JP2000087210A - Plasma spraying method for forming low oxidized sprayed coating film - Google Patents

Plasma spraying method for forming low oxidized sprayed coating film

Info

Publication number
JP2000087210A
JP2000087210A JP10260010A JP26001098A JP2000087210A JP 2000087210 A JP2000087210 A JP 2000087210A JP 10260010 A JP10260010 A JP 10260010A JP 26001098 A JP26001098 A JP 26001098A JP 2000087210 A JP2000087210 A JP 2000087210A
Authority
JP
Japan
Prior art keywords
gas
powder
plasma
sprayed
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10260010A
Other languages
Japanese (ja)
Inventor
Hirofumi Sonoda
田 弘 文 園
Shigeru Kitahara
原 繁 北
Harumichi Ichimura
村 治 通 市
Koji Nishi
好 次 西
Keiichi Kikawa
川 圭 一 木
Yuji Furuyama
山 雄 治 古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Honda Motor Co Ltd
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Welding and Engineering Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10260010A priority Critical patent/JP2000087210A/en
Publication of JP2000087210A publication Critical patent/JP2000087210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the oxidation of sprayed coating film and to improve the quality of the sprayed coating film by using the one obtd. by adding an mixing inert gas with a specified amt. of gaseous hydrogen as powder feeding gas by a plasma spraying method for forming coating film by laminating powder on the object to be thermal-sprayed. SOLUTION: It is preferable that, as powder feeding gas, the one obtd. by adding gaseous hydrogen to inert gas by 3 to 10% volume percent and mixing them. The inside of the internal opening of a convergent-divergent bell shaped anode 2 is provided with a cathode 1, and the space between the anode 2 and the cathode 1 is fed with working gas. Arc discharge is generated on the space between the anode 2 and the cathode 1, and the working gas is made into plasma, which is blown off from the external opening of the anode 2 at a high speed. Powder as a thermal-spraying raw material is blown into the side port of the anode 2 together with powder feeding gas (carrier gas), which is sucked into the plasma flow, is melted by the plasma of high temp. and is collided against the surface of a substrate to form coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アークプラズマ中
に粉体(粒体を含む)を供給し、該粉体を被溶射物上即
ち基材上に積層し低酸化溶射皮膜を形成するためのプラ
ズマ溶射方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying a powder (including granules) into an arc plasma and laminating the powder on an object to be sprayed, that is, on a substrate to form a low-oxidation spray coating. A plasma spraying method.

【0002】[0002]

【従来の技術】一般的にプラズマ溶射では作動ガス(プ
ラズマガス)として不活性ガスが用いられる。作動ガス
は、主ガスとしてアルゴン、補助ガスとしてヘリウム或
いは水素,窒素などの二原子系ガスを混合したものであ
る。作動ガスに補助ガスを添加混合する目的は、出力上
昇即ち発生熱量及びプラズマジェットの速度の増大であ
る。作動ガスに二原子系補助ガスを添加することにより
解離電圧が高くなり、アーク電圧の上昇が生じ、同一電
流に於いて発生熱量が多くなりプラズマジェット流速が
速くなる。
2. Description of the Related Art Generally, an inert gas is used as a working gas (plasma gas) in plasma spraying. The working gas is a mixture of argon as a main gas and helium or a diatomic gas such as hydrogen or nitrogen as an auxiliary gas. The purpose of adding the auxiliary gas to the working gas is to increase the output, that is, to increase the amount of generated heat and the speed of the plasma jet. The addition of the diatomic auxiliary gas to the working gas increases the dissociation voltage, increases the arc voltage, increases the amount of heat generated at the same current, and increases the plasma jet flow rate.

