JP2006111929A - Thermal spraying powder, thermal spraying method and sprayed coating - Google Patents

Thermal spraying powder, thermal spraying method and sprayed coating Download PDF

Info

Publication number
JP2006111929A
JP2006111929A JP2004300874A JP2004300874A JP2006111929A JP 2006111929 A JP2006111929 A JP 2006111929A JP 2004300874 A JP2004300874 A JP 2004300874A JP 2004300874 A JP2004300874 A JP 2004300874A JP 2006111929 A JP2006111929 A JP 2006111929A
Authority
JP
Japan
Prior art keywords
powder
thermal spraying
thermal
spraying
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300874A
Other languages
Japanese (ja)
Inventor
Junya Kitamura
順也 北村
Takeshi Itsukaichi
剛 五日市
Satoshi Owada
聡 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2004300874A priority Critical patent/JP2006111929A/en
Priority to EP05256344A priority patent/EP1647610A3/en
Priority to KR1020050096486A priority patent/KR20060053252A/en
Priority to US11/250,104 priority patent/US20060081090A1/en
Priority to CNA200510113456XA priority patent/CN1760409A/en
Publication of JP2006111929A publication Critical patent/JP2006111929A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spraying powder capable of forming a sprayed coating made of a chromium-iron based-alloy having satisfactory wear resistance. <P>SOLUTION: The thermal spraying powder ontains carbon-containing chromium-iron-based alloy powder. The ratio of the mass of carbon in the alloy powder to the total of the mass of chromium and iron in the alloy powder is ≥2%. The 10% particle diameter D<SB>10</SB>of the alloy powder is preferably controlled to ≥10 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高速フレーム溶射により溶射皮膜を形成する用途において有用な溶射用粉末に関する。本発明はまた、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜に関する。   The present invention relates to a thermal spraying powder that is useful in applications in which a thermal spray coating is formed by high-speed flame spraying. The present invention also relates to a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

耐食性、耐摩耗性、耐熱性などの特性を付与するべく、各種産業機械や一般向け機械の金属製部品の表面に溶射皮膜を設ける技術が知られている。例えば特許文献1及び2には、多硫化ナトリウムによる腐食に対する耐性を付与するべく、ナトリウム−硫黄電池の陽極容器の内面にクロム−鉄系合金製の溶射皮膜を設ける技術が開示されている。中でも特許文献2には、クロム−鉄系合金粉末をプラズマ溶射して溶射皮膜を形成することが開示されている。   In order to impart properties such as corrosion resistance, wear resistance, and heat resistance, a technique of providing a thermal spray coating on the surface of metal parts of various industrial machines and general-purpose machines is known. For example, Patent Documents 1 and 2 disclose a technique in which a spray coating made of a chromium-iron alloy is provided on the inner surface of an anode container of a sodium-sulfur battery in order to impart resistance to corrosion by sodium polysulfide. In particular, Patent Document 2 discloses forming a sprayed coating by plasma spraying chromium-iron alloy powder.

特許文献1及び2のクロム−鉄系合金製の溶射皮膜は、硬度が低く耐摩耗性に劣るため、耐摩耗性が要求される用途には向かない。耐摩耗性に優れる溶射皮膜としては、炭化タングステンとコバルトを含有するサーメット粉末、あるいは炭化タングステンとコバルトとクロムを含有するサーメット粉末から形成される溶射皮膜が知られている。しかしながら、これらサーメット粉末から形成される溶射皮膜は、クロム−鉄系合金製の溶射皮膜に比べて非常に高価である。従って、サーメット粉末から形成される溶射皮膜が高価である現状にあって、クロム−鉄系合金製の溶射皮膜の耐摩耗性を向上させることは産業的に有用である。
特許第2969050号公報 特許第3155124号公報
Since the thermal spray coating made of chromium-iron alloys of Patent Documents 1 and 2 has low hardness and poor wear resistance, it is not suitable for applications requiring wear resistance. Known thermal spray coatings with excellent wear resistance include cermet powders containing tungsten carbide and cobalt, or thermal spray coatings formed from cermet powders containing tungsten carbide, cobalt and chromium. However, the thermal spray coating formed from these cermet powders is very expensive compared to the thermal spray coating made of a chromium-iron alloy. Therefore, in the present situation where the thermal spray coating formed from the cermet powder is expensive, it is industrially useful to improve the wear resistance of the thermal spray coating made of a chromium-iron alloy.
Japanese Patent No. 2996950 Japanese Patent No. 3155124

本発明の目的は、良好な耐摩耗性を有するクロム−鉄系合金製の溶射皮膜を形成可能な溶射用粉末を提供することにある。本発明はまた、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜を提供することにある。   An object of the present invention is to provide a thermal spraying powder capable of forming a thermal spray coating made of a chromium-iron alloy having good wear resistance. Another object of the present invention is to provide a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

上記の目的を達成するために、請求項1に記載の発明は、クロム−鉄系合金粉末を含有する溶射用粉末であって、前記合金粉末は炭素を含み、合金粉末中のクロム及び鉄の質量の総計に対する合金粉末中の炭素の質量の比率が2%以上である溶射用粉末を提供する。   In order to achieve the above object, the invention according to claim 1 is a thermal spraying powder containing a chromium-iron alloy powder, the alloy powder containing carbon, and the chromium and iron in the alloy powder. Provided is a thermal spraying powder in which the ratio of the mass of carbon in the alloy powder to the total mass is 2% or more.

