JP2000082611A - Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain - Google Patents

Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain

Info

Publication number
JP2000082611A
JP2000082611A JP10348463A JP34846398A JP2000082611A JP 2000082611 A JP2000082611 A JP 2000082611A JP 10348463 A JP10348463 A JP 10348463A JP 34846398 A JP34846398 A JP 34846398A JP 2000082611 A JP2000082611 A JP 2000082611A
Authority
JP
Japan
Prior art keywords
iron
samarium
nitrogen
magnetic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10348463A
Other languages
Japanese (ja)
Inventor
Noboru Ito
登 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAGUEKKUSU KK
Sumitomo Metal Mining Co Ltd
Original Assignee
MAGUEKKUSU KK
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAGUEKKUSU KK, Sumitomo Metal Mining Co Ltd filed Critical MAGUEKKUSU KK
Priority to JP10348463A priority Critical patent/JP2000082611A/en
Priority to US09/258,270 priority patent/US6190573B1/en
Priority to GB9904688A priority patent/GB2338602B/en
Priority to CA002266216A priority patent/CA2266216A1/en
Priority to DE19925322A priority patent/DE19925322B4/en
Priority to CNB991091388A priority patent/CN1147882C/en
Publication of JP2000082611A publication Critical patent/JP2000082611A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grains whose magnetic characteristics are excellent by using new samarium-iron-nitrogen system materials for developing excellent magnetic characteristics. SOLUTION: In a method for placing the alloy of samarium and iron in nitrogen gas at about 500 deg.C, and for containing nitrogen in the crystal lattice of iron, materials for a permanent magnet with samarium-iron-nitrogen magnetic anisotropic grains whose saturation magnetization is increased by making large a distance between the atoms of iron are contained and mixed, and heated and melted in thermoplastic polyolefin synthetic resin, and the mixed materials are applied to an extrusion molder. The mixed materials are extruded through a magnetic field device incorporating a metallic mold arranged at the top end of the extrusion molder. Thus, a molded magnet having flexibility in which grain arrays are lined up in a constant direction can be formed, and this molded magnet is magnetized by a magnetizing device according to the array of the grains so that this magnet can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、残留磁束(B
r)、保磁力(Hc)、最大エネルギー積((BH)m
ax)などの磁気特性に優れた新規なサマリウム−鉄−
窒素系の永久磁石用素材を用いた磁石体に係り、特にこ
の新規な永久磁石用素材を用いて成形性、可撓性に優れ
たボンド磁石、すなわち合成樹脂成形磁石としたサマリ
ウム−鉄−窒素系の磁性粒子を用いた押出し成形磁石体
に関する。
[0001] The present invention relates to a remanent magnetic flux (B
r), coercive force (Hc), maximum energy product ((BH) m
ax) and other new samarium-iron with excellent magnetic properties
The present invention relates to a magnet body using a nitrogen-based permanent magnet material, and in particular, a samarium-iron-nitrogen bonded magnet having excellent moldability and flexibility using the novel permanent magnet material, that is, a synthetic resin molded magnet. The present invention relates to an extruded magnet using magnetic particles.

【0002】[0002]

【従来の技術】永久磁石用素材としては、前述した残留
磁束(Br)、保磁力(Hc)、最大エネルギー積
((BH)max)が大きい特性の安定したものが好適
であり、それにはバリウム−フェライト(BaO・6F
e2O3)やストロンチウム−フェライト(SrO・6
Fe2O3)などのフェライト磁石、サマリウム−コバ
ルト(Sm2Co17)やネオジウム−鉄−ボロン(N
d2Fe14B)などの希土類系磁石が多く用いられて
いる。
2. Description of the Related Art As a material for a permanent magnet, it is preferable to use a stable material having a large residual magnetic flux (Br), a coercive force (Hc), and a maximum energy product ((BH) max). -Ferrite (BaO 6F
e2O3) or strontium-ferrite (SrO.6)
Ferrite magnets such as Fe2O3), samarium-cobalt (Sm2Co17) and neodymium-iron-boron (N
Rare earth magnets such as d2Fe14B) are often used.

