JP2000095624A - 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法 - Google Patents

土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法

Info

Publication number
JP2000095624A
JP2000095624A JP26800398A JP26800398A JP2000095624A JP 2000095624 A JP2000095624 A JP 2000095624A JP 26800398 A JP26800398 A JP 26800398A JP 26800398 A JP26800398 A JP 26800398A JP 2000095624 A JP2000095624 A JP 2000095624A
Authority
JP
Japan
Prior art keywords
soil
application
chlorine dioxide
solid
chlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26800398A
Other languages
English (en)
Inventor
Katsutoshi Ogawa
勝利 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP26800398A priority Critical patent/JP2000095624A/ja
Publication of JP2000095624A publication Critical patent/JP2000095624A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

(57)【要約】 【課題】 従来の二酸化塩素系殺菌剤に比し少量で土壌
への良好な拡散性を実現し、且つ作業者の安全性にも優
れる土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方
法を提供すること。 【解決手段】 亜塩素酸のアルカリ金属塩及び/又はア
ルカリ土類金属塩から成る固形殺菌成分と、非吸湿性で
還元性化合物を含まない無機塩類及び/又は金属含有率
が0.001重量%以下で重金属酸化物含量が0.1重
量%以下の精製乾燥された中性〜アルカリ性の鉱産物類
を含む固形希釈剤と、を含有する土壌施用殺菌剤組成物
である。この土壌施用殺菌剤組成物を土壌に均一に施用
する土壌殺菌方法である。