請求項2に記載の発明は、前記合金粉末の小粒子径側からの積算粒子体積が全粒子体積の10%に相当する粒子径を合金粉末の10%粒子径D10とするとき、合金粉末の10%粒子径D10が10μm以上である請求項1に記載の溶射用粉末を提供する。 Invention of claim 2, when the particle diameter of cumulative particle volume from small particles diameter of the alloy powder is equivalent to 10% of the total particle volume and 10% particle size D 10 of the alloy powder, alloy powder The powder for thermal spraying according to claim 1, wherein the 10% particle diameter D 10 is 10 μm or more.

請求項3に記載の発明は、高速フレーム溶射により溶射皮膜を形成する用途に使用される請求項1又は2に記載の溶射用粉末を提供する。
請求項4に記載の発明は、請求項1又は2に記載の溶射用粉末を高速フレーム溶射する溶射方法を提供する。
Invention of Claim 3 provides the powder for thermal spraying of Claim 1 or 2 used for the use which forms a sprayed coating by high-speed flame spraying.
The invention described in claim 4 provides a thermal spraying method for spraying the thermal spraying powder according to claim 1 or 2 at high speed flame.

請求項5に記載の発明は、請求項1又は2に記載の溶射用粉末を高速フレーム溶射して形成される溶射皮膜を提供する。   The invention according to claim 5 provides a thermal spray coating formed by high-speed flame spraying of the thermal spraying powder according to claim 1 or 2.

本発明によれば、良好な耐摩耗性を有するクロム−鉄系合金製の溶射皮膜を形成可能な溶射用粉末が提供される。また本発明によれば、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜も提供される。   ADVANTAGE OF THE INVENTION According to this invention, the powder for thermal spraying which can form the sprayed coating made from the chromium- iron type alloy which has favorable abrasion resistance is provided. The present invention also provides a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

以下、本発明の一実施形態を説明する。
本実施形態に係る溶射用粉末はクロム−鉄系合金粉末からなる。クロム−鉄系合金粉末は炭素を含む。
Hereinafter, an embodiment of the present invention will be described.
The thermal spraying powder according to this embodiment is made of a chromium-iron alloy powder. The chromium-iron-based alloy powder contains carbon.

合金粉末中のクロム及び鉄の質量の総計に対する合金粉末中の炭素の質量の比率が2%よりも小さい場合、溶射用粉末から形成される溶射皮膜は、硬度が低くて良好な耐摩耗性を有さない。従って、良好な耐摩耗性を有する溶射皮膜を得るためには、炭素の比率は2%以上であることが必須である。ただし、炭素の比率がたとえ2%以上であっても3%よりも小さい場合には、溶射皮膜の耐摩耗性は大して良好でないことがある。従って、炭素の比率は3%以上であることが好ましい。一方、炭素の比率が10%よりも大きい場合には、溶射皮膜の脆化により溶射皮膜の耐摩耗性が低下する虞がある。従って、脆化による溶射皮膜の耐摩耗性の低下を防ぐためには、炭素の比率は10%以下であることが好ましい。本実施形態に係る溶射用粉末の場合、合金粉末中のクロム及び鉄の質量の総計に対する合金粉末中の炭素の質量の比率は、溶射用粉末中のクロム及び鉄の質量の総計に対する溶射用粉末中の炭素の質量の比率に換言可能である。   When the ratio of the mass of carbon in the alloy powder to the total mass of chromium and iron in the alloy powder is less than 2%, the thermal spray coating formed from the thermal spray powder has low hardness and good wear resistance. I don't have it. Therefore, in order to obtain a thermal spray coating having good wear resistance, the carbon ratio must be 2% or more. However, even if the carbon ratio is 2% or more, if it is smaller than 3%, the abrasion resistance of the sprayed coating may not be very good. Accordingly, the carbon ratio is preferably 3% or more. On the other hand, when the carbon ratio is larger than 10%, the abrasion resistance of the thermal spray coating may be reduced due to the embrittlement of the thermal spray coating. Therefore, in order to prevent a decrease in the wear resistance of the thermal spray coating due to embrittlement, the carbon ratio is preferably 10% or less. In the case of the thermal spraying powder according to the present embodiment, the ratio of the mass of carbon in the alloy powder to the total mass of chromium and iron in the alloy powder is the thermal spraying powder relative to the total mass of chromium and iron in the thermal spraying powder. In other words, the ratio of the mass of carbon in the inside is possible.

