JPH04322408A - Ferrite particle powder material for bond magnet and manufacture thereof - Google Patents

Ferrite particle powder material for bond magnet and manufacture thereof

Info

Publication number
JPH04322408A
JPH04322408A JP3119189A JP11918991A JPH04322408A JP H04322408 A JPH04322408 A JP H04322408A JP 3119189 A JP3119189 A JP 3119189A JP 11918991 A JP11918991 A JP 11918991A JP H04322408 A JPH04322408 A JP H04322408A
Authority
JP
Japan
Prior art keywords
particle powder
ferrite particle
compound
orientation
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3119189A
Other languages
Japanese (ja)
Other versions
JP3208739B2 (en
Inventor
Masayuki Watabe
正之 渡部
Hiroshi Yamamoto
博司 山本
Shigenori Miyazaki
宮崎 茂憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP11918991A priority Critical patent/JP3208739B2/en
Publication of JPH04322408A publication Critical patent/JPH04322408A/en
Application granted granted Critical
Publication of JP3208739B2 publication Critical patent/JP3208739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a ferrite particle powder material for bond magnet and an industrial method for obtaining the ferrite particle powder material for bond magnet mixing Fe compound and Bi compound and consisting of magnetoplumbite type ferrite particle powder having a large saturated magnetization value and high degree of orientation. CONSTITUTION:A ferrite particle powder material for bond magnet consisting of a magnetoplumbite type ferrite particle powder having a large saturated magnetization value and a high degree of orientation may be obtained by mixing Fe compound and Bi compound to a baked material obtained by baking a magnetoplumbite type ferrite raw material mixing substance under the temperature of 1100 deg.C or higher, then smashing baked material into fine pieces and then conducting the heat treatment thereto.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ボンド磁石に用いられ
るボンド磁石用フェライト粒子粉末材料及びその製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite particle powder material for bonded magnets and a method for producing the same.

【0002】0002

【従来の技術】ボンド磁石は、焼結磁石に比べ、軽量で
、寸法精度が良く、複雑な形状も容易に量産化できる等
の利点がある為、玩具用、事務用具用、音響機器用等の
各種用途に広く使用されている。
[Prior Art] Compared to sintered magnets, bonded magnets have the advantages of being lighter, have better dimensional accuracy, and can be easily mass-produced even with complex shapes, so they are used for toys, office supplies, audio equipment, etc. It is widely used for various purposes.

【0003】近年、各分野における用具や機器の小型軽
量化に伴って、これに使用されるボンド磁石の高性能化
による磁石自体の小型化が強く要望されている。
[0003] In recent years, as tools and equipment in various fields have become smaller and lighter, there has been a strong demand for smaller magnets themselves by improving the performance of the bonded magnets used therein.

【0004】ボンド磁石は、一般に、ゴム又はプラスチ
ックス材料と磁性粉末材料とを混練した後、磁場中で成
形する又は機械的手段により成形することにより製造さ
れる。
[0004] Bonded magnets are generally manufactured by kneading a rubber or plastic material and a magnetic powder material and then molding the mixture in a magnetic field or by mechanical means.

【0005】磁場中で成形される磁場配向成形品は、特
に形状の複雑化した部品に用いられ、しかも高い残留磁
束密度Br、最大エネルギー積BHmaxが要求されて
いる分野で用いられている。
Magnetically oriented molded products formed in a magnetic field are used particularly for parts with complicated shapes, and are used in fields where high residual magnetic flux density Br and maximum energy product BHmax are required.

【0006】一方、機械的手段により成形される機械配
向成形品は、複雑な形状をした部品には適してはいない
が、加工が容易であるという理由で特にマイクロモータ
の分野において汎用されている。
On the other hand, machine-oriented molded products formed by mechanical means are not suitable for parts with complex shapes, but are widely used, especially in the field of micromotors, because they are easy to process. .

【0007】また、ボンド磁石の残留磁束密度Brは、
非磁性のゴム又はプラスチックス材料を含むために、そ
の体積分だけ焼結磁石に比べて低いので、その向上が要
求されている。
[0007] Furthermore, the residual magnetic flux density Br of the bonded magnet is
Since magnets contain non-magnetic rubber or plastic materials, their volume is lower than that of sintered magnets, so improvements in this volume are required.

