JP2000091602A - Method for extracting electrode of solar battery - Google Patents

Method for extracting electrode of solar battery

Info

Publication number
JP2000091602A
JP2000091602A JP10268963A JP26896398A JP2000091602A JP 2000091602 A JP2000091602 A JP 2000091602A JP 10268963 A JP10268963 A JP 10268963A JP 26896398 A JP26896398 A JP 26896398A JP 2000091602 A JP2000091602 A JP 2000091602A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
lower electrode
insulating substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268963A
Other languages
Japanese (ja)
Inventor
Atsushi Inaba
敦 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10268963A priority Critical patent/JP2000091602A/en
Publication of JP2000091602A publication Critical patent/JP2000091602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for extracting the electrode of a solar battery for reducing the resistance of an electrode and loss by, Joule's heat and for enhancing photoelectric transfer efficiency. SOLUTION: This solar battery is provided with an insulating substrate 5, lower electrode layer 2 made of molybdenum formed on the surface of the insulating substrate as materials, semiconductor photoelectric transfer layer made of Cu, In, Ga, and Se or the like formed on the surface of the lower electrode layer as main components, and transparent upper electrode layer formed on the surface of this semiconductor photoelectric transfer layer. Then, this method for extracting an electrode comprises a process for forming an auxiliary electrode layer 6 on the back face of the insulating substrate 5 prior to the formation of the lower electrode layer 2 on the surface of the insulating substrate 5, process for forming a through-hole 5a through the insulating substrate, and process for forming a conductive path 7 including at least a solder layer for connecting the lower electrode layer 2 with the auxiliary electrode layer 6 on the back face of the substrate inside the through-hole 5a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Cu,In,Ga,Se などを素
材とする高変換効率の太陽電池に関するものであり、特
に、その電極取出し方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high conversion efficiency solar cell using Cu, In, Ga, Se or the like as a material, and more particularly to an improvement in an electrode extracting method.

【0002】[0002]

【従来の技術】最近、高変換効率の太陽電池として、C
u,In,Ga,Se2 を成分とするカルコパイライト構造の
薄膜太陽電池が開発されつつある。この種の太陽電池の
構造は、図3の部分断面図に示すように、ガラス基板9
上に、モリブデン( Mo )の下側電極層2を形成し、この
下側電極層2上にCu( In,Ga )Se2 の半導体光電変換層
1を形成し、更にその上にCdS のバッファ層4と、ZnO/
Zn0(Al) の透明電極層 (上側電極層) 3a,3b と、Alの電
極層3cとを順次形成したものとなっている。
2. Description of the Related Art Recently, as a solar cell with high conversion efficiency, C
Thin-film solar cells having a chalcopyrite structure containing u, In, Ga, and Se 2 as components are being developed. As shown in the partial cross-sectional view of FIG.
A lower electrode layer 2 of molybdenum (Mo) is formed thereon, a semiconductor photoelectric conversion layer 1 of Cu (In, Ga) Se 2 is formed on the lower electrode layer 2, and a CdS buffer is further formed thereon. Layer 4 and ZnO /
A transparent electrode layer (upper electrode layer) 3a, 3b of Zn0 (Al) and an electrode layer 3c of Al are sequentially formed.

【0003】光電変換に重要なCu (In,Ga )Se2 の半導
体光電変換層1との相性が良好な金属材料であるモリブ
デンを素材として、下側電極層2が形成される。また、
基板9を形成するソーダ石灰シリカガラスなどと、半導
体光電変換層1を形成するカルコパイライト構造の Cu
( In,Ga )Se2 とは、ほぼ等しい熱膨張係数を有するこ
とから、これら二つの層の間に発生する熱歪みは小さ
く、高信頼性の太陽電池を実現できる。
The lower electrode layer 2 is formed of molybdenum, which is a metal material having good compatibility with the semiconductor photoelectric conversion layer 1 of Cu (In, Ga) Se 2 important for photoelectric conversion. Also,
Soda-lime silica glass or the like forming the substrate 9 and chalcopyrite structure Cu forming the semiconductor photoelectric conversion layer 1
Since (In, Ga) Se 2 has almost the same coefficient of thermal expansion, thermal distortion generated between these two layers is small, and a highly reliable solar cell can be realized.