合金粉末中のクロムの含有量が60質量%よりも少ない場合、溶射用粉末から形成される溶射皮膜は硬度があまり高くないことがある。溶射皮膜の硬度があまり高くない場合には、溶射皮膜の耐摩耗性は大して良好でない。従って、クロムの含有量は60質量%以上であることが好ましい。一方、クロムの含有量が95質量%よりも多い場合、さらに言えば85質量%よりも多い場合、さらに言えば80質量%よりも多い場合には、付着効率(溶射歩留まり)が低下する虞がある。従って、付着効率の低下を防ぐためには、クロムの含有量は95質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが最も好ましい。本実施形態に係る溶射用粉末の場合、合金粉末中のクロムの含有量は、溶射用粉末中のクロムの含有量に換言可能である。   When the chromium content in the alloy powder is less than 60% by mass, the thermal spray coating formed from the thermal spray powder may not have a very high hardness. If the hardness of the thermal spray coating is not very high, the wear resistance of the thermal spray coating is not very good. Accordingly, the chromium content is preferably 60% by mass or more. On the other hand, if the chromium content is higher than 95% by mass, more specifically 85% by mass, or more than 80% by mass, the deposition efficiency (spraying yield) may be reduced. is there. Therefore, in order to prevent a decrease in adhesion efficiency, the chromium content is preferably 95% by mass or less, more preferably 85% by mass or less, and most preferably 80% by mass or less. In the case of the thermal spraying powder according to the present embodiment, the chromium content in the alloy powder can be rephrased as the chromium content in the thermal spraying powder.

合金粉末の10%粒子径D10が10μmよりも小さい場合、さらに言えば15μmよりも小さい場合には、溶射時にスピッティングと呼ばれる現象が発生する虞がある。従って、スピッティングの発生を防ぐためには、10%粒子径D10は、10μm以上であることが好ましく、15μm以上であることがより好ましい。一方、10%粒子径D10が25μmよりも大きい場合には、付着効率が低下する虞がある。従って、付着効率の低下を防ぐためには、10%粒子径D10は25μm以下であることが好ましい。合金粉末の10%粒子径D10は、合金粉末の小粒子径側からの積算粒子体積が全粒子体積の10%に相当する粒子径である。換言すれば、合金粉末の10%粒子径D10は、積算体積が合金粉末中の全粒子の体積の合計の10%以上になるまで粒子径の小さい粒子から順に合金粉末中の各粒子の体積を積算したときに最後に積算される粒子の粒子径である。合金粉末の10%粒子径D10は、例えばレーザー回析式粒度測定機を用いて測定される。本実施形態に係る溶射用粉末の場合、合金粉末の10%粒子径D10は、溶射用粉末の10%粒子径D10に換言可能である。 When 10% particle size D 10 of the alloy powder is less than 10 [mu] m, if smaller than 15μm speaking, a phenomenon called spitting during spraying is likely to occur. Therefore, in order to prevent the occurrence of spitting, the 10% particle diameter D 10 is preferably 10 μm or more, and more preferably 15 μm or more. On the other hand, if the 10% particle size D 10 is greater than 25μm, there is a possibility that adhesion efficiency decreases. Therefore, in order to prevent a decrease in deposition efficiency, it is preferable that 10% particle diameter D 10 is 25μm or less. 10% particle size D 10 of the alloy powder is a particle size cumulative particle volume from small particles diameter of the alloy powder is equivalent to 10% of the total particle volume. In other words, 10% particle size D 10 of the alloy powder, the volume of each particle in the alloy powder in order from small particles of particle size up to greater than or equal to 10% of the total volume of all particles in the cumulative volume in the alloy powder Is the particle diameter of the particles that are accumulated last. 10% particle size D 10 of the alloy powder, for example, is measured using a laser diffraction particle size measuring instrument. If the thermal spraying powder according to the present embodiment, the 10% particle size D 10 of the alloy powder can be words in the 10% particle size D 10 of the thermal spraying powder.

スピッティングは、過溶融した溶射用粉末が溶射機のノズルの内壁に付着堆積してできる堆積物が溶射皮膜に混入する現象をいう。スピッティングが発生すると、溶射皮膜の組織構造が不均一となるため、溶射皮膜の品質が著しく低下する。   Spitting refers to a phenomenon in which deposits formed by depositing and depositing an overmelted thermal spraying powder on the inner wall of a nozzle of a thermal sprayer are mixed into the thermal spray coating. When spitting occurs, the structure of the thermal spray coating becomes non-uniform, and the quality of the thermal spray coating is significantly reduced.