【0008】そして、ボンド磁石の残留磁束密度Brは
、用いる磁性粉末の飽和磁化値の大きさ、配向度及び充
填率に左右され、殊に、飽和磁化値及び配向度の影響は
大きく、磁性粉末の飽和磁化値及び配向度の向上がボン
ド磁石の残留磁束密度Br値を高めるための条件といえ
る。
The residual magnetic flux density Br of a bonded magnet depends on the saturation magnetization value, degree of orientation, and filling rate of the magnetic powder used. In particular, the influence of the saturation magnetization value and degree of orientation is large; It can be said that the improvement in the saturation magnetization value and the degree of orientation are the conditions for increasing the residual magnetic flux density Br value of the bonded magnet.

【0009】[0009]

【発明が解決しようとする課題】高い残留磁束密度Br
、エネルギー積BHmaxを有するボンド磁石は、現在
最も要求されているところであり、この為には前述した
通り用いる磁性粉末の飽和磁化値及び配向度をできるだ
け高めることが必要である。
[Problem to be solved by the invention] High residual magnetic flux density Br
Bonded magnets having an energy product BHmax are currently in the greatest demand, and for this purpose, as described above, it is necessary to increase the saturation magnetization value and degree of orientation of the magnetic powder used as much as possible.

【0010】磁性粉末材料のゴム又はプラスチック材料
への配合割合において、磁性粉末の充填率を高めて磁気
特性の向上を計った場合には、ゴム又はプラスチック材
料との混練物の溶融粘度が高くなって磁性粉末の配向度
が低下する傾向にあり、一方、配向度を高めようとすれ
ば磁性粉末の充填率を低く設定すればよく、この場合に
は、磁性粉末の配向度は向上するが、磁性粉末含有量の
絶対量が少ない為に磁気特性、特に残留磁束密度Br値
を高めるには限度があり、今日、市販されている磁性粉
末を用いて得られたボンド磁石の配向度(数1)は高々
0.91程度であった。
[0010] When the mixing ratio of the magnetic powder material to the rubber or plastic material is increased to improve the magnetic properties by increasing the filling rate of the magnetic powder, the melt viscosity of the mixture with the rubber or plastic material increases. On the other hand, if you want to increase the degree of orientation, you can set the filling rate of the magnetic powder low; in this case, the degree of orientation of the magnetic powder will improve, but Because the absolute amount of magnetic powder content is small, there is a limit to increasing the magnetic properties, especially the residual magnetic flux density Br value. ) was about 0.91 at most.

【0011】[0011]

【数1】[Math 1]

【0012】従って、当業界では、高飽和磁化値を有し
、しかも配向度の高いボンド磁石用フェライト粒子粉末
材料を得ることが最大の技術的課題となっている。
[0012] Therefore, the greatest technical challenge in this industry is to obtain a ferrite particle powder material for bonded magnets that has a high saturation magnetization value and a high degree of orientation.

【0013】[0013]

【課題を解決するための手段】本発明者らは、ボンド磁
石用フェライト粒子粉末材料を製造するに際して、飽和
磁化値が大きく、しかも配向度の高いボンド磁石用フェ
ライト粒子粉末を得ることにより、前記技術的課題を解
決すべく種々検討を重ねた結果、本発明を完成するに至
ったのである。
[Means for Solving the Problems] In producing a ferrite particle powder material for bonded magnets, the present inventors have achieved the above-mentioned method by obtaining ferrite particle powder for bonded magnets having a large saturation magnetization value and a high degree of orientation. As a result of various studies aimed at solving technical problems, the present invention was completed.