【0003】図1に、プラズマ溶射ヘッドの縦断面の概
要を示す。中細ラッパ状のアノ−ド2の内開口内にカソ
−ド1があり、それらの間の空間に作動ガスが供給され
る。アノ−ド2/カソ−ド1間にアーク放電を発生させ
ることにより、作動ガスがプラズマとなってアノ−ド2
の外開口(ノズル)から高速で吹出る。溶射原料である
粉体は、アノ−ド2の側口に、粉体供給ガス(キャリア
ガス)と共に吹込まれ、プラズマ流で吸引されプラズマ
の高熱により溶融しプラズマ流で、前方の基材上に衝突
し層を形成する。アノ−ド2には冷却水が供給される。
FIG. 1 shows an outline of a longitudinal section of a plasma spraying head. Cathode 1 is located in the inner opening of horn-shaped anode 2 and the working gas is supplied to the space between them. By generating an arc discharge between the anode 2 and the cathode 1, the working gas becomes plasma and the anode 2
Blows out from the outside opening (nozzle) at high speed. The powder, which is a material for thermal spraying, is blown into the side opening of the anode 2 together with a powder supply gas (carrier gas), is sucked by the plasma flow, is melted by the high heat of the plasma, and is melted by the plasma flow on the front substrate. They collide and form a layer. Anode 2 is supplied with cooling water.

【0004】溶射材料となる粉体は、ノズル出口近傍
(図1)或いはノズル外部の直近に粉体供給ガスと共に
プラズマ炎中に供給される。プラズマ炎中に供給された
粉体は、高温に曝されかつ高速度で基材上に衝突し基材
上に皮膜を形成する。この時、粉体供給ガスとして用い
られるのは、アルゴンガスが一般的で、流量としては約
4〜10リットル/min程度である。
The powder to be sprayed is supplied into the plasma flame together with the powder supply gas near the nozzle outlet (FIG. 1) or immediately outside the nozzle. The powder supplied in the plasma flame is exposed to a high temperature and collides with the substrate at a high speed to form a film on the substrate. At this time, an argon gas is generally used as the powder supply gas, and the flow rate is about 4 to 10 liter / min.

【0005】[0005]

【発明が解決しようとする課題】大気中に於いてプラズ
マ溶射にて基板上に皮膜を生成する時の問題の1つに、
原材料である粉体がプラズマ炎によって高温になり、基
板上に衝突するまでに表面が酸化することがある。粉体
が金属粉の場合にこの問題が大きい。その対策として
は、チャンバー等により、基材およびそれに対向する溶
射ヘッドまわりの空間を、チャンバー等で覆って大気の
遮断を行い、減圧下で溶射を行なう減圧溶射法、ならび
に、チャンバー内の気体を不活性ガス等に置換してから
溶射を行なう雰囲気溶射法があるが、チャンバーならび
に真空引き装置が必要な上、バッチ生産しか出来ず、連
続的生産機構を構築することは困難もしくは、予圧室等
を前後行程に設置する等大規模な設備が必要となり、工
業的に非効率的である。
One of the problems when a film is formed on a substrate by plasma spraying in the air is as follows.
The powder, which is a raw material, becomes hot due to the plasma flame, and the surface may be oxidized before colliding on the substrate. This problem is significant when the powder is metal powder. As a countermeasure, the base material and the space around the spraying head facing it are covered with a chamber or the like, and the atmosphere is shut off by a chamber or the like. There is an atmospheric spraying method in which spraying is performed after replacing with an inert gas. However, since a chamber and a vacuum evacuation device are required, only batch production can be performed, and it is difficult to construct a continuous production mechanism or a preload chamber or the like. This requires large-scale equipment, such as installation of front and rear processes, and is industrially inefficient.

【0006】プラズマ炎を生成する作動ガスに関して
は、補助ガスに水素を用いる場合もある。例えば、作動
ガスの主ガスをアルゴンとし、補助ガスとして水素を、
全体の体積比率で10〜20%(主ガスのアルゴン50
リットル/minに対して、5〜10リットル/min)の割
合で混合添加する。この水素は、カソ−ド1/アノ−ド
2間を通過するときにアーク放電により高エネルギーを
付与され、電離したプラズマ状態になるため、作動ガス
の解離電圧が上昇し、アーク電圧が高くなる。その結果
発生熱量が増大する。水素は還元性のガスであるので酸
化を防止し、緻密且つ均質で良好な溶射皮膜を形成する
作用をも有し、上述の酸化の問題を改善する一助にはな
る。
[0006] As for the working gas for generating the plasma flame, hydrogen may be used as the auxiliary gas in some cases. For example, the main gas of the working gas is argon, hydrogen is used as the auxiliary gas,
10 to 20% by volume ratio (50% of main gas argon)
(5 to 10 liter / min). This hydrogen is given high energy by arc discharge when passing between the cathode 1 and the anode 2 and becomes an ionized plasma state, so that the dissociation voltage of the working gas increases and the arc voltage increases. . As a result, the amount of generated heat increases. Since hydrogen is a reducing gas, it has the effect of preventing oxidation and forming a dense, uniform and good thermal spray coating, which helps to improve the above-mentioned oxidation problem.