Description

【発明の詳細な説明】
【0001】
【発明が属する技術分野】本発明は、土壌施用殺菌剤組
成物及びこれを用いた土壌殺菌方法に係り、更に詳細に
は、主として畑作物の生育を阻害する土壌棲息の細菌類
と糸状菌を殺菌し、同様の阻害害作用を持つ線虫類を殺
虫し、また、土壌中の雑草等の種子にダメージを与えて
その発芽を防止して除草の手間を省くとともに作物根の
発育を促し、その養分吸収を容易ならしめ、結果的に当
該作物の収穫量を向上し得る殺菌剤組成物及びその施用
方法に関するものである。
【0002】
【従来の技術】従来より、土壌の消毒法としては、除草
性に優れ、殺糸状菌、殺線虫、殺細菌及び殺ウイルスに
も効果がある臭化メチルを用いる方法が広く実施されて
きた。ところが、臭化メチルは、オゾン層破壊係数が大
きく、国際条約により我が国では2005年に全廃の予
定である。かかる事情から、臭化メチルによる消毒法の
代替方法として、二酸化塩素水の使用、二酸化塩素ガス
吹き込み、安定化二酸化塩素による殺細菌、殺糸状菌及
び殺線虫や、亜塩素酸ソーダによる殺線虫が提案されて
いる。
【0003】
【発明が解決しようとする課題】しかしながら、二酸化
塩素水を土壌に散水したり灌注した場合、二酸化塩素水
は緩やかな攪拌や混合であっても、二酸化塩素ガスとし
て水中から周囲環境へ数十パーセントの割合でガス化す
るので、経済的な損失が大きいのみならず、最も大きな
問題は、作業者が非常に危険な二酸化塩素ガスの被爆を
完全に回避するのが事実上不可能なことである。また、
二酸化塩素は土壌に速やかに吸収・吸着されるので、散
水や灌注した部分にしか作用せず拡散しないという最大
の欠点を有し、この欠点を克服するのには、必然的に散
水や灌注量を多大にせざるを得ないという課題があっ
た。
【0004】一方、安定化二酸化塩素や亜塩素酸ソーダ
においても、土壌に拡散させる手段としては大量の水で
希釈して散水する方法が採られている。例えば、100
〜800ppmの亜塩素酸ソーダ溶液を10a(アー
ル)当たり1,000〜3,000L散水したり(特許
開平8−283111号公報)、600ppmの二酸化
塩素水を10a当たり2,000〜2,500L散布し
たり(特許第2686591号)、更には、50〜15
0g/Lの安定化二酸化塩素液を水で50〜200倍に
希釈して10a当たりに2,000L散布する(特開平
9−71502号公報)ことが提案されているが、これ
らはいずれも大量の希釈水を要する。ところが、臭化メ
チル使用してきた農家では希釈用の大型タンクを持って
おらず、農薬散布用タンクを持っていたとしても通常は
100Lクラスであり、臭化メチル代替の必要性がある
農家が耕作する面積を考慮すると、ハンドリングの点一
つをとっても適応が不可能である。
【0005】更には、固体の亜塩素酸ソーダと固体酸を
組成物として施用する試みも提案されているが(特開平
1−125310号公報)、亜塩素酸塩固体に酸を近付
けるのは濃度によっては爆発の危険もあり、たとえ濃度
が小さくても二酸化塩素ガスが発生して危険極まりな
く、従って、保存安定性も全くないと言わざるを得ず、
これに加えて、危険性は温度と水分が若干高くなるに従
って桁違いに増大するという課題がある。その他代替剤
として既存農薬又はこれらの組み合わせに係るものが提
案されているが、これらの殺菌・消毒効果は、臭化メチ
ルのようにはオールマイティーに満足し得るものではな
い。
【0006】また、亜塩素酸のアルカリ金属塩及びアル
カリ土類金属塩は、その貯蔵、運搬又は取り扱いに際し
て火災、爆発、引火及び有毒ガス発生等多くの危険を伴
い、特に濃度が高い場合には一層の注意が必要である。
従って、これらの危険を極小化する処置が必須であると
ともに、二酸化塩素を土壌中に均一に発生させる拡散処
置も必須である。即ち、雑草等に対する種子発芽防止能
を有する殺菌剤組成物の施用作業時間中において、作業
者の安全性が確保でき、且つ作物の生育には阻害作用が
及ばないような施用方法の確立が極めて重要である。
【0007】本発明者らの所見から上述のことを換言す
れば、土壌施用作業後に土壌中の成分又は添加促進剤の
作用にて20〜25℃の平均的な地温で緩徐に二酸化塩
素を発生し、又は簡易な手段にて地温を高めると二酸化
塩素の発生が早まる仕組みにより、種子発芽抑制、殺虫
及び殺菌を行い、発生する二酸化塩素(ガス)の濃度
を、作業者が土壌施用準備及び施用中に二酸化塩素につ
き定められた作業許容濃度である0.1ppm(TLV
−TWA)を超えないようにする対策が必要であると言
える。また、施用後のある一定期間内に有効な二酸化塩
素濃度を維持して、種子発芽抑制、殺菌及び殺虫を数日
中に終了できる土壌圏生物の生育を制御する手法を確立
することも重要である。
【0008】本発明は、上述のような従来技術の有する
課題や所見に鑑みてなされたものであり、その目的とす
るところは、従来の二酸化塩素系殺菌剤に比し少量で土
壌への良好な拡散性を実現し、且つ作業者の安全性にも
優れる土壌施用殺菌剤組成物及びこれを用いた土壌殺菌
方法を提供することにある。
【0009】
【課題を解決するための手段】本発明者は、上記目的を
達成すべく、亜塩素酸のアルカリ金属塩及び/又はアル
カリ土類金属塩を土壌と接触させて、土壌中の主として
重金属酸化物との反応にて二酸化塩素を生成する機構に
つき鋭意検討した結果、土壌水分が60%程度である畑
地条件下では、亜塩素酸のアルカリ金属塩等の溶液を用
いると、この溶液が注入された地点の極狭い範囲でのみ
しか、種子発芽抑制、殺菌及び殺虫が実現されないこと
が判明した。
【0010】かかる現象を踏まえ、亜塩素酸のアルカリ
金属塩及び/又はアルカリ土類金属塩の固体成分を所定
の固体成分で希釈した粉状又は粒状の殺菌剤組成物を作
成し、これを耕耘等の手段によって意図する土壌に均一
に混合したところ、確実な種子発芽抑制、殺菌及び殺虫
ができることを知見した。このようにして、濃度の高い
危険な亜塩素酸塩を他の固体成分にて希釈することによ
り、飛躍的に安全性を向上させると同時に、適切な施用
量にて土壌への拡散性を担保することができることを見
出し、本発明を完成するに至った。
【0011】即ち、本発明の土壌施用殺菌剤組成物は、
亜塩素酸のアルカリ金属塩及び/又はアルカリ土類金属
塩から成る固形殺菌成分と、非吸湿性で還元性化合物を