合金粉末の50%粒子径D50が20μmよりも小さい場合にも、スピッティングが発生する虞がある。従って、スピッティングの発生を防ぐためには、50%粒子径D50は、20μm以上であることが好ましい。一方、50%粒子径D50が50μmよりも大きい場合には、付着効率が低下する虞がある。従って、付着効率の低下を防ぐためには、50%粒子径D50は50μm以下であることが好ましい。合金粉末の50%粒子径D50は、合金粉末の小粒子径側からの積算粒子体積が全粒子体積の50%に相当する粒子径である。換言すれば、合金粉末の50%粒子径D50は、積算体積が合金粉末中の全粒子の体積の合計の50%以上になるまで粒子径の小さい粒子から順に合金粉末中の各粒子の体積を積算したときに最後に積算される粒子の粒子径である。合金粉末の50%粒子径D50は、例えばレーザー回析式粒度測定機を用いて測定される。本実施形態に係る溶射用粉末の場合、合金粉末の50%粒子径D50は、溶射用粉末の50%粒子径D50に換言可能である。 Even when the 50% particle diameter D 50 of the alloy powder is smaller than 20 μm, spitting may occur. Therefore, in order to prevent the occurrence of spitting, the 50% particle diameter D 50 is preferably 20 μm or more. On the other hand, when the 50% particle diameter D 50 is larger than 50 μm, the adhesion efficiency may be reduced. Therefore, in order to prevent a decrease in deposition efficiency, it is preferred that the 50% particle size D 50 is 50μm or less. 50% particle size D 50 of the alloy powder is a particle size cumulative particle volume from small particles diameter of the alloy powder is equivalent to 50% of the total particle volume. In other words, the 50% particle diameter D 50 of the alloy powder, the volume of each particle of the integrated volume in the alloy powder in order from small particles of particle size up to 50% or more of the total volume of all particles in the alloy powder Is the particle diameter of the particles that are accumulated last. 50% particle size D 50 of the alloy powder is measured, for example using a laser diffraction particle size measuring instrument. If the thermal spraying powder according to the present embodiment, the 50% particle size D 50 of the alloy powder can be words in the 50% particle size D 50 of the thermal spraying powder.

本実施形態に係る溶射用粉末は、例えば、高速フレーム溶射により溶射皮膜を形成する用途に使用される。本実施形態に係る溶射用粉末を高速フレーム溶射して形成される溶射皮膜は良好な耐摩耗性を有する。本実施形態に係る溶射用粉末を特に好適に溶射することができる高速フレーム溶射機としては、例えば、Praxair/TAFA社製の“JP−5000”やスルザーメテコ社製の“ダイヤモンドジェット(ハイブリッドタイプ)”などの高出力タイプの高速フレーム溶射機が挙げられる。   The thermal spraying powder according to the present embodiment is used, for example, for applications in which a thermal spray coating is formed by high-speed flame spraying. The thermal spray coating formed by high-speed flame spraying of the thermal spraying powder according to the present embodiment has good wear resistance. As a high-speed flame sprayer that can spray the powder for thermal spraying according to the present embodiment particularly preferably, for example, “JP-5000” manufactured by Praxair / TAFA or “Diamond Jet (hybrid type)” manufactured by Sulzer Metco. High output type high speed flame spraying machine.

本実施形態は、以下の利点を有する。
・ 本実施形態に係る溶射用粉末を高速フレーム溶射して形成される溶射皮膜は良好な耐摩耗性を有する。従って、本実施形態に係る溶射用粉末は、炭化タングステンとコバルトを含有するサーメット粉末あるいは炭化タングステンとコバルトとクロムを含有するサーメット粉末の代替物として、耐摩耗性が要求される用途の溶射皮膜の材料として極めて有用である。
This embodiment has the following advantages.
The thermal spray coating formed by high-speed flame spraying of the thermal spraying powder according to the present embodiment has good wear resistance. Therefore, the thermal spraying powder according to the present embodiment is used as a substitute for a cermet powder containing tungsten carbide and cobalt or as a substitute for a cermet powder containing tungsten carbide, cobalt and chromium. It is extremely useful as a material.

・ 高速フレーム溶射によれば、フレーム溶射、プラズマ溶射などの他の溶射の場合に比べて、溶射機から射出される溶射用粉末の飛行速度が大きいため、溶射用粉末は基材表面に高速度で衝突する。従って、基材への密着性が高く且つ緻密な溶射皮膜が得られる。さらに高速フレーム溶射によれば、他の溶射の場合に比べて、溶射時に溶射用粉末が過熱されにくいため、溶射用粉末の熱変質が抑制される。高速フレーム溶射の場合に溶射用粉末の熱変質が抑制される理由には、高速フレーム溶射の溶射熱源であるフレームが高圧であるためにフレーム中への大気の混入が比較的少ないこと、飛行速度が大きいために溶射用粉末がフレーム中に滞留している時間が短いことが含まれる。溶射皮膜の耐摩耗性は、基材への溶射皮膜の密着性が高いこと、溶射皮膜が緻密であること、溶射皮膜が熱変質した溶射用粉末を含まないことによっても向上する。   ・ According to high-speed flame spraying, the spraying powder sprayed from the sprayer has a higher flight speed than other flame spraying methods such as flame spraying and plasma spraying. Collide with. Therefore, a dense sprayed coating having high adhesion to the substrate can be obtained. Further, according to the high-speed flame spraying, the thermal spraying powder is less likely to be overheated during the thermal spraying as compared with other thermal spraying, so that thermal alteration of the thermal spraying powder is suppressed. The reason why the thermal alteration of the thermal spraying powder is suppressed in the case of high-speed flame spraying is that the flame, which is the spraying heat source of high-speed flame spraying, has a high pressure, so that there is relatively little atmospheric contamination in the frame, and the flight speed It is included that the time during which the thermal spraying powder stays in the frame is short because of the large size. The abrasion resistance of the thermal spray coating is also improved by the high adhesion of the thermal spray coating to the substrate, the dense thermal spray coating, and the fact that the thermal spray coating does not contain thermally-modified powder.