【0003】フェライト磁石は、安価で製造しやすいこ
とから、焼結磁石、ボンド磁石を問わず広く用いられて
いるものの、希土類系磁石と比較すると磁気特性に劣る
ものであった。ネオジウム−鉄−ボロンは、フェライト
磁石をはるかに上回る磁気特性を有し、サマリウム−コ
バルト磁石の特性をも上回るものの、サマリウム−コバ
ルト磁石よりも酸化しやすいことから酸化を防ぐための
注意が必要である。そしてサマリウム−コバルト磁石
は、それまでのフェライト磁石を大幅に上回る磁気特性
を有することから、長い間使用され特性向上の研究開発
も行われて一層磁気特性が向上している。
[0003] Ferrite magnets are widely used regardless of whether they are sintered magnets or bonded magnets because they are inexpensive and easy to manufacture, but have poor magnetic properties as compared with rare earth magnets. Neodymium-iron-boron has much better magnetic properties than ferrite magnets, and even exceeds the properties of samarium-cobalt magnets.However, care must be taken to prevent oxidation because it is easier to oxidize than samarium-cobalt magnets. is there. Since the samarium-cobalt magnet has much higher magnetic properties than conventional ferrite magnets, it has been used for a long time, and research and development for improving the properties have been performed, and the magnetic properties have been further improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、サマリ
ウム−コバルト磁石にあっては、コバルトが高価な金属
であることから、安価な磁石を得るためにコバルトを不
要とし、かつ磁気特性に優れた永久磁石用素材が求めら
れていた。そこで近年、約500℃の窒素ガス中にサマ
リウムと鉄との合金を置き、鉄の結晶格子に窒素を侵入
させる等の方法により、ネオジウム−鉄−ボロン磁石に
匹敵する優れた磁気特性を有するサマリウム−鉄−窒素
系素材が得られている。しかし、このサマリウム−鉄−
窒素系素材であっては、高温にすると窒素が鉄の結晶格
子から飛び出してしまうことから、焼結磁石として用い
ることができなかった。
However, in the samarium-cobalt magnet, since cobalt is an expensive metal, a permanent magnet which does not require cobalt to obtain an inexpensive magnet and has excellent magnetic properties. Material was required. Therefore, in recent years, samarium having excellent magnetic properties comparable to a neodymium-iron-boron magnet has been obtained by placing an alloy of samarium and iron in nitrogen gas at about 500 ° C. and injecting nitrogen into the crystal lattice of iron. -An iron-nitrogen based material is obtained. However, this samarium-iron-
Nitrogen-based materials could not be used as sintered magnets because nitrogen jumped out of the iron crystal lattice at high temperatures.

【0005】そこで、本発明にあっては、新規で優れた
磁気特性を発揮し得るサマリウム−鉄−窒素系素材を用
いて、磁気特性に優れた合成樹脂成形磁石を得ることを
目的とする。
Accordingly, an object of the present invention is to obtain a synthetic resin molded magnet having excellent magnetic properties using a samarium-iron-nitrogen-based material capable of exhibiting excellent magnetic properties.

【0006】[0006]

【課題を解決するための手段】前述の目的を達成するた
め、本発明のサマリウム−鉄−窒素系の磁性粒子を用い
た押出し成形磁石体は、サマリウムと鉄と窒素とからな
るサマリウム−鉄−窒素系の磁性粒子を合成ゴム又は熱
可塑性合成樹脂に混入しこれを押出し成形した可撓性を
有するものに対して着磁してなることを特徴とするもの
である。
In order to achieve the above-mentioned object, an extruded magnet body using samarium-iron-nitrogen based magnetic particles of the present invention is a samarium-iron-nitrogen-based samarium-iron-nitrogen alloy. It is characterized in that nitrogen-based magnetic particles are mixed into synthetic rubber or thermoplastic synthetic resin, and the resulting mixture is extruded and magnetized to have flexibility.

【0007】または、サマリウムと鉄と窒素とからなる
サマリウム−鉄−窒素系の磁性粒子とフェライト粒子を
合成ゴム又は熱可塑性合成樹脂に混入しこれを押出し成
形した可撓性を有するものに対して着磁してなることを
特徴とするものである。
Alternatively, samarium-iron-nitrogen based magnetic particles composed of samarium, iron and nitrogen and ferrite particles are mixed into synthetic rubber or thermoplastic synthetic resin and extruded to obtain a flexible material. It is characterized by being magnetized.