含まない無機塩類及び/又は金属含有率が0.001重
量%以下で重金属酸化物含量が0.1重量%以下の精製
乾燥された中性〜アルカリ性の鉱産物類を含む固形希釈
剤とを含有することを特徴とする。
【0012】また、本発明の土壌施用殺菌剤組成物の好
適形態は、上記非吸湿性で還元性化合物を含まない無機
塩類が、硫酸、硝酸、塩酸及び炭酸から成る群より選ば
れた少なくとも1種の酸のアルカリ金属塩及び/又はア
ルカリ土類金属塩であり、上記中性〜アルカリ性の鉱産
物類が、珪砂、タルク、パーライト及びベントナイトか
ら成る群より選ばれた少なくとも1種のものであること
を特徴とする。
【0013】更に、本発明の土壌殺菌方法は、上述のよ
うな土壌施用殺菌剤組成物を用いる土壌殺菌方法であっ
て、上記土壌施用殺菌剤組成物を土壌に均一に施用する
ことを特徴とする。
【0014】また、本発明の土壌殺菌方法の好適形態
は、上記土壌への均一な施用を、散布後の耕起により行
うことを特徴とする。
【0015】
【発明の実施の形態】以下、本発明の土壌施用殺菌剤組
成物について詳細に説明する。上述の如く、この土壌施
用殺菌剤組成物は、亜塩素酸のアルカリ金属塩及び/又
はアルカリ土類金属塩から成る固形殺菌成分と、所定の
固形希釈剤とを含有する。
【0016】ここで、亜塩素酸のアルカリ金属塩及びア
ルカリ土類金属塩としては、代表的に亜塩素酸ナトリウ
ム、亜塩素酸カリウム又は亜塩素酸カルシウム及びこれ
らの任意の混合物が挙げられるが、工業的には亜塩素酸
ナトリウムが広く使用されており、入手の容易性からは
亜塩素酸ナトリウムが好適である。なお、亜塩素酸ナト
リウムの溶液は、25%〜40%で流通しているが、本
発明で使用すべき亜塩素酸ナトリウムの固体としては、
50%〜80%のものが流通している。80%を超える
濃度の亜塩素酸塩類は、爆発性が高くハンドリングが事
実上できないので、意味がない。
【0017】また、上記固形希釈剤は、非吸湿性で還元
性化合物を含まない無機塩類、又は金属含有率が0.0
01重量%以下、重金属酸化物含量が0.1重量%以下
である精製乾燥された中性〜アルカリ性、望ましくは中
性の鉱産物類、及びこれらの混合物である。ここで重要
なのは、無機塩類としては、酸化還元物質を不純物とし
て含まず、且つ吸湿性がないものを選択することであ
る。同様に、中性〜アルカリ性の鉱産物類では、重金属
酸化物含有率が0.1重量%以下、望ましくは0.01
重量%以下で、十分に乾燥されたものである必要があ
る。これらの条件を満足できないと、保存中に固体から
二酸化塩素ガスが発生することがあり、危険を伴う。
【0018】なお、上記還元性化合物の具体例として
は、イオウ化合物、チオ硫酸塩、亜硫酸塩及び砂糖など
を挙げることができ、重金属酸化物としては、鉄錆(F
)、二酸化マンガン及び三酸化クロムなどを挙
げることができる。また、十分に乾燥されたものとは、
代表的に含水率が0.1〜1重量%のものを意味する。
【0019】かかる還元性物質を含まない非吸湿性の無
機塩類としては、硫酸、硝酸、塩酸又は炭酸及びこれら
の混酸のアルカリ金属塩又はアルカリ土類金属塩を挙げ
ることができ、これらは1種単独で又は2種以上を任意
に混合して使用することができる。具体的には、硫酸ナ
トリウム、硫酸カリウム、硫酸カルシウム、硫酸マグネ
シウム、硝酸カリウム、硝酸ナトリウム、硝酸カリシウ
ム、硝酸マグネシウム、塩化ナトリウム、塩化カリウ
ム、炭酸カルシウム又は炭酸マグネシウム及びこれらの
任意の混合物等が挙げられる。
【0020】一方、上記中性〜アルカリ性を示す鉱産物
類の具体例としては、珪砂、タルク、パーライト又はベ
ントナイト等が挙げられ、これらも1種単独で又は2種
以上を任意に混合して使用することができる。また、上
記無機塩類と中性〜アルカリ性鉱産物類を混合して使用
できるのは、言うまでもない。
【0021】なお、本発明の土壌施用殺菌剤組成物は、
上述した固形殺菌成分たる亜塩素酸塩と、固形希釈剤た
る無機塩類及び/又は中性〜アルカリ性鉱産物類とを含
有し、各成分の含有量は、本発明が意図する殺菌性や安
全性を発揮する限り、特に限定されるものではないが、
代表的に、亜塩素酸塩を0.1〜85重量%、無機塩類
等を99.9〜15重量%とすることが好ましい。亜塩
素酸塩の量が0.1重量%未満では、所定の土壌施用量
を確保するのに多大な量を要し、現実的ではない。ま
た、85重量%を超えると、取扱の際の衝撃や熱によっ
て爆発性を発現することがあり、好ましくない。
【0022】また、本発明の土壌施用殺菌剤組成物の性
状は、上述の如く固形状であるが、具体的には、上記殺
菌剤成分と希釈剤成分との混合粉状物ないしは粒状物で
ある。その形状としては、球形が好ましいが、円筒状そ
の他の形状であってもよい。両成分が均一に混合されて
いることが好ましく、更には、平均粒径が0.5〜10
mmであることが好ましく、2〜5mmであることが一
層好ましい。平均粒径が0.5mm未満では、散布する
のに手間がかかり、10mmを超えると、土壌への拡散
性に劣ることがあり、好ましくない。
【0023】次に、本発明の土壌殺菌方法について説明
する。上述の如く、この土壌殺菌方法は、上記本発明の
土壌施用殺菌剤組成物を用いるもので、この土壌施用殺
菌剤組成物を対象とする土壌に均一に施用するものであ
り、原則として施用後の後処理は不要である。即ち、従
来の臭化メチルを用いた殺菌では、薫蒸後に土壌の耕起
を行ってガス抜きを実施する必要があるが、本発明の殺
菌方法では、発生した二酸化塩素は土壌中において1〜
3日間で塩素イオン等に変化して無害化するので、ガス
抜きなどのための特別な作業を行う必要が無く、有利で
ある。
【0024】ここで、均一な施用は、かかる殺菌剤組成
物を土壌に散布した後に、当該土壌を耕起することによ
り実施することができる。この際、耕起の深さは、意図
する除草性、殺虫性、殺菌性及び殺ウィルス性などに応
じて適宜変更することができ、代表的に、15〜20c
mとすれば十分であるが、30〜60cmの深耕を数回
に1回の割合で行ってもよい。かかる深耕は、対象土壌
における病害の種類などによっては極めて有効である。
【0025】また、施用量は、土壌1kg当たり、本土
壌施用殺菌剤組成物に係る固形殺菌剤成分を0.01〜
100gとすることが好ましい。即ち、上記固形希釈剤
にて希釈された85重量%以下の亜塩素酸塩を、土壌1