【0004】[0004]

【発明が解決しようとする課題】図3に示した構造の従
来の太陽電池では、下側電極層2の素材が高抵抗のモリ
ブデンであるため、この電極層内のジュール熱損が増大
し、装置全体としての光電変換効率が低下するという問
題がある。
In the conventional solar cell having the structure shown in FIG. 3, since the lower electrode layer 2 is made of high-resistance molybdenum, Joule heat loss in this electrode layer increases. There is a problem that the photoelectric conversion efficiency of the entire device is reduced.

【0005】また、図3に示した構造の従来の太陽電池
では、その周辺部において下側電極層2に対して外部か
ら電気的接続を行う場合、スクライブと称される難しい
工程を適用していた。すなわち、鋭利な金属の爪を使用
して太陽電池の上部を引っ掻くことによって上部の透明
電極層や半導体光電変換層1のみを選択的に除去し、下
側電極層2を露出させていた。そして、このスクライブ
の工程は、薄い下側電極層2を破壊することなく露出さ
せる必要があることからかなりの困難を伴い、このた
め、製品の歩留りが低下するという問題があった。
Further, in the conventional solar cell having the structure shown in FIG. 3, when an external electrical connection is made to the lower electrode layer 2 in the periphery thereof, a difficult process called scribe is applied. Was. That is, only the upper transparent electrode layer and the semiconductor photoelectric conversion layer 1 are selectively removed by scratching the upper part of the solar cell using a sharp metal nail, thereby exposing the lower electrode layer 2. This scribing step involves considerable difficulty because it is necessary to expose the thin lower electrode layer 2 without destruction, and there has been a problem that the product yield is reduced.

【0006】[0006]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明の太陽電池の電極取出し方法は、絶縁性の
基板と、この絶縁性の基板の表面に形成された高抵抗の
下側電極層と、この下側電極層の表面に形成された半導
体光電変換層と、この半導体光電変換層の表面に形成さ
れた透明な上側電極層とを備えている。そして、この発
明の電極取出し方法は、上記絶縁性の基板の表面への下
側電極層の形成に先立って、この絶縁性の基板の裏面に
低抵抗の補助電極層を形成する工程と、この絶縁性の基
板を貫通する貫通孔を形成する工程と、下側電極層を基
板の裏面の補助電極層に接続するためのはんだ層を含む
導電路を上記貫通孔の内部に形成する工程とを含んでい
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, a method for extracting an electrode of a solar cell according to the present invention comprises an insulating substrate and a lower side of a high resistance formed on the surface of the insulating substrate. The semiconductor device includes an electrode layer, a semiconductor photoelectric conversion layer formed on the surface of the lower electrode layer, and a transparent upper electrode layer formed on the surface of the semiconductor photoelectric conversion layer. The method for extracting an electrode according to the present invention includes, prior to forming the lower electrode layer on the surface of the insulating substrate, forming a low-resistance auxiliary electrode layer on the back surface of the insulating substrate; Forming a through hole penetrating the insulating substrate, and forming a conductive path including a solder layer for connecting the lower electrode layer to the auxiliary electrode layer on the back surface of the substrate inside the through hole. Contains.

【0007】[0007]

【発明の実施の形態】本発明の好適な実施の形態によれ
ば、上記貫通孔の内部に形成されるはんだ層を含む導電
路は中心に銀線などの金属線を含み、上記貫通孔の内部
に形成されるはんだ層はこの金属線の先端部分に載置さ
れた球状のはんだを加熱溶融させることによって形成さ
れる。
According to a preferred embodiment of the present invention, the conductive path including the solder layer formed inside the through hole includes a metal wire such as a silver wire at the center, and the conductive path includes a silver wire. The solder layer formed inside is formed by heating and melting the spherical solder placed on the tip of the metal wire.

【0008】本発明の他の好適な実施の形態によれば、
上記複数の導電路は上記補助電極の形成領域のほぼ全域
にわたって形成されている。
According to another preferred embodiment of the present invention,
The plurality of conductive paths are formed over substantially the entire region where the auxiliary electrode is formed.

【0009】本発明の更に他の好適な実施の形態によれ
ば、上記半導体光電変換層はCu,In,Ga,Se を主成分と
し、上記絶縁性の基板はガラスであり、かつ、上記下側
電極層はモリブデンを主材料としている。
According to still another preferred embodiment of the present invention, the semiconductor photoelectric conversion layer contains Cu, In, Ga, and Se as main components, the insulating substrate is glass, and The side electrode layer is mainly made of molybdenum.

