutes of decarburization blowing.

【図8】初期ダスト発生速度におよぼす前ヒートからの
炉内残留スラグ量の影響を示すグラフである。
FIG. 8 is a graph showing the effect of the amount of residual slag in the furnace from the preheating on the initial dust generation rate.

【図9】初期ダスト発生速度におよぼす吹錬中の炉内ス
ラグ量の影響を示すグラフである。
FIG. 9 is a graph showing the effect of the amount of slag in the furnace during blowing on the initial dust generation rate.

【図10】脱炭吹錬を連続して実施する際に、本発明条
件の適用比率が炉口地金付着におよぼす効果を示すグラ
フである。
FIG. 10 is a graph showing the effect of the application ratio of the conditions of the present invention on the adhesion of the slab metal when the decarburization blowing is continuously performed.

【符号の説明】[Explanation of symbols]

1 転炉 2 排ガス通路 3 ダスト濃度計 4 炉口地金 5 吹錬用ランス 6 吹錬用酸素ノズル 7 炉内壁地金溶解用ノズル 8 炉口地金 8a 表面 9 炉口耐火物 10 軸心線 11、11’、11” 噴射酸素軌跡の鉛直方向最下点 12 溶銑 13 造滓材 14 炉口 15 炉内壁地金溶解用酸素 16 炉内側壁地金 DESCRIPTION OF SYMBOLS 1 Converter 2 Exhaust gas passage 3 Dust densitometer 4 Furnace mouth metal 5 Blowing lance 6 Blowing oxygen nozzle 7 Furnace inner wall bullion melting nozzle 8 Furnace mouth metal 8a Surface 9 Furnace mouth refractory 10 Axle wire 11, 11 ′, 11 ″ Vertical lowest point of trajectory of injected oxygen 12 Hot metal 13 Slag making material 14 Furnace port 15 Oxygen for melting metal ingot on furnace inner wall 16 Metal ingot on furnace inner wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小平 悟史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 井上 茂 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 日出 寛治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Kodaira 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Shigeru Inoue 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor, Kanji Hiji, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を主たる鉄源とした原料を転炉型精
錬炉に装入し、外周に地金溶解用酸素ノズルを設けたラ
ンスを前記精錬炉の炉口から挿入し、そして、前記原料
を上吹き酸素及び/又は底吹き酸素により吹錬する方法
において、前記地金溶解用酸素の吹込み軌跡の炉口及び
炉内側壁への到達点の高さが、前記炉口及び炉内側壁に
付着する地金の高さより低くなるよう制御することを特
徴とする、炉口及び炉内側壁地金の付着を抑制する転炉
吹錬方法。
1. A raw material containing molten iron as a main iron source is charged into a converter type refining furnace, a lance having an outer periphery provided with a metal melting oxygen nozzle is inserted from a furnace port of the refining furnace, and In the method in which the raw material is blown with top-blown oxygen and / or bottom-blown oxygen, the height of the point at which the injection trajectory of the metal infusing metal reaches the furnace port and the inner wall of the furnace is adjusted to the height of the furnace port and the inside of the furnace. A converter blowing method for controlling the adhesion of metal at the furnace port and the inner side wall of the furnace, wherein the method is controlled to be lower than the height of the metal adhered to the wall.
【請求項2】 請求項1記載の方法において、前記地金
溶解用酸素ノズルから噴射させる酸素の噴射方向を、前
記ランスの長手方向軸心線とのなす角度が40〜90°
の範囲内であって、且つ下向き乃至水平方向にすること
を特徴とする、炉口及び炉内側壁地金の付着を抑制する
転炉吹錬方法。
2. The method according to claim 1, wherein an angle of an injection direction of the oxygen injected from the oxygen nozzle for melting the metal with a longitudinal axis of the lance is 40 to 90 °.
A converter blowing method for suppressing the adhesion of the furnace opening and the inner wall of the furnace inner wall, wherein the furnace opening and the furnace inner wall are set in a downward or horizontal direction.
【請求項3】 請求項1又は2記載の発明の方法におい
て、溶銑のP濃度を成品で要求されるP濃度以下に予め
脱P精錬し、前記脱Pされた溶銑を主たる鉄源原料とす
ることを特徴とする、炉口及び炉内側壁地金の付着を抑
制する転炉吹錬方法。
3. The method according to claim 1 or 2, wherein the P concentration of the hot metal is removed in advance to a P concentration or less required for the product, and the removed hot metal is used as a main iron source material. A converter blowing method for suppressing the adhesion of metal at the furnace port and the inner wall of the furnace.
JP30732397A 1997-11-10 1997-11-10 Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace Pending JPH11140526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30732397A JPH11140526A (en) 1997-11-10 1997-11-10 Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30732397A JPH11140526A (en) 1997-11-10 1997-11-10 Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace

Publications (1)

Publication Number Publication Date
JPH11140526A true JPH11140526A (en) 1999-05-25

Family

ID=17967765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30732397A Pending JPH11140526A (en) 1997-11-10 1997-11-10 Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace

Country Status (1)

Country Link
JP (1) JPH11140526A (en)

Similar Documents

Publication Publication Date Title
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
JP4830825B2 (en) Refining method in converter type refining furnace
JPH11140526A (en) Converter blowing method restraining deposition of metal on furnace opening hole part and side wall in furnace
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP3297797B2 (en) Lance and method of removing ingots in furnace using the lance
JP4016502B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP3225747B2 (en) Vacuum degassing of molten steel
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP2524083Y2 (en) Lance for blowing and furnace mouth metal cutting
JP3577959B2 (en) Oxygen blowing lance
JPH10317044A (en) Converter blowing method of restraining stuck metal on furnace opening hole part
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JPH10251731A (en) Converter operating method capable of restraining metal from sticking on furnace opening hole
JP3750624B2 (en) Removal method of bottom metal from bottom blow converter
JP2917848B2 (en) Converter blasting and furnace mouth metal melting lance
JPH1192815A (en) Converter blowing for restraining generation of dust
JPH1192814A (en) Converter blowing for restraining generation of dust
JP2562768B2 (en) Melting method of molten metal container
JP2016180142A (en) Molten iron preliminary treatment method
JP4016501B2 (en) Blasting method for suppressing metal adhesion in converter refining furnace
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
JP2000096124A (en) Blowing method for restraining sticking of metal in converter type refining furnace
JPH10317045A (en) Method for restraining stickiness of metal on furnace opening hole part in converter type refining furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040209

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Effective date: 20070226

Free format text: JAPANESE INTERMEDIATE CODE: A523