前記実施形態は以下のように変更されてもよい。
・ クロム−鉄系合金粉末は、炭素、クロム、及び鉄以外の成分を含有してもよい。ただし、合金粉末中の炭素、クロム及び鉄の含有量の総計は、好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは98質量%以上である。合金粉末中のクロム及び鉄の質量の総計に対する合金粉末中のケイ素の質量の比率が1%よりも大きいと良質な溶射皮膜が得られない虞がある。従って、合金粉末がケイ素をさらに含有する場合には、ケイ素の比率は1%以下であることが好ましい。
The embodiment may be modified as follows.
-Chrome-iron type alloy powder may contain components other than carbon, chromium, and iron. However, the total content of carbon, chromium and iron in the alloy powder is preferably 90% by mass or more, more preferably 95% by mass or more, and most preferably 98% by mass or more. If the ratio of the mass of silicon in the alloy powder to the total mass of chromium and iron in the alloy powder is greater than 1%, a good thermal spray coating may not be obtained. Therefore, when the alloy powder further contains silicon, the silicon ratio is preferably 1% or less.

・ 溶射用粉末は、クロム−鉄系合金粉末以外の粉末を含有してもよい。ただし、溶射用粉末中のクロム−鉄系合金粉末の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは98質量%以上である。   The thermal spraying powder may contain a powder other than the chromium-iron alloy powder. However, the content of the chromium-iron alloy powder in the thermal spraying powder is preferably 90% by mass or more, more preferably 95% by mass or more, and most preferably 98% by mass or more.

・ 前記実施形態に係る溶射用粉末は、高速フレーム溶射以外の溶射により溶射皮膜を形成する用途に使用されてもよい。
次に、本発明の実施例及び比較例を説明する。
-The powder for thermal spraying which concerns on the said embodiment may be used for the use which forms a thermal spray coating by thermal spraying other than high-speed flame spraying.
Next, examples and comparative examples of the present invention will be described.

クロム−鉄系合金粉末からなる実施例1〜4及び比較例1〜3に係る溶射用粉末を調製した。各溶射用粉末の詳細は表1に示すとおりである。
表1の“炭素の比率”欄中の数値は、溶射用粉末中のクロム及び鉄の質量の総計に対する溶射用粉末中の炭素の質量の比率を表す。表1の“D3”、“D10”、“D50”、及び“D90”欄中の数値はそれぞれ、堀場製作所製のレーザー回析式粒度測定機“LA−300”を用いて測定された溶射用粉末の3%粒子径D3、10%粒子径D10、50%粒子径D50、及び90%粒子径D90を表す。溶射用粉末の3%粒子径D3は、積算体積が溶射用粉末中の全粒子の体積の合計の3%以上になるまで粒子径の小さい粒子から順に溶射用粉末中の各粒子の体積を積算したときに最後に積算される粒子の粒子径である。溶射用粉末の90%粒子径D90は、積算体積が溶射用粉末中の全粒子の体積の合計の90%以上になるまで粒子径の小さい粒子から順に溶射用粉末中の各粒子の体積を積算したときに最後に積算される粒子の粒子径である。
Thermal spraying powders according to Examples 1 to 4 and Comparative Examples 1 to 3 made of chromium-iron alloy powder were prepared. Details of each thermal spraying powder are as shown in Table 1.
The numerical values in the “carbon ratio” column of Table 1 represent the ratio of the mass of carbon in the thermal spraying powder to the total mass of chromium and iron in the thermal spraying powder. The numerical values in the columns “D 3 ”, “D 10 ”, “D 50 ”, and “D 90 ” in Table 1 are measured using a laser diffraction particle size analyzer “LA-300” manufactured by HORIBA, Ltd. The 3% particle diameter D 3 , 10% particle diameter D 10 , 50% particle diameter D 50 , and 90% particle diameter D 90 of the thermal spraying powder thus obtained are shown. 3% particle size D 3 of the thermal spraying powder is accumulated volume the volume of each particle in the thermal spraying powder in this order from the small particles of the particle size until at least 3% of the total volume of all particles in the thermal spraying powder It is the particle diameter of the particles that are accumulated last when they are accumulated. 90% particle diameter D 90 of the thermal spraying powder is accumulated volume the volume of each particle in the thermal spraying powder in order from small particles of particle size up to 90% or more of the total volume of all particles in the thermal spraying powder It is the particle diameter of the particles that are accumulated last when they are accumulated.