【0007】しかし、溶射原材料である粉体が金属粉
体、特に低融点金属或いはその合金粉体であるときに
は、溶射皮膜を形成する時に、粉体が過溶融状態となっ
て溶射皮膜の性能、特に皮膜の密着強度、が低下する問
題を生ずる。例えば、基材と溶融した粉体の熱膨張係数
の差が大きいと、過大な応力が皮膜/基材間に残留して
皮膜の組織変化が大きくなり、顕著な場合には、形成さ
れた皮膜が剥離する様な場合もある。かと言って、水素
の添加量を減少しただけでは当初の目的を果たせられな
いという矛盾を生じる。
However, when the powder to be sprayed is a metal powder, particularly a low melting point metal or its alloy powder, the powder becomes overmelted when forming the sprayed coating, and the performance of the sprayed coating is reduced. In particular, there arises a problem that the adhesion strength of the film decreases. For example, if the difference between the thermal expansion coefficients of the base material and the molten powder is large, excessive stress remains between the film and the base material, resulting in a large change in the structure of the film. May peel off. However, a contradiction arises that the original purpose cannot be achieved simply by reducing the amount of hydrogen added.

【0008】又、金属の種類により水素に敏感な金属が
あり、例えばニッケル及びニッケル合金等では水素の影
響で、形成された溶射皮膜が脆弱化したり或いは溶射皮
膜が形成された後に、結晶粒界付近に水素が集合し、遅
れ割れが発生する等の弊害を生じることも知られてい
る。
Further, some metals are sensitive to hydrogen depending on the kind of metal. For example, in the case of nickel and nickel alloys, the formed thermal spray coating is weakened by the influence of hydrogen or the crystal grain boundary is formed after the thermal spray coating is formed. It is also known that hydrogen collects in the vicinity and causes adverse effects such as delayed cracking.

【0009】これらの問題点は、粉体成分が同一である
ならば、粉体が細かい程表面積が広くなるため顕著にな
る。これが、緻密な皮膜を形成するために細かい粉体を
用いるという意図と相反する悪影響をもたらす。従っ
て、作動ガス(プラズマガス)に水素を添加すること
は、酸化を抑制するには有効な方法ではあるが問題があ
った。
[0009] These problems become remarkable if the powder components are the same, because the finer the powder, the larger the surface area. This has an adverse effect that conflicts with the intention to use fine powder to form a dense film. Therefore, adding hydrogen to the working gas (plasma gas) is an effective method for suppressing oxidation, but has a problem.

【0010】本発明は上述の問題点を改善することを目
的とする。より具体的には、溶射皮膜の酸化を抑制しか
つこれを溶射皮膜の品質を下げることなく実現すること
を目的とする。
An object of the present invention is to improve the above-mentioned problems. More specifically, an object of the present invention is to suppress the oxidation of the thermal spray coating and to realize this without lowering the quality of the thermal spray coating.

【0011】[0011]

【課題を解決するための手段】本発明では、不活性ガス
中に水素ガスを体積パーセントで3〜10%添加混合し
た粉体供給ガスにて粉体をプラズマ炎に送給する。
According to the present invention, powder is supplied to a plasma flame by a powder supply gas in which 3 to 10% by volume of hydrogen gas is added to and mixed with an inert gas.

【0012】水素ガスを、不活性ガスを主成分とする粉
体供給ガスに添加することは、この粉体供給ガスはカソ
−ド1/アノ−ド2間を通過しないため、粉体供給ガス
中の水素は、アーク放電条件に影響せずすなわちプラズ
マアーク電圧を上昇させること無く、ノズルから噴射す
るプラズマ炎を還元性雰囲気とする。これにより、プラ
ズマア−ク電圧が上昇することによる上述の問題が解消
し、しかも酸化が少い溶射皮膜を得ることができる。
The addition of hydrogen gas to a powder supply gas containing an inert gas as a main component means that the powder supply gas does not pass between the cathode 1 and the anode 2, so that the powder supply gas The hydrogen in the inside makes the plasma flame injected from the nozzle a reducing atmosphere without affecting the arc discharge conditions, that is, without increasing the plasma arc voltage. As a result, the above-mentioned problem caused by an increase in the plasma arc voltage can be solved, and a sprayed coating with less oxidation can be obtained.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】次の条件で溶射を行なった:EXAMPLES Thermal spraying was performed under the following conditions:

【0014】[0014]

【表1】 また、粉体供給ガスを、アルゴンガスに水素を3%,7
%および10%混合した3種とし、プラズマ炎への粉体
送給を行なった。この時基材上に溶射膜を形成せずに、
高温に曝された溶射粉体(実施例の溶射粒)を補集し
た。
[Table 1] The powder supply gas was 3% hydrogen and 7% argon gas.
% And 10%, and powder was fed to the plasma flame. At this time, without forming a sprayed film on the base material,
The sprayed powder (sprayed particles of the examples) exposed to the high temperature was collected.

【0015】比較のために、粉体供給ガスを、アルゴン
ガスに水素を2%添加したものと、水素添加のないアル
ゴン100%としたものとの2種とし、他は表1と同一
条件にて、プラズマ炎への粉体送給を行なった。この時
も基材上に溶射膜を形成せずに、高温に曝された溶射粉
体(比較例の溶射粒)を補集した。
For comparison, two kinds of powder supply gas were used, one in which hydrogen was added to argon gas at 2%, and the other in which argon was added without hydrogenation at 100%. Then, powder was supplied to the plasma flame. At this time, the sprayed powder (the sprayed particles of the comparative example) exposed to the high temperature was collected without forming the sprayed film on the base material.

【0016】図2に、補集した溶融粉体の酸化粒混合割
合を示す。この混合割合は、補集した粒子の数に対す
る、その中の酸化した粒子の数の百分率を示す。顕微鏡
を用いての目視判定によって、補集した粒子が非酸化の
ものか酸化したものかを判定した。
FIG. 2 shows the mixing ratio of oxidized particles in the collected molten powder. This mixing ratio indicates the percentage of the number of oxidized particles therein relative to the number of collected particles. Whether the collected particles were non-oxidized or oxidized was determined by visual judgment using a microscope.

【0017】図3に、補集した粒子を拡大して示す。図
3上において、表面が滑らかで光沢があって、これによ
り球中心は光の反射によって白く現われ中心の外は全反
射により黒く現われた丸い球体が非酸化の粒子である。
表面に微細な凹凸があって表面が粗れて見える、形がく
ずれた粒子が酸化粒子である。上記判定では、粒子の全
数を計数し、それらの中の酸化粒子の数を計数して、
(酸化粒子数/全粒子数)×100の計算にて、酸化粒
混合割合を算出した。
FIG. 3 is an enlarged view of the collected particles. In FIG. 3, the surface is smooth and glossy, whereby the center of the sphere appears white due to the reflection of light, and the outside of the center is a non-oxidized round sphere which appears black due to total reflection.
Oxidized particles are irregularly shaped particles having fine irregularities on the surface and appearing rough. In the above determination, the total number of particles is counted, the number of oxidized particles in them is counted,
The calculation of (the number of oxidized particles / the total number of particles) × 100 was performed to calculate the mixed ratio of oxidized particles.

【0018】図2に示すように、粉体供給ガス中の水素
量が2%以下であると、酸化粒子を生じ、水素量を3%
以上にすると粒子の酸化がなくなることが分かる。
As shown in FIG. 2, when the amount of hydrogen in the powder supply gas is 2% or less, oxidized particles are generated, and the amount of hydrogen is reduced to 3%.
It can be seen that the above eliminates the oxidation of the particles.