【0008】また、サマリウム−鉄−窒素系の磁性粒子
を磁気異方性粒子として合成ゴム又は熱可塑性合成樹脂
に混入し磁界配向させつつ押出し成形したことを特徴と
するものである。
Further, the present invention is characterized in that samarium-iron-nitrogen based magnetic particles are mixed as magnetic anisotropic particles into synthetic rubber or thermoplastic synthetic resin and extruded while being magnetically oriented.

【0009】また、サマリウム−鉄−窒素系の磁性粒子
とフェライト粒子を磁気異方性粒子として合成ゴム又は
熱可塑性合成樹脂に混入し磁界配向させつつ押出し成形
したことを特徴とするものである。
Further, the present invention is characterized in that samarium-iron-nitrogen based magnetic particles and ferrite particles are mixed as magnetic anisotropic particles into synthetic rubber or thermoplastic synthetic resin, and are extruded while being magnetically oriented.

【0010】また、合成ゴム又は熱可塑性合成樹脂を熱
可塑性ポリオレフィン系合成樹脂とすることを特徴とす
るものである。
Further, the present invention is characterized in that the synthetic rubber or the thermoplastic synthetic resin is a thermoplastic polyolefin-based synthetic resin.

【0011】[0011]

【発明の実施の形態】本発明の第1の実施例にあって
は、約500℃の窒素ガス中にサマリウムと鉄との合金
を置いて鉄の結晶格子に窒素を侵入させる等の方法で、
鉄の原子間の距離を大きくして飽和磁化を高めたサマリ
ウム−鉄−窒素系の永久磁石用素材であって、粉末状で
かつ異方性粒子になっている磁性粉を用いる。そして、
この磁気異方性粒子を合成ゴム又は熱可塑性合成樹脂に
混入する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a first embodiment of the present invention, an alloy of samarium and iron is placed in a nitrogen gas at about 500 ° C., and nitrogen is introduced into a crystal lattice of iron. ,
A samarium-iron-nitrogen-based permanent magnet material in which the distance between iron atoms is increased to increase the saturation magnetization is used, and magnetic powder that is powdery and is anisotropic particles is used. And
The magnetically anisotropic particles are mixed in a synthetic rubber or a thermoplastic synthetic resin.

【0012】この磁気異方性粒子を混入する合成ゴム又
は熱可塑性合成樹脂のうち、まず合成ゴムとしては、S
BR(スチレン−ブタジエンゴム)、NBR(ニトリル
ゴム)、ブタジエンゴム、シリコンゴム、ブチルゴム、
ウレタンゴム、フッ素ゴムなどがあり、また熱可塑性合
成樹脂としては、ポリエチレン、ポリプロピレン、ポリ
ブデン、塩素化ポリエチレン、ポリスチレンなどのポリ
オレフィン系樹脂、塩化ビニル、ポリ酢酸ビニルなどの
ビニル樹脂、スチレン系樹脂、その他にポリエステル、
ナイロン、ポリウレタン、エチレン酢酸ビニル共重合体
(EVA),EVA−塩化ビニルグラフト共重合体など
がある。この中でも特に、磁性粉等の無機質を含有し易
い熱可塑性樹脂としては、塩素化ポリエチレン、EV
A、NBR、ポリオレフィン系樹脂、合成ゴムなどがあ
り、これらを適宜に混ぜて使用することも可能である。
本実施例にあっては一例としてポリオレフィン系樹脂を
用いる。このポリオレフィン系樹脂に前記磁気異方性粒
子を混入・混練し、加熱溶融させて混練した材料を押出
し成形機に投入する。
Of the synthetic rubber or thermoplastic synthetic resin mixed with the magnetically anisotropic particles, first, the synthetic rubber is S
BR (styrene-butadiene rubber), NBR (nitrile rubber), butadiene rubber, silicone rubber, butyl rubber,
There are urethane rubber, fluorine rubber, etc., and as thermoplastic synthetic resin, polyethylene, polypropylene, polybutene, chlorinated polyethylene, polyolefin resin such as polystyrene, vinyl chloride such as vinyl chloride and polyvinyl acetate, styrene resin, etc. To polyester,
Examples include nylon, polyurethane, ethylene vinyl acetate copolymer (EVA), and EVA-vinyl chloride graft copolymer. Among them, particularly, the thermoplastic resin which easily contains an inorganic substance such as a magnetic powder includes chlorinated polyethylene, EV
A, NBR, polyolefin-based resin, synthetic rubber, and the like can be used, and these can be appropriately mixed and used.
In this embodiment, a polyolefin resin is used as an example. The magnetically anisotropic particles are mixed and kneaded with the polyolefin resin, heated and melted, and the kneaded material is introduced into an extruder.