kgに対して亜塩素酸成分として0.01g〜100g
施用することが好ましい。亜塩素酸塩成分が土壌中で1
0mg/kg(10ppm)未満では、殺菌剤組成物と
しての機能を十分に果たせないことがあり、100g/
kg(10%)を超えると、土壌中に亜塩素酸塩が残留
して作付けに支障がでることがあり、好ましくない。な
お、対象とする土壌が育苗土や培養土のように有機質の
多いものである場合には、二酸化塩素の吸収量が通常の
土壌に比し2〜3割程度高いので、これに見合った亜塩
素酸塩の増量を行うことにより、好結果が得られる。
【0026】本発明の土壌殺菌方法では、所要に応じ
て、亜塩素酸塩の二酸化塩素転換触媒能を有する重金属
酸化物及び/又は重金属酸化物を含む酸性の鉱産物類
を、予め対象とする土壌に均一に混合した後に、本殺菌
剤組成物を施用してもよい。例えば、重金属酸化物は、
周囲に水分が存在する状態において、亜塩素酸塩に触媒
的に作用して二酸化塩素と塩化ナトリウムを生成する。
推定反応式の一例は、以下の如くである。
【0027】ここで、かかる触媒能のある重金属酸化物
としては、三二酸化鉄(Fe)、二酸化マンガン
(MnO)、酸化クロム(Cr)及び酸化銅
(Cu O)等が挙げられるが、クロムや銅、銀、水銀
等を含む酸化物は環境有害物質であり、この観点から
は、二酸化マンガン又は三二酸化鉄を使用することが望
ましい。
【0028】二酸化マンガンは微量で触媒能が強く、短
期日で燻蒸殺菌を実施したい場合に向いている。一方、
三二酸化鉄は二酸化マンガンに比べて触媒能がマイルド
であり、本殺菌剤組成物に誤って混入した場合を想定す
ると、安全性の面からは、三二酸化鉄が一層好ましい。
また、重金属酸化物を含む酸性鉱産物類としては、カオ
リン、活性白土及び珪藻土等が挙げられ、これらの中で
も中性に近い珪藻土が好適に使用される。なお、これら
の反応促進剤(二酸化塩素転換触媒)は、1種単独でも
2種以上を任意に混合して使用してもよい。
【0029】これらの反応促進剤を予め土壌に混入して
おくかどうかは、この反応促進剤を混入せずに、本殺菌
剤組成物を所定の施用量で施用し、その後3日目〜5日
目に当該土壌をサンプリングし、このサンプル中の残留
亜塩素酸塩量を測定することにより判定することができ
る。残留が認められなければ、反応促進剤を使用する必
要はなく、残留する場合には、残留量に応じて重金属酸
化物の選択と量の決定を行えばよい。なお、通常の畑地
であって、2週間以上の殺菌ないしは消毒期間を確保で
きる場合には、反応促進剤を添加する必要性が無いこと
が多い。
【0030】更に、本発明の土壌殺菌方法においては、
本殺菌剤組成物を施用した後に、マルチかけを行うこと
ができ、これにより、二酸化塩素ガスの飛散防止を確実
にすることができる。本発明の土壌殺菌方法では、上述
の施用量を守って適式に実施する限り、二酸化塩素ガス
が作業中に飛散して、作業者が二酸化塩素ガスに被爆す
る可能性は殆どないが、上記マルチかけを行って二酸化
塩素ガスの飛散を確実に防止するのが好ましい理由は、
以下の通りである。
【0031】即ち、亜塩素酸塩が土壌中で反応して生成
する二酸化塩素は、化学式ClOで表される物質であ
り、融点−59℃、沸点11℃の常温ではガス状の物質
であって、強い酸化力と殺菌性を有するので、塩素酸塩
を発生原料とするパルプ漂白や亜塩素酸塩を原料とする
天然繊維漂白、飲料水消毒や原油井戸の賦活化等に利用
されている。また、二酸化塩素は常温常圧下で水に約
3,000mg/l溶解するが、水への溶解は大部分が
ガスの形態で起こり、物理的な攪拌や振動又は温度上昇
により容易にガスが発生する。更に、二酸化塩素の作業
許容濃度はTLV−TWA(時間荷重平均限界値)0.
1ppmと定められており、また、通常0.03ppm
で人間には臭気を感じると報告されており、実際に1p
pmガス雰囲気中では、10分間以上はとても居られな
い刺激臭がある。
【0032】なお、上述のマルチかけに用いることので
きるマルチ材料としては、紫外線カットの農業用塩化ビ
ニルフィルム(以下、「農ビ」と略す)(例えば、チッ
ソ社製「クミアイビニールライトセンサー−N−1
0」)が、紫外線による二酸化塩素の分解を抑制できる
点で好ましいが、表土より発生する二酸化塩素ガス量は
少ないので、通常の農ビや農業用ポリオレフィンフィル
ム(以下、「農ポリ」と略す)でも使用可能である。
【0033】
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。
【0034】(参考例1)種子発芽抑制テスト 20Lの硝子製2口デシケーター中のシャーレに「タキ
イ交配の楽天こまつな」種子50粒を入れた。そして、
亜塩素酸ソーダ粉末を土壌に混入し、発生した二酸化塩
素ガスをテドラーバッグにて所定濃度に調整し、上記デ
シケーターに導いた。二酸化塩素ガス濃度、導入二酸化
塩素総量を測定し、また、ガス暴露後にインキュベータ
ー中で発芽試験を行い、得られた結果を表1に示した。
【0035】
【表1】
【0036】表1から明らかなように、二酸化塩素ガス
濃度200ppmから発芽抑制が認められ、500pp
m以上では正常に発芽する種はなくなる。
【0037】(参考例2)土壌の種類と二酸化塩素発生
速度 神奈川沖積土壌、黒土(ふるい通し)、赤玉土、荒木田
土及び培養土(カルシウム入りボカシ)の各100gを
約直径10cmのシャーレにそれぞれ秤量した。次い
で、このシャーレを20Lの硝子製2口デシケーターの
目皿上に載置し、25重量%の亜塩素酸ソーダ溶液10
mlを土壌表層に万遍なく加え、更に、純水を20ml
添加した後、直ちにデシケーターの蓋をして時間毎に二
酸化塩素ガス濃度をガステック検知管にて測定した。但
し、この間、デシケーターは22〜24℃の室温に保持
した。参考のため、供試土壌の水分、pH及びEh(酸
化還元電位)を測定し、得られた結果を表2に示した。
【0038】
【表2】
【0039】表2から、培養土は他の土壌に比べてpH
が高く、酸化還元電位も比較的低いことがわかる。荒木
田土は粘土であり、水分及び土中空隙率が極端に小さ
い。また、土壌中よりデシケーター中に発生した二酸化
塩素ガス濃度を、経時的に測定し、得られた結果を表3
に示した。
【0040】
【表3】
【0041】なお、表3には示さなかったが、沖積土は
10時間後、荒木田土は7時間後に検知管の測定上限で