【0010】[0010]

【実施例】図2は、本発明の一実施例の太陽電池の構成
を示す部分断面図である。この実施例の太陽電池は、ソ
ーダ石灰シリカガラスなどを素材とするガラス基板5上
にモリブデン( Mo )を素材する下側電極層2が形成さ
れ、この下側電極層2の上にCu,In,Ga,Se を主成分とす
るカルコパイライト型の高変換効率の半導体光電変換層
1が形成され、更にこの半導体光電変換層1の上にCdS
のバッファ層4と、ZnO/Zn0(Al) の透明電極層 (上側電
極層) 3a,3b と、Alの電極層3cとが順次形成された構造
を有している。
FIG. 2 is a partial sectional view showing the structure of a solar cell according to one embodiment of the present invention. In the solar cell of this embodiment, a lower electrode layer 2 made of molybdenum (Mo) is formed on a glass substrate 5 made of soda-lime-silica glass or the like, and Cu, In is formed on the lower electrode layer 2. A chalcopyrite-type semiconductor photoelectric conversion layer 1 mainly composed of, for example, Ga, Se is formed, and CdS is formed on the semiconductor photoelectric conversion layer 1.
Buffer layer 4, a transparent electrode layer (upper electrode layer) 3a, 3b of ZnO / Zn0 (Al), and an electrode layer 3c of Al.

【0011】ガラス基板5には、左右前後にわたってほ
ぼ一定の間隔を保って、多数の貫通孔5aが形成されてい
る。この貫通孔5aの形成は、適宜な方法、例えば、ドリ
ルやォータージェットなどによる機械的な加工や、レー
ザ加工や、半導体装置の加工などで一般的なウェットエ
ッチングやドライエッチングなどによって行われる。ま
た、ガラス基板5の裏面側に、メッキのための下地金属
層としてTi等の金属材料の薄膜をスパッタリング等によ
って形成し、この上にニッケル(Ni)等の低抵抗の膜を無
電解メッキなどによって形成することによって、補助電
極層6が形成される。なお、ニッケルの代りに金(Au )
などの他の適宜な金属を使用することもできる。
A large number of through holes 5a are formed in the glass substrate 5 at substantially constant intervals in the left, right, front and rear directions. The formation of the through-hole 5a is performed by an appropriate method, for example, a mechanical processing using a drill or a water jet, a laser processing, a wet etching or a dry etching generally used in the processing of a semiconductor device, or the like. Further, a thin film of a metal material such as Ti is formed on the back surface side of the glass substrate 5 as a base metal layer for plating by sputtering or the like, and a low-resistance film such as nickel (Ni) is formed thereon by electroless plating or the like. Thus, the auxiliary electrode layer 6 is formed. Gold (Au) instead of nickel
Other suitable metals can also be used.

【0012】ドリルなどの機械加工によって貫通孔5aを
形成する工程は、ガラス基板5の裏面に補助電極層6を
形成する前に行うことが望ましい。しかしながら、ガラ
ス基板5と裏面に形成した補助電極層6との密着性が高
い場合などには、補助電極層6の形成後に貫通孔5aを形
成してもよい。
The step of forming the through-hole 5a by machining such as a drill is desirably performed before forming the auxiliary electrode layer 6 on the back surface of the glass substrate 5. However, when the adhesion between the glass substrate 5 and the auxiliary electrode layer 6 formed on the back surface is high, the through hole 5a may be formed after the formation of the auxiliary electrode layer 6.

【0013】さらに、貫通孔15a の内部に、補助電極層
6を下側電極層2に接続するためのはんだ層を含む導電
路7が予め形成される。引き続き、ガラス基板5の表面
側に、スパッタリングや蒸着などの適宜な方法によって
モリブデンを素材とする下側電極層2が形成され、この
下側電極層2上に半導体光電変換層1や上側電極層など
が順次形成される。
Further, a conductive path 7 including a solder layer for connecting the auxiliary electrode layer 6 to the lower electrode layer 2 is formed in advance in the through hole 15a. Subsequently, a lower electrode layer 2 made of molybdenum is formed on the surface side of the glass substrate 5 by an appropriate method such as sputtering or vapor deposition, and the semiconductor photoelectric conversion layer 1 or the upper electrode layer is formed on the lower electrode layer 2. Are sequentially formed.