【0014】即ち、本発明は、Fe2 O3 が0.3
0〜3.00重量%、Bi2 O3 が0.20〜0.
60重量%配合されており、且つ飽和磁化(σs)が7
0emu/g以上であって、配向度(数1)が0.92
以上であるマグネトプランバイト型フェライト粒子粉末
からなるボンド磁石用フェライト粒子粉末材料及びマグ
ネトプランバイト型フェライト原料混合物を1100℃
以上で焼成したマグネトプランバイト型フェライト粒子
粉末に対して、Fe化合物をFe2 O3 換算で0.
30〜3.00重量%、Bi化合物をBi2 O3 換
算で0.20〜0.60重量%配合した後、微粉砕処理
を行ってから、700〜950℃の温度範囲で熱処理す
ることを特徴とするボンド磁石用フェライト粒子粉末材
料の製造法である。
That is, in the present invention, Fe2 O3 is 0.3
0-3.00% by weight, Bi2O3 0.20-0.
Contains 60% by weight, and has a saturation magnetization (σs) of 7.
0 emu/g or more, and the degree of orientation (several 1) is 0.92
The above-mentioned ferrite particle powder material for a bonded magnet consisting of the magnetoplumbite type ferrite particle powder and the magnetoplumbite type ferrite raw material mixture were heated to 1100°C.
The Fe compound was added to the magnetoplumbite type ferrite particle powder fired in the above manner by 0.00% in terms of Fe2 O3.
30 to 3.00% by weight and a Bi compound of 0.20 to 0.60% by weight in terms of Bi2O3, followed by pulverization treatment and then heat treatment in a temperature range of 700 to 950°C. This is a method for producing ferrite particle powder material for bonded magnets.

【0015】次に、本発明実施にあたっての諸条件につ
いて説明する。
Next, various conditions for implementing the present invention will be explained.

【0016】本発明におけるFe化合物としては、α−
Fe2 O3 、γ−Fe2 O3 、Fe3 O4 
等が使用できる。またBi化合物としては、Bi2 O
3 、NaBiO3 等が使用できる。
[0016] As the Fe compound in the present invention, α-
Fe2O3, γ-Fe2O3, Fe3O4
etc. can be used. Moreover, as a Bi compound, Bi2O
3, NaBiO3, etc. can be used.

【0017】Fe化合物及びBi化合物の配合量は、生
成物であるマグネトプランバイト型フェライト粒子粉末
に対して、それぞれFe2 O3 換算で0.30〜3
.00重量%、Bi2 O3 換算で0.20〜0.6
0重量%の範囲が有効である。Fe2 O3 換算で3
.00重量%以上、Bi2 O3 換算で0.60重量
%以上配合した場合には、熱処理条件の大幅な変更が余
儀なくされ、また、経済的でない。一方、Fe2 O3
 換算で0.30重量%未満、Bi2 O3 換算で0
.20重量%未満である場合には、本発明における効果
が発現できない。
[0017] The blending amount of the Fe compound and the Bi compound is 0.30 to 3 in terms of Fe2O3, based on the magnetoplumbite type ferrite particle powder that is the product.
.. 00% by weight, 0.20 to 0.6 in terms of Bi2 O3
A range of 0% by weight is valid. 3 in Fe2 O3 conversion
.. If the content is 0.00% by weight or more, or 0.60% by weight or more in terms of Bi2 O3, the heat treatment conditions will have to be changed significantly, and it is not economical. On the other hand, Fe2O3
Less than 0.30% by weight in terms of Bi2 O3, 0 in terms of Bi2 O3
.. If it is less than 20% by weight, the effects of the present invention cannot be achieved.

【0018】Fe化合物及びBi化合物を配合する時点
は、微粉砕処理時が適当である。即ち、原料配合→焼成
→微粉砕処理→熱処理の各工程において、焼成後の時点
で配合する。
[0018] The Fe compound and the Bi compound are suitably blended during the pulverization process. That is, in each step of raw material blending → firing → pulverization → heat treatment, the ingredients are blended after firing.