ある500ppm以上となった。また、赤玉土と培養土
は20時間後でも5時間後と同じ濃度であった。かかる
結果は、土壌成分と物理性状により、二酸化塩素生成、
ガス発生速度及び濃度が大きく異なることを表してい
る。
【0042】(参考例3)土壌への重金属酸化物、重金
属酸化物含有酸性鉱物類の添加効果 一定量の神奈川沖積土壌に、三二酸化鉄、二酸化マンガ
ン及び活性白土を添加量を変化させて添加し、更に亜塩
素酸ソーダ溶液を加え、二酸化塩素ガス発生速度を比較
することにより、二酸化塩素転換触媒効果を評価した。
この際の操作の詳細は、下記の通りである。各種触媒を
添加した土壌を硝子製シャーレに採り、これらを20L
容積の硝子製デシケーターの目皿上に載置し、各シャー
レに25重量%の亜塩素酸ソーダ溶液2mlを加えて直
ちにデシケーターの蓋をし、発生する二酸化塩素ガス濃
度の経時変化をガステック検知管にて測定した。結果を
表4に示した。
【0043】
【表4】
【0044】表4に示した如く、三二酸化鉄などの触媒
を添加すると、触媒無添加の対照区と比べ、二酸化塩素
ガス発生速度が明確に早まっている。また、触媒効果の
比較では、二酸化マンガン>三二酸化鉄>活性白土>無
添加(対照)の順であり、更には、触媒量が多い程、反
応速度が大となっている。
【0045】また、上述した触媒効果の評価に加えて、
発生した二酸化塩素ガスを中性緩衝液とヨウ化カリウム
(KI)溶液の混合溶液に一定時間吸収させて、発生ガ
ス量を把握した。更に、ガス吸収後の土壌中に残留する
亜塩素酸ソーダ量を水抽出液の酸化還元滴定により求
め、マテリアルバランスがほぼ一定になることを確かめ
た。この際の操作の詳細は、下記の通りである。
【0046】上述した15時間目のガス濃度測定に引き
続き、デシケーター中に充満した二酸化塩素ガス量を把
握すべく、中性pH緩衝液入りのKI溶液の入ったガス
洗浄瓶に、ポンプを介してガスを吸引し、二酸化塩素を
反応吸収させた。ヨードが遊離した吸収液は、チオ硫酸
ソーダ規定液を用い、電流滴定装置(フィッシャーポー
ター社製シリーズ17T2000電流滴定装置)にて滴
定した。かかる吸収操作を繰り返し、二酸化塩素による
遊離ヨード量が極めて小さくなった時点で吸収を終了
し、デシケーター中の仕込み土壌を取り出して100m
lの純水にて残存する亜塩素酸ソーダを抽出した。抽出
液に塩酸を加えてpH2とし、KI溶液から遊離したヨ
ードを、上記同様にチオ硫酸ソーダ規定液を用いて電流
滴定装置で滴定し、残存亜塩素酸ソーダ量を算出した。
これらの結果をまとめて表5に示した。
【0047】
【表5】
【0048】表5から、神奈川沖積土壌は、触媒を添加
しないと、二酸化塩素への反応が遅く、且つ二酸化塩素
への転換率が低いことが明らかである。また、いずれの
試験区においても、添加した亜塩素酸ソーダの約60%
強が捕捉されており、どの試験区でも同程度であること
から、残り40%弱は酸素とイオン物質に変化したもの
と推定される。なお、本試験は22〜25℃の室温中で
実施されたものであり、同じ試験区でも温度条件を高く
することで反応速度と反応量を向上することが可能であ
り、この手段としては、マルチフイルムをかけて地温上
昇を図る方法が最も簡易で効果が高いと判断される。
【0049】(実施例1)希釈亜塩素酸ソーダ粉末の土
壌殺菌・殺虫試験 本発明の土壌施用殺菌剤組成物の一例である希釈亜塩素
酸ソーダ粉末は、80重量%亜塩素酸ソーダ粉末(日本
カリット社製「シルブライト80」、以下「シルブライ
ト」と略す)に、表6に示した所定量の粉末硫酸カリウ
ム(関東化学社製試薬特級)又はタルク粉末(関東化学
社製、強熱減量=最大5.0%、5%pH=9.3)を
加え、ポリエチレン袋中にて緩やかに混合して得た。次
いで、得られた希釈亜塩素酸ソーダ粉末を2.5kgの
神奈川沖積土壌に加え、40Lポリエチレン袋中にて混
合した後、1/5000Rワグネルポットに入れ、ポッ
ト上部を農ビシートをかけて密封した。
【0050】このポットを24〜26℃の室温で7日間
保持した後、日中気温が28〜32℃の直射日光の当た
る屋外に配置した。配置5日後、ワグネルポットの表層
及び深度10cmの部位から土壌をサンプリングし、両
サンプルの同量を混合したものを細菌及び線虫テスト用
サンプルとして供試した。線虫数はロート法で測定し、
糸状菌数はアルブミン寒天培地、細菌数はハートインフ
ェジョン培地に生育した菌数で評価した。各区三連にお
けるテスト結果の平均値をまとめて表6に示した。
【0051】
【表6】
【0052】表6より、1.2〜1.6gシルブライト
/kg土壌が好ましい施用量であることが分かる。な
お、この濃度は、雑草の発芽防止も達成できる二酸化塩
素濃度でもある。また、神奈川沖積土壌に予め三二酸化
鉄を1%混合した土壌についても上記同様の試験を実施
したところ、同じ殺菌と殺虫効果が得られる期間を2〜
3日短縮できた。
【0053】(実施例2)亜塩素酸ソーダ粉末と各種固
体希釈剤混合での保存安定性 下記a〜fの6種類の粉末希釈剤にシルブライト粉末を
加えたもの、及び固体酸を含む組成物gにつき、湿分付
与の有無による条件下、二酸化塩素ガス発生状況を20
L硝子製デシケーター中にて確認した。また、二酸化塩
素ガス測定はガステック検知管にて行い、この結果を経
過時間毎のガス濃度で示した。なお、以下の記載におい
て、特記しない限り、「%」は「重量%」を示す。
【0054】a.珪藻土(SiO=88.1%,Al
=4.8%,Fe=1.0%,
MgO=0.5%,CaO=0.90%):関東化学
製試薬特級 pH=6.4(3%) b.カオリン(Al・2SiO・2HO):
関東化学製 pH=4.1(4%),Femax.0.1%,Cl
max.0.1%, pH(4%/25℃)4.0〜7.5 加熱減量max.1.5% c.タルク(Mg(SiO3MgO・4S
iO・HO):関東化学製 強熱減量max.5.0%、pH(5%/25℃)9.
3 d.ベントナイト(SiO=58.8%,Al
=14.3%,Fe =3. 0
%,MgO=1.3%,CaO=0.7%,KO=
0.7 %,NaO=3.4%):
関東化学製試薬1級 加熱減量(105℃)5.0〜10.0、pH(2%/
25℃)10.2 e.活性白土(SiO=70〜80%,Al
10〜20%,Fe =1 〜2%,