【0014】モリブデンを素材とする高抵抗の下側電極
層2は、ガラス基板5に形成された貫通孔5a内に形成さ
れた多数の導電路7を介して裏面側に形成されたニッケ
ル等の金属材料を素材とする低抵抗の補助電極6と電気
的に接続されている。従って、モリブデンを素材とする
高抵抗値の下側電極層2がニッケルなどの金属を素材と
する低抵抗の補助電極6によって短絡されるため、電極
層全体の抵抗値と、ジュール熱損が大幅に低下し、太陽
電池全体としての変換効率が向上する。
The high-resistance lower electrode layer 2 made of molybdenum is made of a material such as nickel or the like formed on the back side through a number of conductive paths 7 formed in through holes 5a formed in the glass substrate 5. It is electrically connected to the low-resistance auxiliary electrode 6 made of a metal material. Therefore, since the lower electrode layer 2 having a high resistance value made of molybdenum is short-circuited by the auxiliary electrode 6 having a low resistance made of metal such as nickel, the resistance value of the entire electrode layer and the Joule heat loss are significantly reduced. And the conversion efficiency of the entire solar cell is improved.

【0015】図1の(A)と(B)は、図2に示した導
電路7を形成する方法を説明するための部分断面図であ
る。まず、部分断面図(A)に示すように、ガラス基板
5に形成された貫通孔5aの周辺のTi薄膜層6bとその上
に形成されたNi層から成る補助電極6上に、適宜な方
法、例えばメッキによってはんだ層7bが形成される。
FIGS. 1A and 1B are partial sectional views for explaining a method of forming the conductive path 7 shown in FIG. First, as shown in the partial cross-sectional view (A), an appropriate method is applied to the auxiliary electrode 6 composed of the Ti thin film layer 6b around the through hole 5a formed in the glass substrate 5 and the Ni layer formed thereon. For example, the solder layer 7b is formed by plating.

【0016】次に、根元側に大きな直径の頭部が形成さ
れた釘状の銀線7aが貫通孔5a内に挿入され、この銅線7a
の先端部分に球状のはんだボール7cが載置される。この
はんだボール7cとしては、特別に準備したものなど適宜
なものを使用できるが、一例として、半導体集積回路
(IC)の組み立てなどに使用されるフリップチップ用
のはんだボールなどを使用することができる。
Next, a nail-shaped silver wire 7a having a large diameter head formed at the root side is inserted into the through-hole 5a.
A spherical solder ball 7c is placed on the tip of the solder ball. As the solder ball 7c, an appropriate one such as a specially prepared one can be used. As an example, a solder ball for a flip chip used for assembling a semiconductor integrated circuit (IC) can be used. .

【0017】この状態で、ガラス基板5の全体が加熱さ
れると、球状のはんだボール7cが溶融し、貫通孔5aの内
部を充填しながら貫通孔5aの内部を流れ下る。貫通孔5a
の内部を流れ下った溶融はんだは、同時に溶融した下他
のはんだ層7bと合体する。この後に、ガラス基板5の冷
却に伴って溶融はんだが固化すると、図1の部分断面図
(B)に示すように、銀線7aの芯がはんだ層で覆われた
構造の導電路が貫通孔5aの内部に形成される。
In this state, when the entire glass substrate 5 is heated, the spherical solder balls 7c are melted and flow down inside the through holes 5a while filling the insides of the through holes 5a. Through hole 5a
The molten solder that has flowed down inside is merged with another solder layer 7b that has been melted at the same time. Thereafter, when the molten solder is solidified as the glass substrate 5 is cooled, as shown in the partial cross-sectional view (B) of FIG. 1, a conductive path having a structure in which the core of the silver wire 7a is covered with a solder layer is formed. Formed inside 5a.

【0018】次に、ガラス基板5の表面に、モリブデン
を素材とする下側電極層2がスパッタリングや蒸着など
の適宜な方法によって形成され、引き続き、この下側電
極層上に、半導体光電変換層1や上側電極層などが形成
される。
Next, a lower electrode layer 2 made of molybdenum is formed on the surface of the glass substrate 5 by an appropriate method such as sputtering or vapor deposition. Subsequently, a semiconductor photoelectric conversion layer is formed on the lower electrode layer. 1 and an upper electrode layer are formed.