【0019】Fe化合物及びBi化合物を焼成前に配合
した場合、例えばFe化合物を原料配合時に配合すると
Fe2 O3 過剰のマグネトプランバイト型フェライ
ト原料混合物状態となり、このものは焼成時における十
分な粒子成長が行われず、また、所望の粒子サイズのフ
ェライト粒子を得ようとした場合には高温焼成が必要と
なる。高温焼成を行えば粒子の粗大化及び粒子相互間の
焼結が促進するという弊害が生じる。他方、Bi化合物
を焼成前に配合した場合、配合量によってはフェライト
粒子に丸みを持たせたり、粉砕を容易にする等の効果は
あっても本発明における飽和磁化値が大きく、配向度の
高いボンド磁石用フェライト粒子粉末は得ることができ
ない。
When Fe compound and Bi compound are blended before firing, for example, when Fe compound is blended at the time of raw material blending, a magnetoplumbite-type ferrite raw material mixture containing excess Fe2O3 is obtained, and this material does not allow sufficient particle growth during firing. Otherwise, high-temperature firing is required if ferrite particles of the desired particle size are to be obtained. If high-temperature firing is performed, there will be problems such as coarsening of particles and promotion of sintering between particles. On the other hand, when a Bi compound is added before firing, although it may have the effect of rounding the ferrite particles or making it easier to crush depending on the amount added, the saturation magnetization value in the present invention is large and the degree of orientation is high. Ferrite particle powder for bonded magnets cannot be obtained.

【0020】本発明におけるFe化合物及びBi化合物
配合前のマグネトプランバイト型フェライト粒子は、酸
化鉄、含水酸化鉄等の鉄原料と炭酸ストロンチウム、炭
酸バリウム等の副原料とを所定組成に配合した原料を1
100℃以上の温度で焼成することにより得ることがで
きる。尚、融剤例えば、塩化バリウム等を併用すれば、
低温でのマグネトプランバイト型フェライト粒子の生成
が容易となる。
[0020] The magnetoplumbite type ferrite particles before blending with the Fe compound and the Bi compound in the present invention are raw materials prepared by blending iron raw materials such as iron oxide and hydrated iron oxide with auxiliary raw materials such as strontium carbonate and barium carbonate in a predetermined composition. 1
It can be obtained by firing at a temperature of 100°C or higher. In addition, if a fluxing agent such as barium chloride is used together,
It becomes easy to generate magnetoplumbite-type ferrite particles at low temperatures.

【0021】焼成温度が1100℃以下の場合には、フ
ェライト化反応を十分生起させることができない。
[0021] If the firing temperature is below 1100°C, the ferritization reaction cannot occur sufficiently.

【0022】本発明における微粉砕処理後の熱処理の温
度は700〜950℃の範囲が望ましい。700℃以下
である場合には、本発明の目的を十分に達成することが
できない。950℃以上である場合には、粒子相互間で
軽い焼結をひき起こしてしまうため好ましくない。
[0022] In the present invention, the temperature of the heat treatment after the pulverization treatment is preferably in the range of 700 to 950°C. If the temperature is below 700°C, the object of the present invention cannot be fully achieved. If the temperature is 950° C. or higher, it is not preferable because it causes slight sintering between particles.

【0023】[0023]

【作用】本発明において最も重要な点は、マグネトプラ
ンバイト型フェライト粒子粉末に対してFe2 O3 
が0.30〜3.00重量%、Bi2 O3 が0.2
0〜0.60重量%配合されているフェライト粒子は、
飽和磁化(σs)が70emu/g以上、配向度(数1
)が0.92以上であり、配向性が優れている点である
[Operation] The most important point in the present invention is that the Fe2 O3
is 0.30 to 3.00% by weight, Bi2 O3 is 0.2
The ferrite particles blended at 0 to 0.60% by weight are
The saturation magnetization (σs) is 70 emu/g or more, the degree of orientation (several 1
) is 0.92 or more, and the orientation is excellent.