MgO=1〜3%,CaO<1.0%):関東化学製 pH=3.8(3%) f.硫酸カリウム粉末(純度99.0%):関東化学製
特級試薬 g.固体酸組成物(合成珪酸カルシウム=50%,シル
ブライト=18.5%,重炭酸ソーダ8%,粒状食塩1
0%,珪藻土12.5%,粒状クエン酸1%)
【0055】[二酸化塩素ガス発生測定結果] (1)珪藻土5g/シルブライト750mg/水分29
% 68min−50ppm,122min−50ppm,
180min−50ppm,18.5hr−50ppm (2)珪藻土10g/シルブライト750mg/水分6
0% 60min−190ppm,120min−250pp
m,185min−280ppm,240min−30
0ppm,300min−310ppm,360min
−320ppm,470min−320ppm,22h
r−310ppm (3)カオリン10g/シルブライト750mg/水分
29% 73min−100ppm,120min−110pp
m,180ppm−120ppm,240min−12
0ppm,329min−130ppm,17hr−1
70ppm (4)カオリン10g/シルブライト750mg/水分
50% 60min−90ppm,120min−130pp
m,182min−160ppm,240min−17
0ppm,300min−190ppm,364min
−200ppm,419min−200ppm,22h
r−200ppm (5)タルク10g/シルブライト750mg/水分2
9% 60min−0.3ppm,120min−0.3pp
m,180min−0.3ppm,240min−0.
3ppm (6)タルク10g/シルブライト750mg/水分5
0% 71min−0ppm,120min−0ppm,18
0min−0ppm,17hr−0ppm (7)ベントナイト10g/シルブライト750mg/
水分29% 60min−0ppm,170min−0ppm,24
0min−0ppm (8)ベントナイト10g/シルブライト750mg/
水分60% 67min−0ppm,120min−0ppm,17
hr−0ppm (9)活性白土10g/シルブライト750mg/水分
29% 37min−470ppm,114min−500pp
m (10)タルク10g/シルブライト750mg/水分
2% 1.3hr−0.05ppm,3hr−0.1ppm,
5hr−0.3ppm,6.3hr−0.6ppm,2
2hr−0.6ppm,25hr−0.6ppm (11)硫酸カリ10g/シルブライト750mg/水
分2% 1hr−0.03ppm,2.7hr−0.06pp
m,4.8hr−0.08ppm,6hr−0.1pp
m,21hr−0.3ppm,26hr−0.3ppm (12)固体酸含有組成物5g/水分2% 30min−150ppm,60min−220pp
m,120min−350ppm,180min−>5
00ppm (13)固体酸含有組成物5g/水分29% 30min−250ppm,60min−450pp
m,90min−>500ppm
【0056】以上の結果より、鉱産物類ではアルカリ性
を呈するタルク、ベントナイトが希釈剤として使用可能
なことが分かる。一方、酸性を呈する鉱産物類は、特に
水分が多くなると二酸化塩素ガスを多量発生して危険で
ある。また、固体酸を含有する組成物は不安定であり、
水分増加によって危険性は増大する。従って、本発明に
おいては、中性の無機塩類やアルカリ性を呈する鉱産物
類が希釈剤として好適に使用できると言える。
【0057】(参考例4)二酸化塩素の土壌への吸着・
吸収試験 300ml容積の褐色硝子製ネジ口瓶(DURAN製)
5本に、神奈川沖積生細土(水分59%)各50gを採
取し、これに1280mg/Lの二酸化塩素水各50m
l(pH2.2)を加え、硝子攪拌棒にて軽く攪拌して
蓋をして静置した。また、ブランクとして、土壌の代わ
りに純水を用いたものを作成し、上記同様にセットし
た。静置30,60,90,120及び180分後に、
ネジ口瓶中の気相部の二酸化塩素ガス濃度を検知管にて
測定した。また、サンプル土壌水をNo.5Bろ紙でろ
過し、得られたろ液につき、pH、二酸化塩素水濃度及
び生成亜塩素酸濃度をpH7の緩衝液−KI添加のチオ
硫酸標準液の滴定と、これに2.5N塩酸を添加したp
H2滴定により求めた。
【0058】この結果、トータルの実験操作におい
て、二酸化塩素水中より空気中へ二酸化塩素ガスとして
逃げた分は、仕込み量の何と51%であった。瓶気相
部の二酸化塩素ガス濃度は、静置時間によらず測定上限
の500ppm以上であった。二酸化塩素水の代わり
に純水を用いた土壌抽出水のpHは5.0で、サンプル
では平均4.3であった。二酸化塩素ガス揮散分をブ
ランクテスト値で補正した土壌中残留二酸化塩素水の濃
度は、30分後から180分後まで差は殆どなく平均2
2%、生成した亜塩素酸の率は同じく平均12%であっ
た。即ち、ガスとして揮散する分も含め、土壌に添加し
た実におよそ90%が30分以内に消失し、僅かに約5
%が反応生成物の一種である亜塩素酸イオンとして残存
していたことが分かった。
【0059】(参考例5)土壌による二酸化塩素ガス吸
着 20L容積の硝子製デシケーター2個を準備し、その底
部に、それぞれシャーレに入れた1280mg/lの二
酸化塩素水25mlを配置した。そして、サンプルデシ
ケーターには、目皿上に神奈川沖積生細土100g(水
分59%)を載置し、対照デシケーターには何も置かな
かった。静置1,2,3,5及び10時間後に、デシケ
ーター中の二酸化塩素ガス濃度をガス検知管にて測定し
た。この結果は表7に示した通りで、二酸化塩素ガスが
土壌に比較的短時間で吸収・吸着されることが示されて
いる。
【0060】
【表7】
【0061】
【発明の効果】以上説明してきたように、本発明によれ
ば、亜塩素酸のアルカリ金属塩及び/又はアルカリ土類
金属塩の固体成分を所定の固体成分で希釈した粉状又は
粒状の殺菌剤組成物を作成し、これを耕耘等の手段によ
って意図する土壌に均一に混合することとしたため、従
来の二酸化塩素系殺菌剤に比し少量で土壌への良好な拡
散性を実現し、且つ作業者の安全性にも優れる土壌施用
殺菌剤組成物及びこれを用いた土壌殺菌方法を提供する
ことができる。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C09K 101:00