実施例1〜4及び比較例1〜2においては、表2に示す第1溶射条件に従って溶射用粉末を高速フレーム溶射して基材上に膜厚200μmの溶射皮膜を形成した。比較例3においては、表2に示す第2溶射条件に従って溶射用粉末をプラズマ溶射して基材上に膜厚200μmの溶射皮膜を形成した。   In Examples 1 to 4 and Comparative Examples 1 and 2, the thermal spray powder was subjected to high-speed flame spraying according to the first thermal spraying conditions shown in Table 2 to form a sprayed coating having a thickness of 200 μm on the substrate. In Comparative Example 3, the thermal spraying powder was plasma sprayed according to the second thermal spraying conditions shown in Table 2 to form a 200 μm thick thermal spray coating on the substrate.

溶射中のスピッティングの発生の有無に基づいて、実施例1〜4及び比較例1〜3に係る各溶射用粉末を良(○)、不良(×)の二段階で評価した。すなわち、溶射を開始してから5分が経過した時点において溶射機のノズルに溶融した溶射用粉末の付着が認められた場合には不良、付着が認められなかった場合には良である。この評価の結果を表1の“スピッティング”欄に示す。   Based on the presence or absence of spitting during thermal spraying, each thermal spraying powder according to Examples 1 to 4 and Comparative Examples 1 to 3 was evaluated in two stages: good (◯) and defective (×). That is, when 5 minutes have passed since the start of thermal spraying, adhesion of melted thermal spraying powder to the nozzle of the thermal sprayer is recognized, and it is good when adhesion is not recognized. The results of this evaluation are shown in the “Spitting” column of Table 1.

溶射皮膜が設けられた後の基材を基材の表面に直交する面で切断し、研磨による鏡面加工、洗浄、及び乾燥をその切断面に順次に施した。その後、(株)島津製作所製のビッカース硬度試験機“HMV−1”を用いて、表3に示す測定条件に従って切断面の溶射皮膜部分のビッカース硬度を測定した。その測定結果に基づいて、実施例1〜4及び比較例1〜3に係る各溶射用粉末から形成される溶射皮膜の硬度を優(◎)、良(○)、不良(×)の三段階で評価した。すなわち、ビッカース硬度(Hv0.2)が800以上の場合には優、ビッカース硬度(Hv0.2)が700以上800未満の場合には良、ビッカース硬度(Hv0.2)が700未満の場合には不良である。測定されたビッカース硬度の値と、それに基づく評価の結果を表1の“硬度”欄に示す。   The base material after the thermal spray coating was provided was cut along a surface perpendicular to the surface of the base material, and mirror-finishing by polishing, washing, and drying were sequentially applied to the cut surface. Thereafter, using a Vickers hardness tester “HMV-1” manufactured by Shimadzu Corporation, the Vickers hardness of the sprayed coating portion of the cut surface was measured according to the measurement conditions shown in Table 3. Based on the measurement results, the hardness of the thermal spray coating formed from each of the thermal spraying powders according to Examples 1 to 4 and Comparative Examples 1 to 3 is excellent (◎), good (○), and defective (×) in three stages. It was evaluated with. That is, it is excellent when the Vickers hardness (Hv0.2) is 800 or more, good when the Vickers hardness (Hv0.2) is 700 or more and less than 800, and when the Vickers hardness (Hv0.2) is less than 700. It is bad. The value of the measured Vickers hardness and the evaluation result based on the value are shown in the “Hardness” column of Table 1.

基材上に設けられた溶射皮膜をJIS H 8682−1に準拠した乾式摩耗試験に供した。具体的には、スガ式摩耗試験機を用いて研磨紙(SiC#180)でもって荷重約31N(3.15kgf)で溶射皮膜の表面を400回摩擦した。この摩耗試験による溶射皮膜の摩耗体積量に基づいて、実施例1〜4及び比較例1〜3に係る各溶射用粉末から形成される溶射皮膜の耐摩耗性を優(◎)、良(○)、不良(×)の三段階で評価した。すなわち、基準試料(SS400鋼板)を同じ摩耗試験に供したときの基準試料の摩耗体積量に対する溶射皮膜の摩耗体積量の比率が20%未満の場合には優、20%以上30%未満の場合には良、30%以上の場合には不良である。基準試料の摩耗体積量に対する溶射皮膜の摩耗体積量の比率と、それに基づく評価の結果を表1の“耐摩耗性”欄に示す。   The thermal spray coating provided on the substrate was subjected to a dry wear test based on JIS H 8682-1. Specifically, the surface of the sprayed coating was rubbed 400 times with a polishing paper (SiC # 180) with a load of about 31 N (3.15 kgf) using a Suga type abrasion tester. Based on the abrasion volume of the thermal spray coating by this abrasion test, the abrasion resistance of the thermal spray coating formed from each of the thermal spraying powders according to Examples 1 to 4 and Comparative Examples 1 to 3 is excellent (◎) and good (○ ) And bad (x). That is, when the ratio of the wear volume of the thermal spray coating to the wear volume of the reference sample when the reference sample (SS400 steel plate) is subjected to the same wear test is less than 20%, it is excellent, and when it is 20% or more and less than 30% In the case of 30% or more, it is bad. The ratio of the wear volume of the thermal spray coating to the wear volume of the reference sample and the results of evaluation based on the ratio are shown in the “Abrasion resistance” column of Table 1.