【0024】本発明におけるフェライト粒子粉末の配向
性が優れている理由について、本発明者は、従来法では
生成した板状形態の粒子を、ゴム又はプラスチックス材
料への充填率を高めるたため粉砕処理を施し、単一粒子
までバラバラにしており、その際、粒子の角がとれ、微
粉が発生し、粒子自体は丸味を帯びてくる。この状態の
粒子を粉砕時に生じた歪を取り除くために熱処理を施し
たとしても飽和磁化値及び配向度の低いものしか得られ
ず、本発明により得られるフェライト粒子粉末は、焼成
後に、Fe化合物及びBi化合物を配合しており、微粉
砕処理後の熱処理時に於いてFe化合物及びBi化合物
の存在に起因して微粉砕処理時に発生した微粉の一部の
大粒子への吸収促進と、粒子結晶内に発生した欠陥の補
充が行われることによって、飽和磁化値が大きく、しか
も磁場配向度の高いフェライト粒子が得られるものと考
えている。
The reason why the ferrite particles of the present invention have excellent orientation is that the plate-like particles produced in the conventional method are pulverized to increase the filling rate into rubber or plastic materials. is applied to break it down to single particles, during which the corners of the particles are removed, fine powder is generated, and the particles themselves become rounded. Even if the particles in this state are heat-treated to remove the strain generated during crushing, only particles with low saturation magnetization values and low degrees of orientation can be obtained. Contains a Bi compound, which promotes absorption into some of the large particles of fine powder generated during the pulverization process due to the presence of Fe compounds and Bi compounds during heat treatment after the pulverization process, and improves absorption within particle crystals. It is believed that by replenishing the defects generated in the process, ferrite particles with a large saturation magnetization value and a high degree of magnetic field orientation can be obtained.

【0025】[0025]

【実施例】次に、実施例並びに比較例により本発明を説
明する。
[Examples] Next, the present invention will be explained with reference to Examples and Comparative Examples.

【0026】尚、以下の実施例並びに比較例における配
向度(数1)は、磁場中で成形された磁場配向成形体を
配向磁場に対して平行な方向から測定して得た残留磁束
密度(数2)と配向磁場に対して垂直な方向から測定し
て得た残留磁束密度(数3)より求めた値で示した。
The degree of orientation (Equation 1) in the following examples and comparative examples is determined by the residual magnetic flux density ( It is shown as a value determined from Equation 2) and residual magnetic flux density (Equation 3) obtained by measurement from a direction perpendicular to the orientation magnetic field.

【0027】[0027]

【数2】[Math 2]

【0028】[0028]

【数3】[Math 3]

【0029】また、飽和磁化(σs)値は、磁場中で成
形された磁場配向成形体を円柱(φ5.5mm×3mm
)状に加工し、VSM(東英工業(株)製)を用い、測
定磁場15KOeで測定した。
[0029] The saturation magnetization (σs) value is determined by measuring the magnetically oriented molded body formed in a magnetic field into a cylinder (φ5.5 mm x 3 mm).
) and measured using a VSM (manufactured by Toei Kogyo Co., Ltd.) at a measurement magnetic field of 15 KOe.

【0030】実施例1 α−Fe2 O3   861.4g、SrCO3  
 138.6g及びBaCl230gをよく混合し水に
て造粒する。この造粒物を1150℃で1時間焼成した
後、焼成物1000gに対して酸化鉄(α−Fe2 O
3 )を16g(マグネトプランバイト型フェライト粒
子粉末に対して1.60重量%に相当する。)、酸化ビ
スマス(Bi2 O3 )を2.7g(マグネトプラン
バイト型フェライト粒子粉末に対して0.27重量%に
相当する。)配合し、アトライターを用い微粉砕を施し
た。次いで、850℃で1.5時間熱処理してボンド磁
石用フェライト粒子粉末材料を得た。
Example 1 α-Fe2 O3 861.4 g, SrCO3
138.6g and 230g of BaCl are mixed well and granulated with water. After firing this granulated product at 1150°C for 1 hour, iron oxide (α-Fe2O
3) (corresponding to 1.60% by weight based on the magnetoplumbite type ferrite particle powder), and 2.7g of bismuth oxide (Bi2O3) (0.27% based on the magnetoplumbite type ferrite particle powder). (corresponds to % by weight) and pulverized using an attritor. Next, heat treatment was performed at 850° C. for 1.5 hours to obtain a ferrite particle powder material for bonded magnets.

【0031】得られたフェライト粒子粉末は、組成分析
の結果、Fe2 O3 /SrO+BaO=6.07で
あった。
[0031] As a result of compositional analysis of the obtained ferrite particle powder, it was found that Fe2O3/SrO+BaO=6.07.