【0019】銀線7を導電路の芯として使用することに
より、このような芯線を使用することなく全てをはんだ
層を形成する場合に比べて、電気抵抗が小さく機械的強
度の大きな導電路を貫通孔内に形成することができる。
しかしながら、多少大きな電気抵抗と、多少小さな機械
的強度が許容できる場合には、そのような銀線を芯に使
用することなく、はんだ層のみから成る導電路を形成す
ることもできる。
By using the silver wire 7 as the core of the conductive path, a conductive path having a small electric resistance and a large mechanical strength can be formed as compared with the case where all the solder layers are formed without using such a core wire. It can be formed in the through hole.
However, if a somewhat large electric resistance and a somewhat small mechanical strength can be tolerated, it is also possible to form a conductive path consisting only of a solder layer without using such a silver wire as a core.

【0020】また、貫通孔と銀線とによって形成される
空隙の内部に、直径によって定まる一定の容積のはんだ
ボールを加熱溶融して流し込む構成であるから、固化し
たはんだ層7bの頂部の高さがガラス基板5の表面にほぼ
一致するように制御できる。このように、固化したはん
だ層7bの頂部の高さを制御することにより、このガラス
基板5の表面に形成されるモリブデンの下側電極層2の
厚みや高さを均一化することができる。
Further, since the solder ball having a fixed volume determined by the diameter is heated and melted and poured into the space formed by the through hole and the silver wire, the height of the top of the solidified solder layer 7b is increased. Can be controlled to substantially coincide with the surface of the glass substrate 5. Thus, by controlling the height of the top of the solidified solder layer 7b, the thickness and height of the lower electrode layer 2 of molybdenum formed on the surface of the glass substrate 5 can be made uniform.

【0021】以上、高抵抗の下側電極層の素材としてモ
リブデンを使用する場合について本発明を例示した。し
かしながら、モリブデン以外の他の適宜な高抵抗の素材
を下側電極層に使用する場合や、素材自体は高抵抗では
ないが層の厚みの制限などによって下側電極層の抵抗が
高くなる場合などにも、本発明を適用できることは明ら
かである。
The present invention has been described above with reference to the case where molybdenum is used as the material of the lower electrode layer of high resistance. However, when an appropriate high-resistance material other than molybdenum is used for the lower electrode layer, or when the material itself is not high-resistance but the resistance of the lower electrode layer becomes high due to the limitation of the thickness of the layer, etc. However, it is clear that the present invention can be applied.

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明の電
極取出し方法は、絶縁性基板の表面側に形成される高抵
抗のモリブデン電極層を基板に形成された導電路を介し
て裏面の補助電極層に接続することによって電極層全体
としての抵抗値を低下させる構成であるから、電極層内
部のジュール熱損が大幅に低下し、太陽電池全体として
の変換効率が向上する。
As described above in detail, the method for extracting an electrode according to the present invention comprises the steps of: providing a molybdenum electrode layer of high resistance formed on the front side of an insulating substrate through the conductive path formed on the substrate; Since the resistance value of the entire electrode layer is reduced by connecting to the auxiliary electrode layer, Joule heat loss inside the electrode layer is significantly reduced, and the conversion efficiency of the entire solar cell is improved.

【0023】また、本発明の電極取出し方法によれば、
下側電極層に接続される補助電極がガラスなどの絶縁性
基板の裏面に形成されているので、上部の層を機械的に
除去して下方の電極層を露出させるという困難なスクラ
イブの工程が不要になり、製品の歩留りが向上するとい
う利点がある。
Further, according to the electrode extracting method of the present invention,
Since the auxiliary electrode connected to the lower electrode layer is formed on the back surface of an insulating substrate such as glass, a difficult scribe process of mechanically removing the upper layer and exposing the lower electrode layer is performed. There is an advantage that it becomes unnecessary and the product yield is improved.

【0024】さらに、本発明の電極取出し方法によれ
ば、絶縁性基板の貫通孔内にはんだ層を含む導電路を予
め作成することにより、引き続いて基板の表面側に形成
される下側電極層をこの基板の裏面の補助電極層に接続
する構成であるから、比較的簡易な製造工程によって導
電路を形成できるという利点がある。
Further, according to the electrode extraction method of the present invention, by forming in advance a conductive path including a solder layer in the through hole of the insulating substrate, the lower electrode layer subsequently formed on the front surface side of the substrate is formed. Is connected to the auxiliary electrode layer on the back surface of the substrate, so that there is an advantage that a conductive path can be formed by a relatively simple manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の太陽電池の構成を示す部分
断面図である。
FIG. 1 is a partial cross-sectional view showing a configuration of a solar cell according to one embodiment of the present invention.