Figure 2006111929
Figure 2006111929

Figure 2006111929
Figure 2006111929

Figure 2006111929
表1に示すように、実施例1〜4においては、スピッティング、硬度及び耐摩耗性のいずれの評価も◎又は○であって良好である。この結果は、実施例1〜4に係る溶射用粉末がスピッティングを発生することなく硬度及び耐摩耗性が高い良質な溶射皮膜を形成可能であることを示唆するものである。高速フレーム溶射により溶射皮膜を形成した実施例1においては、プラズマ溶射により溶射皮膜を形成した比較例3に比べて、スピッティング、硬度及び耐摩耗性のいずれの評価も良好である。この結果は、本発明の溶射用粉末が高速フレーム溶射により溶射皮膜を形成する用途に特に適することを示唆するものである。
Figure 2006111929
As shown in Table 1, in Examples 1 to 4, all evaluations of spitting, hardness, and wear resistance are excellent and good. This result suggests that the thermal spraying powder according to Examples 1 to 4 can form a high-quality thermal spray coating having high hardness and wear resistance without causing spitting. In Example 1 in which the thermal spray coating was formed by high-speed flame spraying, all the evaluations of spitting, hardness and wear resistance were better than Comparative Example 3 in which the thermal spray coating was formed by plasma spraying. This result suggests that the thermal spraying powder of the present invention is particularly suitable for use in forming a thermal spray coating by high-speed flame spraying.

Claims (5)

クロム−鉄系合金粉末を含有する溶射用粉末であって、前記合金粉末は炭素を含み、合金粉末中のクロム及び鉄の質量の総計に対する合金粉末中の炭素の質量の比率が2%以上であることを特徴とする溶射用粉末。   A thermal spraying powder containing a chromium-iron alloy powder, wherein the alloy powder contains carbon, and the ratio of the mass of carbon in the alloy powder to the total mass of chromium and iron in the alloy powder is 2% or more. A thermal spraying powder characterized by being. 前記合金粉末の小粒子径側からの積算粒子体積が全粒子体積の10%に相当する粒子径を合金粉末の10%粒子径D10とするとき、合金粉末の10%粒子径D10が10μm以上であることを特徴とする請求項1に記載の溶射用粉末。 When the particle size cumulative particle volume from small particles diameter of the alloy powder is equivalent to 10% of the total particle volume and 10% particle size D 10 of the alloy powder, 10 [mu] m is 10% particle size D 10 of the alloy powder It is the above, The powder for thermal spraying of Claim 1 characterized by the above-mentioned. 高速フレーム溶射により溶射皮膜を形成する用途に使用されることを特徴とする請求項1又は2に記載の溶射用粉末。   The thermal spraying powder according to claim 1, wherein the thermal spraying powder is used for forming a thermal spray coating by high-speed flame spraying. 請求項1又は2に記載の溶射用粉末を高速フレーム溶射することを特徴とする溶射方法。   3. A thermal spraying method comprising spraying the powder for thermal spraying according to claim 1 or 2 at high speed flame spraying. 請求項1又は2に記載の溶射用粉末を高速フレーム溶射して形成されることを特徴とする溶射皮膜。   A thermal spray coating formed by high-speed flame spraying of the thermal spraying powder according to claim 1.
JP2004300874A 2004-10-15 2004-10-15 Thermal spraying powder, thermal spraying method and sprayed coating Pending JP2006111929A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004300874A JP2006111929A (en) 2004-10-15 2004-10-15 Thermal spraying powder, thermal spraying method and sprayed coating
EP05256344A EP1647610A3 (en) 2004-10-15 2005-10-12 Thermal spraying powder, thermal spraying method and method for forming thermal spray coating
KR1020050096486A KR20060053252A (en) 2004-10-15 2005-10-13 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
US11/250,104 US20060081090A1 (en) 2004-10-15 2005-10-13 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
CNA200510113456XA CN1760409A (en) 2004-10-15 2005-10-14 Thermal spraying powder, thermal spraying method and method for forming thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300874A JP2006111929A (en) 2004-10-15 2004-10-15 Thermal spraying powder, thermal spraying method and sprayed coating