【0019】表2に、溶射皮膜の、皮膜面と垂直な方向
の引張強度を示す。この試材は、直径25.4mmの丸
棒鋼の端面に、アンゴンガスに水素0%,3%および7
%を添加した3種の粉体供給ガスを用いて、表1に示す
条件で溶射を行ない、溶射皮膜の表面に樹脂でもう1個
の、直径25.4mmの丸棒鋼の端面を接合した3種の
試材のものである。アンゴンガスに水素3%および7%
を添加した2種の粉体送給ガスを用いた溶射皮膜(実施
例)は、プラズマ炎で加熱された粉体粒子の酸化が少い
ため、引張強度が高いことが分かる。
Table 2 shows the tensile strength of the thermal spray coating in a direction perpendicular to the coating surface. This test material was prepared by adding 0%, 3% and 7% hydrogen to Angon gas on the end face of a round steel bar having a diameter of 25.4 mm.
%, And thermal spraying was performed under the conditions shown in Table 1 by using three kinds of powder supply gases, and another end face of a round steel bar having a diameter of 25.4 mm was joined to the surface of the thermal sprayed coating with resin. It is a kind of sample material. 3% and 7% hydrogen in Angon gas
It can be seen that the thermal spray coating using the two types of powder feed gas to which (a) is added has a high tensile strength because the powder particles heated by the plasma flame have little oxidation.

【0020】[0020]

【表2】 表3に、アンゴンガスに7〜15%の水素を添加した粉
体供給ガスを用い、他は上記表0と同一条件にて、プラ
ズマ炎への粉体送給を行ない、基材上に溶射膜を形成せ
ずに、高温に曝された溶射粉体(比較例の溶射粒)を補
集して、溶射粉体の水素含有量を、蛍光X線分析にて測
定した。測定結果を表3に示す。
[Table 2] In Table 3, powder was supplied to a plasma flame under the same conditions as in Table 0 above except that a powder feed gas obtained by adding 7 to 15% hydrogen to Angon gas was used, and a sprayed film was formed on a substrate. Was formed, the sprayed powder exposed to high temperature (sprayed particles of the comparative example) was collected, and the hydrogen content of the sprayed powder was measured by X-ray fluorescence analysis. Table 3 shows the measurement results.

【0021】[0021]

【表3】 この測定結果より、アンゴンガスに10%以下の水素を
添加した場合には、溶射粉体に水素の含有を生じないこ
とが分かる。
[Table 3] From this measurement result, it can be seen that when 10% or less of hydrogen is added to the Angon gas, the sprayed powder does not contain hydrogen.

【0022】[0022]

【発明の効果】本発明によれば、大気中に於いて形成さ
れる溶射皮膜の酸化を極力抑え且つ水素による悪影響を
受けないことで溶射皮膜の品質向上が計れ、実施例に挙
げた以外の合金あるいは活性材料及び炭化物系窒化物系
のセラミックのプラズマ溶射により皮膜を形成する場合
に於いて酸化皮膜を極力形成せずに健全な溶射皮膜を形
成することができ、生産能率の向上を改善することがで
きる。
According to the present invention, the quality of the sprayed coating can be improved by suppressing oxidation of the sprayed coating formed in the atmosphere as much as possible and not being adversely affected by hydrogen. When forming a film by plasma spraying of alloys or active materials and carbide-based nitride ceramics, it is possible to form a sound sprayed film without forming an oxide film as much as possible and improve the production efficiency. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶射ヘッドの構造概要を示す縦断面図であ
る。
FIG. 1 is a longitudinal sectional view showing an outline of the structure of a thermal spray head.

【図2】 粉体供給ガスに添加した水素量と、溶射粉体
の酸化割合との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an amount of hydrogen added to a powder supply gas and an oxidation ratio of a sprayed powder.