【0013】そして、この混練した材料を押出し成形機
の先端に配設した金型内蔵の磁界装置を通して押し出す
ことにより、粒子の配列が一定方向に揃った可撓性を有
する成形磁石が形成される。そして、この成形磁石に対
して、粒子の配列に合わせて着磁装置により適宜に着磁
を行い、磁石として完成する。前記金型形状を各種に設
定することにより、さまざまな形状の成形磁石が連続的
に形成されるものであり、特に長尺な形態とするには好
適な成形方法である。
Then, the kneaded material is extruded through a magnetic field device built in a mold disposed at the tip of an extruder, thereby forming a flexible molded magnet in which the arrangement of particles is aligned in a certain direction. . Then, the formed magnet is appropriately magnetized by a magnetizing device in accordance with the arrangement of the particles to complete the magnet. By setting the mold shape in various ways, molded magnets of various shapes are continuously formed, and this is a suitable molding method particularly for a long shape.

【0014】磁気異方性粒子と熱可塑性ポリオレフィン
系合成樹脂との混合比は、合成樹脂が多いと成形し易い
ものの磁性粉の割合が減って磁石体としての磁気特性が
劣り、また磁気異方性粒子が多いと磁気特性は向上する
ものの結合材としての合成樹脂が減って成形が困難にな
ることから、重量比でサマリウム−鉄−窒素系の磁気異
方性粒子を約90%若しくはそれ以上混入する。
The mixing ratio of the magnetically anisotropic particles to the thermoplastic polyolefin-based synthetic resin is such that when the amount of the synthetic resin is large, it is easy to mold, but the ratio of the magnetic powder is reduced so that the magnetic properties of the magnet are inferior. When the number of conductive particles is large, the magnetic properties are improved, but the amount of synthetic resin as a binder is reduced and molding becomes difficult. Therefore, the weight ratio of samarium-iron-nitrogen based magnetic anisotropic particles is about 90% or more. Mixed.

【0015】このようにして得られた本発明のサマリウ
ム−鉄−窒素系の磁気異方性粒子を用いた押出し成形磁
石体にあっては、最大エネルギー積((BH)max)
が約7〜10(MG・Oe)と極めて高い値が得られ
た。これは、射出成形によるフェライト磁石の値が1.
6〜2.3、射出成形によるネオジウム−鉄−ボロン磁
石の値が5〜7であることと比較すると、一般に押出し
成形、射出成形、プレス成形の順に最大エネルギー積が
大きくなることを考えると極めて優れた押出し成形磁石
といえる。
In the extruded magnet using the samarium-iron-nitrogen based magnetically anisotropic particles of the present invention thus obtained, the maximum energy product ((BH) max) is obtained.
Was about 7 to 10 (MG · Oe), which was an extremely high value. This is because the value of the ferrite magnet obtained by injection molding is 1.
Compared with 6 to 2.3, the values of neodymium-iron-boron magnets by injection molding are 5 to 7, considering that the maximum energy product generally increases in the order of extrusion molding, injection molding and press molding. An excellent extruded magnet.