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 亜塩素酸のアルカリ金属塩及び/又はア
    ルカリ土類金属塩から成る固形殺菌成分と、非吸湿性で
    還元性化合物を含まない無機塩類及び/又は金属含有率
    が0.001重量%以下で重金属酸化物含量が0.1重
    量%以下の精製乾燥された中性〜アルカリ性の鉱産物類
    を含む固形希釈剤とを含有することを特徴とする土壌施
    用殺菌剤組成物。
  2. 【請求項2】 上記亜塩素酸のアルカリ金属塩から成る
    固形殺菌成分が、亜塩素酸ナトリウムであることを特徴
    とする請求項1記載の土壌施用殺菌剤組成物。
  3. 【請求項3】 上記非吸湿性で還元性化合物を含まない
    無機塩類が、硫酸、硝酸、塩酸及び炭酸から成る群より
    選ばれた少なくとも1種の酸のアルカリ金属塩及び/又
    はアルカリ土類金属塩であり、上記中性〜アルカリ性の
    鉱産物類が、珪砂、タルク、パーライト及びベントナイ
    トから成る群より選ばれた少なくとも1種のものである
    ことを特徴とする請求項1又は2記載の土壌施用殺菌剤
    組成物。
  4. 【請求項4】 上記固形殺菌成分の含有率が、0.1〜
    85重量%であることを特徴とする請求項1〜3のいず
    れか1つの項に記載の土壌施用殺菌剤組成物。
  5. 【請求項5】 平均粒径が、0.5〜10mmの粒状物
    ないしは粉状物であることを特徴とする請求項1〜4の
    いずれか1つの項に記載の土壌施用殺菌剤組成物。
  6. 【請求項6】 請求項1〜5のいずれか1つの項に記載
    の土壌施用殺菌剤組成物を用いる土壌殺菌方法であっ
    て、 上記土壌施用殺菌剤組成物を土壌に均一に施用すること
    を特徴とする土壌殺菌方法。
  7. 【請求項7】 上記土壌への均一な施用を、散布後の耕
    起により行うことを特徴とする請求項6記載の土壌殺菌
    方法。
  8. 【請求項8】 上記固形殺菌成分が上記土壌1kg当た
    りに0.01〜100g含まれるように施用することを
    特徴とする請求項6又は7記載の土壌殺菌方法。
  9. 【請求項9】 施用後に農業用塩化ビニルフィルム又は
    農業用ポリオレフィンフィルムによりマルチを施し、二
    酸化塩素ガスが空中に飛散するのを抑制することを特徴
    とする請求項6〜8のいずれか1つの項に記載の土壌殺
    菌方法。
  10. 【請求項10】 上記固形殺菌成分に対する二酸化塩素
    転換触媒能を有する重金属酸化物及び/又は重金属酸化
    物を含む酸性鉱産物類を、上記施用前に、上記土壌に均
    一に混合しておくことを特徴とする請求項6〜9のいず
    れか1つの項に記載の土壌殺菌方法。
  11. 【請求項11】 上記触媒能を有する重金属酸化物が三
    二酸化鉄及び/又は二酸化マンガンであり、上記重金属
    酸化物を含む酸性鉱産物類が珪藻土であることを特徴と
    する請求項10記載の土壌殺菌方法。
JP26800398A 1998-09-22 1998-09-22 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法 Withdrawn JP2000095624A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26800398A JP2000095624A (ja) 1998-09-22 1998-09-22 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26800398A JP2000095624A (ja) 1998-09-22 1998-09-22 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法