【図3】 溶射粉体の拡大平面図である。FIG. 3 is an enlarged plan view of a sprayed powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北 原 繁 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社機器事業部内 (72)発明者 市 村 治 通 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社機器事業部内 (72)発明者 西 好 次 埼玉県狭山市新狭山一丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 木 川 圭 一 埼玉県狭山市新狭山一丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 古 山 雄 治 埼玉県狭山市新狭山一丁目10番地1 ホン ダエンジニアリング株式会社内 Fターム(参考) 4K031 AB09 CB35 CB37 CB45 CB46 DA04 EA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Kitahara 7-6-1, Higashi Narashino, Narashino-shi, Chiba Nippon Steel Welding Industry Co., Ltd. (72) Inventor Osamu Ichimura 7 Higashi-Narashino, Narashino-shi, Chiba 6-1-1, Nippon Steel Welding Industry Co., Ltd. (72) Inventor Yoshiji Nishi 1-10-1, Shinsayama, Sayama-shi, Saitama Honda Engineering Co., Ltd. (72) Inventor Keiichi Kikawa Saitama 1-10-1 Shinsayama, Sayama City Honda Engineering Co., Ltd. (72) Inventor Yuji Furuyama 1-10-1 Shinsayama, Sayama City, Saitama Prefecture Honda Engineering Co., Ltd. F-term (reference) 4K031 AB09 CB35 CB37 CB45 CB46 DA04 EA10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被溶射物に指向したアークプラズマ中に
粉体を供給し該粉体を被溶射物上に積層して皮膜を生成
するプラズマ溶射方法に於いて、 粉体供給ガスとして、不活性ガスに水素ガスを体積パー
セントで3〜10%添加混合したものを用いて溶射する
ことを特徴とする低酸化溶射皮膜を形成するためのプラ
ズマ溶射方法。
In a plasma spraying method in which powder is supplied into an arc plasma directed to an object to be sprayed, and the powder is laminated on the object to be sprayed to form a film, the powder is supplied as a powder supply gas. A plasma spraying method for forming a low-oxidation sprayed coating, characterized by spraying using a mixture obtained by adding 3 to 10% by volume of hydrogen gas to an active gas.
JP10260010A 1998-09-14 1998-09-14 Plasma spraying method for forming low oxidized sprayed coating film Pending JP2000087210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260010A JP2000087210A (en) 1998-09-14 1998-09-14 Plasma spraying method for forming low oxidized sprayed coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10260010A JP2000087210A (en) 1998-09-14 1998-09-14 Plasma spraying method for forming low oxidized sprayed coating film

Publications (1)

Publication Number Publication Date
JP2000087210A true JP2000087210A (en) 2000-03-28

Family

ID=17342062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260010A Pending JP2000087210A (en) 1998-09-14 1998-09-14 Plasma spraying method for forming low oxidized sprayed coating film

Country Status (1)

Country Link
JP (1) JP2000087210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108714735A (en) * 2018-08-11 2018-10-30 刘冠诚 A kind of flame passes diffusion nozzle
CN111270192A (en) * 2020-04-13 2020-06-12 浙江灿根智能科技有限公司 Babbitt metal spraying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108714735A (en) * 2018-08-11 2018-10-30 刘冠诚 A kind of flame passes diffusion nozzle
CN111270192A (en) * 2020-04-13 2020-06-12 浙江灿根智能科技有限公司 Babbitt metal spraying device

Similar Documents

Publication Publication Date Title
Gärtner et al. The cold spray process and its potential for industrial applications
JP3952252B2 (en) Powder for thermal spraying and high-speed flame spraying method using the same
US5019429A (en) High density thermal spray coating and process
EP2011964B1 (en) Method of Repairing a Turbine Component
US4232056A (en) Thermospray method for production of aluminum porous boiling surfaces
HU211412B (en) Method and apparatus for producing fireproof layer
TWI385277B (en) Preparation method of black yttrium oxide sputtering film and black yttrium oxide sputtering film coating material
WO2004033747A1 (en) Method of forming metal coating with hvof spray gun and thermal spray apparatus
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JPS648072B2 (en)
US6863990B2 (en) Wear-resistant, corrosion-resistant Ni-Cr-Mo thermal spray powder and method
JP2003183805A (en) Method for forming metal film with hvof thermal spray gun and thermal spray apparatus
US20020018858A1 (en) Mixed powder thermal spraying method
KR100993310B1 (en) Method for coating titanium layer using spray and apparatus for coating titanium layer
JP2000087210A (en) Plasma spraying method for forming low oxidized sprayed coating film
CN110382738B (en) Method for manufacturing aluminum circuit board
US20110097504A1 (en) Method for the Anti-Corrosion Processing of a Part by Deposition of a Zirconium and/or Zirconium Alloy Layer
JPS5827971A (en) Melt spraying for metal
US20090304942A1 (en) Wire-arc spraying of a zinc-nickel coating
JP2006111929A (en) Thermal spraying powder, thermal spraying method and sprayed coating
CN112095070A (en) Aluminum-containing metal powder applied to plasma spraying
JPH03192697A (en) Temperature and speed lowering prevention method for shield plasma jet
RU2312165C2 (en) Method of the gas-flame spraying of the metallic powder materials
JP4209277B2 (en) Method for producing plasma corrosion resistant thermal spray member
CN117230402B (en) Method for obtaining alumina coating detection sample