【0032】ここに得られたボンド磁石用フェライト粒
子粉末材料121g、EVA(エチレン−酢酸ビニル共
重合体樹脂:三井ジュポンポリケミカル(株)製)12
g及びステアリン酸亜鉛0.5gを混合した後、80℃
に加熱して混練し、次いで、冷却固化した後、粉砕した
。該粉砕物を加熱溶融して10000  Oeの磁場を
印加した後、冷却固化してボンド磁石を得た。
121 g of the ferrite particle powder material for bonded magnets obtained here, EVA (ethylene-vinyl acetate copolymer resin: manufactured by Mitsui Dupont Polychemical Co., Ltd.) 12
g and 0.5 g of zinc stearate, then heated to 80°C.
The mixture was heated and kneaded, then cooled and solidified, and then pulverized. The pulverized material was heated and melted, a magnetic field of 10,000 Oe was applied, and then cooled and solidified to obtain a bonded magnet.

【0033】得られたボンド磁石は、配向度(数1) 
 0.93、残留磁束密度Brは2860Gauss、
保磁力I Hc2600  Oe、エネルギー積(BH
)max2.02MGOeであった。また、飽和磁化σ
sは70.5emu/gであった。
The obtained bonded magnet has a degree of orientation (Equation 1)
0.93, residual magnetic flux density Br is 2860 Gauss,
Coercive force I Hc2600 Oe, energy product (BH
) max 2.02MGOe. Also, the saturation magnetization σ
s was 70.5 emu/g.

【0034】実施例2〜7、比較例1〜5Fe原料の量
、Sr原料の量、焼成温度、Fe化合物の配合量、Bi
化合物の配合量及び熱処理温度を種々変更させた以外は
実施例1と同様にしてボンド磁石用フェライト粒子粉末
材料を製造し、更に、該粒子粉末材料を用いてボンド磁
石を製造した。
Examples 2 to 7, Comparative Examples 1 to 5 Amount of Fe raw material, amount of Sr raw material, firing temperature, blending amount of Fe compound, Bi
A ferrite particle powder material for a bonded magnet was produced in the same manner as in Example 1, except that the compounding amount of the compound and the heat treatment temperature were variously changed, and a bonded magnet was further produced using the particle powder material.

【0035】この時の主要製造条件及び諸特性を表1に
示す。尚、比較例5におけるFe化合物及びBi化合物
の配合した時点は、焼成前の原料配合時である。
Table 1 shows the main manufacturing conditions and various characteristics at this time. In Comparative Example 5, the Fe compound and the Bi compound were blended at the time of blending the raw materials before firing.

【0036】[0036]

【表1】[Table 1]

【0037】[0037]