【図2】本発明の一実施例の太陽電池の構成を示す部分
断面図である。
FIG. 2 is a partial cross-sectional view showing a configuration of a solar cell according to one embodiment of the present invention.

【図3】従来技術による太陽電池の構成を示す部分断面
図である。
FIG. 3 is a partial cross-sectional view showing a configuration of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 Cu,In,Ga,Se を素材とする半導体光電変換層 2 モリブデンを素材とする下側電極層 3a,3b 透明な上側電極層 3c アルミ電極層 4 バッファ層 5 ガラス基板 5a 貫通孔 6 補助電極層 7 導電路 7c はんだボール 7b はんだ層 1 Semiconductor photoelectric conversion layer made of Cu, In, Ga, Se 2 Lower electrode layer made of molybdenum 3a, 3b Transparent upper electrode layer 3c Aluminum electrode layer 4 Buffer layer 5 Glass substrate 5a Through hole 6 Auxiliary electrode Layer 7 Conductor path 7c Solder ball 7b Solder layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板と、この絶縁性の基板の表面
に形成された下側電極層と、この下側電極層の表面に形
成された半導体光電変換層と、この半導体光電変換層の
表面に形成された透明な上側電極層とを備えた太陽電池
の電極取出し方法であって、 前記絶縁性の基板の表面への前記下側電極層の形成に先
立って、 前記絶縁性の基板の裏面に補助電極層を形成する工程
と、 前記絶縁性の基板を貫通する貫通孔を形成する工程と、 前記下側電極層を前記基板の裏面の補助電極層に接続す
るための少なくともはんだ層を含む導電路を前記貫通孔
の内部に形成する工程と、 を含むことを特徴とする太陽電池の電極取出し方法。
1. An insulating substrate, a lower electrode layer formed on a surface of the insulating substrate, a semiconductor photoelectric conversion layer formed on a surface of the lower electrode layer, and a semiconductor photoelectric conversion layer A transparent upper electrode layer formed on the surface of the solar cell, wherein the insulating substrate is formed prior to the formation of the lower electrode layer on the surface of the insulating substrate. Forming an auxiliary electrode layer on the back surface of the substrate; forming a through hole penetrating the insulating substrate; and at least a solder layer for connecting the lower electrode layer to an auxiliary electrode layer on the back surface of the substrate. Forming a conductive path inside the through-hole, the method comprising:
【請求項2】絶縁性の基板と、この絶縁性の基板の表面
に形成された下側電極層と、この下側電極層の表面に形
成された半導体光電変換層と、この半導体光電変換層の
表面に形成された透明な上側電極層とを備えた太陽電池
の電極取出し方法であって、 前記絶縁性の基板を貫通する貫通孔を形成する工程と、 前記絶縁性の基板の裏面に補助電極層を形成する工程
と、 前記下側電極層を前記基板の裏面の補助電極層に接続す
るための少なくともはんだ層を含む導電路を前記貫通孔
の内部に形成する工程と、 前記絶縁性の基板の表面に前記下側電極層を形成する工
程とを含むことを特徴とする太陽電池の電極取出し方
法。
2. An insulating substrate, a lower electrode layer formed on a surface of the insulating substrate, a semiconductor photoelectric conversion layer formed on a surface of the lower electrode layer, and a semiconductor photoelectric conversion layer. A method for extracting an electrode of a solar cell, comprising: a transparent upper electrode layer formed on the surface of a solar cell, wherein a step of forming a through hole penetrating the insulating substrate; Forming an electrode layer; and forming a conductive path including at least a solder layer for connecting the lower electrode layer to an auxiliary electrode layer on the back surface of the substrate, inside the through-hole; Forming the lower electrode layer on the surface of the substrate.
【請求項3】請求項1と2のそれぞれにおいて、 前記貫通孔の内部に形成されるはんだ層を含む導電路
は、中心に金属線を含むことを特徴とする太陽電池の電
極取出し方法。
3. The method according to claim 1, wherein the conductive path including the solder layer formed inside the through-hole includes a metal wire at the center.
【請求項4】請求項3において、 前記貫通孔の内部に形成されるはんだ層は、前記金属線
の先端部分に載置された球状のはんだを加熱溶融させる
ことによって形成されることを特徴とする太陽電池の電
極取出し方法。
4. The solder layer according to claim 3, wherein the solder layer formed inside the through hole is formed by heating and melting a spherical solder placed on a tip portion of the metal wire. To take out electrodes of solar cells.
【請求項5】請求項1乃至4のそれぞれにおいて、 前記複数の導電路は、前記補助電極層が形成された領域
のほぼ全域にわたって形成されたことを特徴とする太陽
電池。
5. The solar cell according to claim 1, wherein the plurality of conductive paths are formed over substantially the entire region where the auxiliary electrode layer is formed.
【請求項6】請求項1乃至5のそれぞれにおいて、 前記半導体光電変換層はCu,In,Ga,Seを主たる材料と
し、前記絶縁性の基板はガラスであり、かつ、前記下側
電極層はモリブデンを主材料とすることを特徴とする太
陽電池。
6. The semiconductor photoelectric conversion layer according to claim 1, wherein the semiconductor photoelectric conversion layer is mainly made of Cu, In, Ga, and Se, the insulating substrate is glass, and the lower electrode layer is A solar cell comprising molybdenum as a main material.
JP10268963A 1998-09-07 1998-09-07 Method for extracting electrode of solar battery Pending JP2000091602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268963A JP2000091602A (en) 1998-09-07 1998-09-07 Method for extracting electrode of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268963A JP2000091602A (en) 1998-09-07 1998-09-07 Method for extracting electrode of solar battery