【0016】本発明の第2の実施例にあっては、前述し
たサマリウム−鉄−窒素系の永久磁石用素材で、かつ磁
気異方性粒子の磁性粉に対して、バリウム−フェライト
(BaO・6Fe2O3)やストロンチウム−フェライ
ト(SrO・6Fe2O3)などの鉄を主体とする酸化
物からなる磁気異方性粒子のフェライト磁性粉を適宜な
分量混入し、これを熱可塑性ポリオレフィン系合成樹脂
(他の合成ゴム、熱可塑性樹脂でもよい)に混入・混練
し、加熱溶融させて混練コンパンドとして押出し成形機
に投入する。そして、押出し成形機の先端に配設した金
型内蔵の磁界装置を通して混練コンパンドを押し出すこ
とにより、形成される成形磁石に対して、粒子の配列に
合わせて着磁装置により着磁を行って永久磁石が完成す
る。
In the second embodiment of the present invention, barium-ferrite (BaO.multidot.) Is used for the above-mentioned samarium-iron-nitrogen permanent magnet material and magnetic powder of magnetic anisotropic particles. 6Fe2O3) or strontium-ferrite (SrO.6Fe2O3), ferrite magnetic powder of magnetic anisotropic particles composed mainly of iron such as ferrite (SrO.6Fe2O3) is mixed in an appropriate amount, and then mixed with a thermoplastic polyolefin-based synthetic resin (another synthetic resin). Rubber or a thermoplastic resin), kneaded, melted by heating, and put into an extruder as a kneaded compound. Then, by extruding the kneading compound through a magnetic field device built into the mold disposed at the end of the extrusion molding machine, the formed magnet is magnetized by a magnetizing device in accordance with the arrangement of the particles, and is permanently set. The magnet is completed.

【0017】上述したサマリウム−鉄−窒素系の磁気異
方性粒子に対するフェライト粒子の混合比率を適宜に設
定することにより、最大エネルギー積((BH)ma
x)が2〜7(若しくは10)(MG・Oe)の間で所
望する値、例えばサマリウム−鉄−窒素系の磁気異方性
粒子を80%とフェライト粒子を20%混合して最大エ
ネルギー積((BH)max)が約5(MG・Oe)の
永久磁石を得るといった各種の設定が容易に行えるもの
である。
By appropriately setting the mixing ratio of the ferrite particles to the samarium-iron-nitrogen magnetic anisotropic particles, the maximum energy product ((BH) ma
x) is a desired value between 2 and 7 (or 10) (MG · Oe), for example, 80% of samarium-iron-nitrogen based magnetic anisotropic particles and 20% of ferrite particles are mixed to obtain the maximum energy product. Various settings such as obtaining a permanent magnet with ((BH) max) of about 5 (MG · Oe) can be easily performed.

【0018】また、上述した実施例にあっては、サマリ
ウム−鉄−窒素系の永久磁石用素材として磁気異方性粒
子について説明したが、これ以外にも磁気等方性粒子を
用いてもよい。さらに、前記フェライト粒子についても
磁気異方性粒子以外に磁気等方性粒子を用いてもよい。
したがって、サマリウム−鉄−窒素系の磁性粒子とフェ
ライト粒子の組み合わせとしては、上述した実施例にお
ける双方が磁気異方性粒子の場合以外に、サマリウム−
鉄−窒素系の磁気異方性粒子と磁気等方性のフェライト
粒子の組、サマリウム−鉄−窒素系の磁気等方性粒子と
磁気異方性のフェライト粒子の組、そして双方が磁気等
方性粒子の組、の以上4組が想定し得るものである。こ
れに加え、金型内蔵の磁界装置を通して行う磁界配向に
あっても、サマリウム−鉄−窒素系の磁性粒子とフェラ
イト粒子の双方が磁気等方性粒子である場合を除いて何
れも設定し得るものである。
In the above-described embodiment, the magnetically anisotropic particles are described as the samarium-iron-nitrogen-based permanent magnet material, but other magnetic isotropic particles may be used. . Further, as for the ferrite particles, magnetic isotropic particles may be used in addition to the magnetic anisotropic particles.
Therefore, as the combination of the samarium-iron-nitrogen based magnetic particles and the ferrite particles, both the samarium-iron-nitrogen based magnetic particles and the samarium-iron
A set of iron-nitrogen based magnetic anisotropic particles and magnetic isotropic ferrite particles, a pair of samarium-iron-nitrogen based magnetic isotropic particles and magnetic anisotropic ferrite particles, and both are magnetically isotropic More than four sets of sexual particles are conceivable. In addition to this, even in the magnetic field orientation performed through the magnetic field device built in the mold, any can be set except when both the samarium-iron-nitrogen-based magnetic particles and the ferrite particles are magnetic isotropic particles. Things.