Publications (1)

Publication Number Publication Date
JP2000095624A true JP2000095624A (ja) 2000-04-04

Family

ID=17452569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26800398A Withdrawn JP2000095624A (ja) 1998-09-22 1998-09-22 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法

Country Status (1)

Country Link
JP (1) JP2000095624A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156016A (ja) * 2002-08-01 2004-06-03 Someya:Kk 植栽用土壌の改善方法
JP2006057022A (ja) * 2004-08-20 2006-03-02 Someya:Kk 植栽用土壌の改善剤および植栽用土壌の改善方法
JP2006232764A (ja) * 2005-02-28 2006-09-07 Someya:Kk 農業・園芸用成長促進に用いるコロイド水溶液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156016A (ja) * 2002-08-01 2004-06-03 Someya:Kk 植栽用土壌の改善方法
JP2006057022A (ja) * 2004-08-20 2006-03-02 Someya:Kk 植栽用土壌の改善剤および植栽用土壌の改善方法
JP2006232764A (ja) * 2005-02-28 2006-09-07 Someya:Kk 農業・園芸用成長促進に用いるコロイド水溶液

Similar Documents

Publication Publication Date Title
Lamichhane et al. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review
US4726144A (en) Fumigation methods and compositions
EP0176558B1 (en) Disinfection method and composition therefor
CN102701881B (zh) 一种土壤消毒剂以及土壤消毒灭菌方法
KR20030069803A (ko) 식물 병원체를 제어하기 위한 방법 및 조성물
US5464457A (en) Soil fumigation with gasiform pesticide
CN101796948A (zh) 一种烟剂型消毒剂及其制备方法和其应用
JP5787283B2 (ja) イネ用土壌病害防除剤
US5041240A (en) Stabilized thiocarbonate solutions
US5022912A (en) Methods for fertilizing with ammoniacal fertilizers
JP2000095624A (ja) 土壌施用殺菌剤組成物及びこれを用いた土壌殺菌方法
US5167966A (en) Stabilized thiocarbonate solutions
JPH0542406B2 (ja)
US5165920A (en) Stabilized thiocarbonates
JPS6312226A (ja) 園芸ハウスの清浄化方法
JP3672615B2 (ja) 二酸化塩素水溶液による土壌消毒方法
EP0366226B1 (en) Stabilized thiocarbonate solutions and the use thereof for controlling soil pests
JP2021533205A (ja) クエン酸過酸化水素化物及びその使用
JP2018123104A (ja) 混和発病土の育種方法
EP0337503B1 (en) Fumigation methods and compositions
WO2001087069A1 (fr) Agent organosulfure synthetique et hydrate, procede de preparation et procede bactericide utilisant cet agent
US11039618B2 (en) Metam salts and polysulfide soil treatment
European Food Safety Authority (EFSA) Outcome of the consultation with Member States and EFSA on the basic substance application for approval of clayed charcoal for the extension of use in plant protection as a protectant against grapevine trunk diseases
JPH0971502A (ja) 土壌殺菌・殺線虫剤及び土壌殺菌・殺線虫方法
Potočnik et al. Possibility of environmentally-safe casing soil disinfection for control of cobweb disease of button mushroom

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040312

A621 Written request for application examination

Effective date: 20050714

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080618