【発明の効果】以上説明した通りの本発明に係るマグネ
トプランバイト型フェライト粒子粉末からなるボンド磁
石用フェライト粒子粉末材料は、前出実施例に示した通
り、焼成後にFe化合物及びBi化合物を配合し、続い
て微粉砕処理後、熱処理を施すことによって、飽和磁化
値及び磁場配向手段での配向性を向上させたものであり
、ボンド磁石用の磁性粒子粉末として最適なものである
Effects of the Invention As explained above, the ferrite particle powder material for bonded magnets, which is made of magnetoplumbite type ferrite particle powder according to the present invention, is compounded with an Fe compound and a Bi compound after firing, as shown in the previous example. Subsequently, after the fine pulverization treatment, heat treatment is performed to improve the saturation magnetization value and the orientation in the magnetic field orientation means, making it optimal as a magnetic particle powder for bonded magnets.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Fe2 O3 が0.30〜3.00
重量%、Bi2 O3 が0.20〜0.60重量%配
合されており、且つ飽和磁化(σs)が70emu/g
以上であって、配向度(数1)が0.92以上であるマ
グネトプランバイト型フェライト粒子粉末からなるボン
ド磁石用フェライト粒子粉末材料。 【数1】
[Claim 1] Fe2O3 is 0.30 to 3.00
% by weight, Bi2 O3 is blended from 0.20 to 0.60% by weight, and the saturation magnetization (σs) is 70 emu/g.
A ferrite particle powder material for a bonded magnet comprising the magnetoplumbite type ferrite particle powder having an orientation degree (Equation 1) of 0.92 or more. [Math 1]
【請求項2】  マグネトプランバイト型フェライト原
料混合物を1100℃以上で焼成したマグネトプランバ
イト型フェライト粒子粉末に対して、Fe化合物をFe
2 O3 換算で0.30〜3.00重量%、Bi化合
物をBi2 O3 換算で0.20〜0.60重量%配
合した後、微粉砕処理を行ってから、700〜950℃
の温度範囲で熱処理することを特徴とする請求項1記載
のボンド磁石用フェライト粒子粉末材料の製造法。
2. A Fe compound is added to the magnetoplumbite ferrite particle powder obtained by firing a magnetoplumbite ferrite raw material mixture at 1100°C or higher.
After blending 0.30 to 3.00% by weight in terms of 2O3 and 0.20 to 0.60% by weight in terms of Bi2O3 of a Bi compound, the mixture was pulverized and then heated at 700 to 950°C.
2. The method for producing a ferrite particle powder material for a bonded magnet according to claim 1, wherein the heat treatment is carried out at a temperature range of .
JP11918991A 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet Expired - Lifetime JP3208739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11918991A JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11918991A JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Publications (2)

Publication Number Publication Date
JPH04322408A true JPH04322408A (en) 1992-11-12
JP3208739B2 JP3208739B2 (en) 2001-09-17

Family

ID=14755121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11918991A Expired - Lifetime JP3208739B2 (en) 1991-04-22 1991-04-22 Manufacturing method of ferrite particle powder material for bonded magnet

Country Status (1)

Country Link
JP (1) JP3208739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799129A (en) * 1993-04-30 1995-04-11 Tdk Corp Permanent magnet and its manufacturing and permanent magnet material
JPWO2014163079A1 (en) * 2013-04-03 2017-02-16 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799129A (en) * 1993-04-30 1995-04-11 Tdk Corp Permanent magnet and its manufacturing and permanent magnet material
JPWO2014163079A1 (en) * 2013-04-03 2017-02-16 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them

Also Published As

Publication number Publication date
JP3208739B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
GB780278A (en) Improvements in or relating to methods of manufacturing non-metallic anisotropic permanent magnets
Cochardt Recent ferrite magnet developments
GB820959A (en) Improvements in or relating to ferromagnetic materials of the ferrite type and methods of manufacturing same
EP1052658B1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JP2002175907A (en) Strontium ferrite particles and powder for bonded magnet, and bonded magnet using the particles and power
US2778803A (en) Magnetically hard materials
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JPH04322408A (en) Ferrite particle powder material for bond magnet and manufacture thereof
JP3054164B2 (en) Production method of raw material for ferrite magnet
JP2906079B2 (en) Ferrite particle powder material for bonded magnet and method for producing the same
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
US3032503A (en) Composition of magnetic core material and method of producing same
JPH01112705A (en) Manufacture of oxide permanent magnet
JPS60152009A (en) Oxide permanent magnet
JPH07106113A (en) Ferrite powder for bond magnet, and its manufacture
GB789099A (en) Improvements in or relating to a method of producing magnetic cores
JP2001189210A (en) Strontium ferrite particle powder for bonded magnet, and bonded magnet using strontium ferrite particle powder
JP2009176960A (en) Magnetoplumbite type ferrite particle powder for bond magnet, method of manufacturing same, and resin composition, bond magnet, and magnet roll using magnetoplumbite type ferrite particle powder
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JPH0822744B2 (en) Ferrite particle powder for bonded magnets
GB959643A (en)
US2960472A (en) Mixed ferrites of manganese, magnesium and zinc and their methods of preparation
GB669571A (en) Improvements in or relating to magnet cores for electromagnetic devices
JPH02180004A (en) Manufacture of anisotropic oxide magnetic powder an of plastic magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

EXPY Cancellation because of completion of term