Publications (1)

Publication Number Publication Date
JP2000091602A true JP2000091602A (en) 2000-03-31

Family

ID=17465742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268963A Pending JP2000091602A (en) 1998-09-07 1998-09-07 Method for extracting electrode of solar battery

Country Status (1)

Country Link
JP (1) JP2000091602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411556A1 (en) * 2002-10-18 2004-04-21 VHF Technologies SA Photovoltaic product and process of fabrication thereof
CN103513663A (en) * 2013-10-09 2014-01-15 苏州市职业大学 High-reliability solar energy tracking controller
CN104576772A (en) * 2013-10-21 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and manufacturing method thereof
US9490375B2 (en) 2011-04-04 2016-11-08 Mitsubishi Electric Corporation Solar cell and method for manufacturing the same, and solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411556A1 (en) * 2002-10-18 2004-04-21 VHF Technologies SA Photovoltaic product and process of fabrication thereof
US9490375B2 (en) 2011-04-04 2016-11-08 Mitsubishi Electric Corporation Solar cell and method for manufacturing the same, and solar cell module
CN103513663A (en) * 2013-10-09 2014-01-15 苏州市职业大学 High-reliability solar energy tracking controller
CN104576772A (en) * 2013-10-21 2015-04-29 中国科学院苏州纳米技术与纳米仿生研究所 Laser photovoltaic cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100766028B1 (en) Light Emitting Diode Package And Process Of Making The Same
US6562660B1 (en) Method of manufacturing the circuit device and circuit device
JP2828341B2 (en) Electrical contact part and method of manufacturing the same
EP1005089B1 (en) Power Semiconductor Device
CN102339757B (en) Method for manufacturing semiconductor devices having a glass substrate
JP2000091603A (en) Solar battery
JP2001185519A5 (en)
JPH04152679A (en) Integrated photovoltaic device
JPWO2009031522A1 (en) Semiconductor device, manufacturing method thereof, and mounting structure for mounting the semiconductor device
CN105679683A (en) Copper nanorod based copper-tin-copper bonding process and structure
JP2005019830A (en) Manufacturing method of semiconductor device
JP2000091602A (en) Method for extracting electrode of solar battery
JP2000091601A (en) Solar battery
JP4854105B2 (en) Thin film solar cell module and manufacturing method thereof
JP4054672B2 (en) Manufacturing method of semiconductor device
US9613924B2 (en) Method of flip-chip assembly of two electronic components by UV annealing, and assembly obtained
JP2006261415A (en) Manufacturing method for semiconductor device
TWI230427B (en) Semiconductor device with electrical connection structure and method for fabricating the same
JP3925766B2 (en) Manufacturing method of solar cell
JP2004273997A (en) Semiconductor device and its manufacturing method
JPH0350736A (en) Manufacture of bump of semiconductor chip
JP2004186643A (en) Semiconductor device and its manufacturing method
TWI317999B (en) Process and lead frame for making leadless semiconductor packages
JPS6260836B2 (en)
TWI241683B (en) Method for fabricating interconnecting in an insulating layer on a wafer and structure of the same