【0019】[0019]

【発明の効果】以上詳述の如く、本発明のサマリウム−
鉄−窒素系の磁性粒子を用いた押出し成形磁石体によれ
ば、サマリウムと鉄と窒素とからなるサマリウム−鉄−
窒素系の磁性粒子を合成ゴム又は熱可塑性合成樹脂に混
入しこれを押出し成形した可撓性を有するものに対して
着磁したことで、成形性、可撓性に優れた押出し成形磁
石において高い最大エネルギー積((BH)max)が
得られ、磁気特性に優れた好適な磁石が得られるもので
ある。
As described in detail above, the samarium compound of the present invention
According to an extruded magnet body using iron-nitrogen based magnetic particles, a samarium-iron-composed of samarium, iron and nitrogen is used.
Nitrogen-based magnetic particles are mixed into synthetic rubber or thermoplastic synthetic resin, and magnetized to extrude and extrude it into a flexible material. A maximum energy product ((BH) max) is obtained, and a suitable magnet having excellent magnetic properties is obtained.

【0020】または、サマリウムと鉄と窒素とからなる
サマリウム−鉄−窒素系の磁性粒子とフェライト粒子を
合成ゴム又は熱可塑性合成樹脂に混入しこれを押出し成
形した可撓性を有するものに対して着磁することで、成
形性、可撓性に優れた押出し成形磁石において高い最大
エネルギー積((BH)max)が得られるとともに、
フェライト粒子の混合比率を適宜に設定することで、所
望する好適な最大エネルギー積の磁石が得られるもので
ある。
[0020] Alternatively, samarium-iron-nitrogen based magnetic particles comprising samarium, iron and nitrogen and ferrite particles are mixed into synthetic rubber or thermoplastic synthetic resin and extruded to form a flexible material. By magnetizing, a high maximum energy product ((BH) max) is obtained in an extruded magnet excellent in formability and flexibility,
By appropriately setting the mixing ratio of the ferrite particles, a magnet having a desired suitable maximum energy product can be obtained.

【0021】また、サマリウム−鉄−窒素系の磁性粒子
を磁気異方性粒子として合成ゴム又は熱可塑性合成樹脂
に混入し磁界配向させつつ押出し成形することで、成形
性、可撓性に優れた押出し成形磁石において、磁性粒子
の配列が一定方向に揃い、従来の磁石素材ではなかった
最大エネルギー積((BH)max)が得られ、磁気特
性に優れた好適な磁石が得られるものである。
Also, by mixing samarium-iron-nitrogen based magnetic particles as magnetic anisotropic particles into synthetic rubber or thermoplastic synthetic resin and subjecting to magnetic field orientation and extrusion molding, excellent moldability and flexibility are achieved. In an extruded magnet, the arrangement of magnetic particles is arranged in a certain direction, a maximum energy product ((BH) max) which is not a conventional magnet material is obtained, and a suitable magnet having excellent magnetic properties is obtained.

【0022】また、サマリウム−鉄−窒素系の磁性粒子
とフェライト粒子を磁気異方性粒子として合成ゴム又は
熱可塑性合成樹脂に混入し磁界配向させつつ押出し成形
することで、成形性、可撓性に優れた押出し成形磁石に
おいて、両磁性粒子の配列が一定方向に揃い、従来の磁
石素材ではなかった最大エネルギー積((BH)ma
x)が得られるとともに、フェライト粒子の混合比率を
適宜に設定することで、所望する好適な最大エネルギー
積の磁石が得られるものである。
Also, by mixing samarium-iron-nitrogen based magnetic particles and ferrite particles as magnetic anisotropic particles into synthetic rubber or thermoplastic synthetic resin and subjecting them to magnetic field orientation and extrusion molding, moldability and flexibility are improved. In an extruded magnet with excellent magnetic properties, the arrangement of both magnetic particles is aligned in a certain direction, and the maximum energy product ((BH)
x) is obtained, and a magnet having a desired suitable maximum energy product can be obtained by appropriately setting the mixing ratio of the ferrite particles.