Publications (1)

Publication Number Publication Date
JP2006111929A true JP2006111929A (en) 2006-04-27

Family

ID=35520519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300874A Pending JP2006111929A (en) 2004-10-15 2004-10-15 Thermal spraying powder, thermal spraying method and sprayed coating

Country Status (5)

Country Link
US (1) US20060081090A1 (en)
EP (1) EP1647610A3 (en)
JP (1) JP2006111929A (en)
KR (1) KR20060053252A (en)
CN (1) CN1760409A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736279B (en) * 2008-11-05 2012-07-18 沈阳黎明航空发动机(集团)有限责任公司 Hypersonic flame spraying process for self-lubricating wear-resistant coating
DE102011052121A1 (en) * 2011-07-25 2013-01-31 Eckart Gmbh Coating process using special powder coating materials and use of such coating materials
CN102586713A (en) * 2012-03-11 2012-07-18 赣州章源钨业新材料有限公司 Novel WC-Cr3C2-Ni thermal spraying powder and preparation process thereof
CN102586712A (en) * 2012-03-11 2012-07-18 赣州章源钨业新材料有限公司 Thermal spraying powder for preparing superhigh pressure sealing coating and preparation process thereof
CN103088281A (en) * 2013-01-22 2013-05-08 广东新劲刚新材料科技股份有限公司 Mo2FeB2-based thermal spraying alloy powder and preparation method thereof
JP6859146B2 (en) * 2017-03-21 2021-04-14 株式会社フジミインコーポレーテッド Spraying slurry
CN108396317B (en) * 2018-01-25 2020-03-10 河北五维航电科技股份有限公司 Surfacing method of turbine blade alloy layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131356A (en) * 1981-02-03 1982-08-14 Toyota Motor Corp Sliding member
JPS60262954A (en) * 1984-06-08 1985-12-26 Showa Denko Kk Powder for spraying
JPS6164865A (en) * 1984-09-04 1986-04-03 Komatsu Ltd Thermal spraying material for providing sliding wear resistance
US5108493A (en) * 1991-05-03 1992-04-28 Hoeganaes Corporation Steel powder admixture having distinct prealloyed powder of iron alloys
DE4302521A1 (en) * 1993-01-29 1994-08-04 Linde Ag Metallic powder for the creation of wear-resistant surface layers by means of a thermal spraying method, manufacturing process and spraying method therefor
CA2129874C (en) * 1993-09-03 1999-07-20 Richard M. Douglas Powder for use in thermal spraying
US6346133B1 (en) * 1999-09-03 2002-02-12 Hoeganaes Corporation Metal-based powder compositions containing silicon carbide as an alloying powder

Also Published As

Publication number Publication date
US20060081090A1 (en) 2006-04-20
KR20060053252A (en) 2006-05-19
CN1760409A (en) 2006-04-19
EP1647610A2 (en) 2006-04-19
EP1647610A3 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP2601754B2 (en) Method for improving corrosion and wear resistance of substrates
RU2434073C2 (en) Procedure for coating surface of substrate and product with applied coating
US8070894B2 (en) Highly active liquid melts used to form coatings
JP5058645B2 (en) Thermal spray powder, thermal spray coating and hearth roll
JP5399954B2 (en) Thermal spray powder
JP5039346B2 (en) Thermal spray powder and thermal spray coating
MX2007013601A (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes.
JP2008231527A (en) Powder for cold spray, and film formation method
JP2004270023A (en) Method for treating device suffering corrosion by liquid, and corrosion preventive coated film alloy
KR20060053252A (en) Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
EP2402474A1 (en) Piston ring
JP2012031443A (en) Metal powder for cold spray
CN109338264A (en) The preparation method and system of metal alloy coating under a kind of atmospheric atmosphere
Chawla Microstructural characteristics and mechanical properties of nanostructured and conventional TiAlN and AlCrN coatings on ASTM-SA210 grade A-1 boiler steel
Rodriguez et al. Effect of heat treatment on properties of nickel hard surface alloy deposited by HVOF
JP2003096553A (en) Coating member for carbide cermet thermal spraying film having excellent corrosion resistance, and carbide based cermet thermal spray material
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
Fischer et al. Development of ultra thin carbide coatings for wear and corrosion resistance
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
JP2009019218A (en) Wire rod for thermal spraying and thermal-sprayed coating formed by using the same
Wang et al. Effect of ceria on the erosion resistance of HVOF thermal sprayed NiAl intermetallic coatings.
JP4547253B2 (en) Thermal spray powder
JP5748820B2 (en) Thermal spray powder, thermal spraying method, thermal spray coating manufacturing method, and thermal spray coating
JP5669759B2 (en) Thermal spray material and method for forming thermal spray coating
CN109182950B (en) Preparation method of TiC/Co-Ni alloy composite coating