【0023】また、合成ゴム又は熱可塑性合成樹脂を熱
可塑性ポリオレフィン系合成樹脂とすることにより、無
機質である磁性粉と合成樹脂との良好な混合状態が得ら
れ、これにより好適な押出し成形磁石体が得られる。
Further, by using the synthetic rubber or the thermoplastic synthetic resin as a thermoplastic polyolefin-based synthetic resin, a favorable mixed state of the inorganic magnetic powder and the synthetic resin can be obtained. Is obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 サマリウムと鉄と窒素とからなるサマリ
ウム−鉄−窒素系の磁性粒子を合成ゴム又は熱可塑性合
成樹脂に混入しこれを押出し成形した可撓性を有するも
のに対して着磁してなることを特徴とするサマリウム−
鉄−窒素系の磁性粒子を用いた押出し成形磁石体。
1. A samarium-iron-nitrogen based magnetic particle comprising samarium, iron and nitrogen is mixed into synthetic rubber or thermoplastic synthetic resin, and magnetized on a flexible material extruded and molded. Samarium characterized by the following
An extruded magnet body using iron-nitrogen based magnetic particles.
【請求項2】 サマリウムと鉄と窒素とからなるサマリ
ウム−鉄−窒素系の磁性粒子とフェライト粒子を合成ゴ
ム又は熱可塑性合成樹脂に混入しこれを押出し成形した
可撓性を有するものに対して着磁してなることを特徴と
するサマリウム−鉄−窒素系の磁性粒子を用いた押出し
成形磁石体。
2. A flexible material obtained by mixing samarium-iron-nitrogen-based magnetic particles and ferrite particles comprising samarium, iron and nitrogen into synthetic rubber or thermoplastic synthetic resin and extruding the mixture. An extruded magnet body using samarium-iron-nitrogen-based magnetic particles, which is magnetized.
【請求項3】 サマリウム−鉄−窒素系の磁性粒子を磁
気異方性粒子として合成ゴム又は熱可塑性合成樹脂に混
入し磁界配向させつつ押出し成形したことを特徴とする
請求項1又は請求項2記載のサマリウム−鉄−窒素系の
磁性粒子を用いた押出し成形磁石体。
3. The samarium-iron-nitrogen based magnetic particles are mixed as magnetic anisotropic particles into a synthetic rubber or a thermoplastic synthetic resin, and are extruded while being magnetically oriented. An extruded magnet using the samarium-iron-nitrogen-based magnetic particles described in the above.
【請求項4】 サマリウム−鉄−窒素系の磁性粒子とフ
ェライト粒子を磁気異方性粒子として合成ゴム又は熱可
塑性合成樹脂に混入し磁界配向させつつ押出し成形した
ことを特徴とする請求項2記載のサマリウム−鉄−窒素
系の磁性粒子を用いた押出し成形磁石体。
4. The method according to claim 2, wherein magnetic particles of samarium-iron-nitrogen system and ferrite particles are mixed as magnetically anisotropic particles into synthetic rubber or thermoplastic synthetic resin and extruded while being magnetically oriented. Extrusion-formed magnet body using samarium-iron-nitrogen based magnetic particles.
【請求項5】 合成ゴム又は熱可塑性合成樹脂を熱可塑
性ポリオレフィン系合成樹脂とすることを特徴とする請
求項1又は請求項2記載のサマリウム−鉄−窒素系の磁
性粒子を用いた押出し成形磁石体。
5. An extruded magnet using samarium-iron-nitrogen based magnetic particles according to claim 1 or 2, wherein the synthetic rubber or the thermoplastic synthetic resin is a thermoplastic polyolefin-based synthetic resin. body.
JP10348463A 1998-06-15 1998-12-08 Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain Pending JP2000082611A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10348463A JP2000082611A (en) 1998-06-15 1998-12-08 Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain
US09/258,270 US6190573B1 (en) 1998-06-15 1999-02-26 Extrusion-molded magnetic body comprising samarium-iron-nitrogen system magnetic particles
GB9904688A GB2338602B (en) 1998-06-15 1999-03-01 Extrusion-molded magnetic body using samarium-iron-nitrogen system magnetic particles
CA002266216A CA2266216A1 (en) 1998-06-15 1999-03-18 Extrusion-molded magnetic body using samarium-iron-nitrogen system magnetic particles
DE19925322A DE19925322B4 (en) 1998-06-15 1999-06-02 Extrusion-molded magnetic body made of samarium-iron-nitrogen magnetic particles
CNB991091388A CN1147882C (en) 1998-06-15 1999-06-15 Extrusion-molded magnetic body using samarium-iron-nitrogen system magnetic particles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP18337998 1998-06-15
JP10-183379 1998-06-15
JP20121698 1998-06-30
JP10-201216 1998-06-30
JP10348463A JP2000082611A (en) 1998-06-15 1998-12-08 Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain

Publications (1)

Publication Number Publication Date
JP2000082611A true JP2000082611A (en) 2000-03-21

Family

ID=27325290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10348463A Pending JP2000082611A (en) 1998-06-15 1998-12-08 Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain

Country Status (1)

Country Link
JP (1) JP2000082611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421519B1 (en) 2000-03-24 2002-07-16 Hitachi Metals Ltd. Magnet roll having an anisotropic bonded magnet portion containing rare earth-iron-nitrogen magnet powder
JP2008173405A (en) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd Magnetic therapeutic device and method for manufacturing magnetic therapeutic device
JP2012155823A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Magnet structure for objective lens drive device
CN108597710A (en) * 2018-04-13 2018-09-28 徐靖才 A kind of preparation method of samarium iron nitrogen magnetic nano-array

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421519B1 (en) 2000-03-24 2002-07-16 Hitachi Metals Ltd. Magnet roll having an anisotropic bonded magnet portion containing rare earth-iron-nitrogen magnet powder
JP2008173405A (en) * 2006-12-18 2008-07-31 Pip Fujimoto Co Ltd Magnetic therapeutic device and method for manufacturing magnetic therapeutic device
JP2012155823A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Magnet structure for objective lens drive device
CN108597710A (en) * 2018-04-13 2018-09-28 徐靖才 A kind of preparation method of samarium iron nitrogen magnetic nano-array
CN108597710B (en) * 2018-04-13 2019-08-30 中国计量大学 A kind of preparation method of samarium iron nitrogen magnetic nano-array

Similar Documents

Publication Publication Date Title
US6190573B1 (en) Extrusion-molded magnetic body comprising samarium-iron-nitrogen system magnetic particles
JP2000082611A (en) Extrusion-molded magnetic body using samarium-iron- nitrogen magnetic grain
JP3220793B2 (en) Injection molded magnet using samarium-iron-nitrogen based anisotropic particles
JP2000243620A (en) Magnet roll and manufacture thereof
JP2000195714A (en) Polar anisotropic rare-earth bonded magnet, manufacturing method, and permanent magnet type motor
JP2001135516A (en) Magnetic composite composition and magnetic molded object
JPS59135705A (en) Resin magnet material
JPS63182803A (en) Magnet roll and manufacture thereof
JPS61220315A (en) Manufacture of magnetic molded body
JP7387067B1 (en) Rubber magnets and refrigerator door gaskets
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH0661023A (en) Rare earth bonded magnet
JP2020053515A (en) Manufacturing method of multipole bonded magnet composite
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JP2003088057A (en) Motor field magnet and its manufacturing method
JP3012077B2 (en) Anisotropic long magnet
JPH0624176B2 (en) Method for producing polar anisotropic long molded products
JP2872224B2 (en) Coercive molding
JPS6316608A (en) Magnetic field oriented extrusion molding
JP2538326B2 (en) Turntable for electrical and electronic equipment
JPH0471205A (en) Manufacture of bond magnet
JP2002313615A (en) Plastic magnet composition
JPH04322408A (en) Ferrite particle powder material for bond magnet and manufacture thereof
JP2000323315A (en) Ferrite based rubber magnet
Krause et al. The Effect of Processing Parameters on the Microstructure and Properties of Hot Compacted/Extruded NdFeB Magnets