JP2000081429A - High precision easy measurement device for leaching amount of fertilizer constituent and environmental contaminant and the like - Google Patents

High precision easy measurement device for leaching amount of fertilizer constituent and environmental contaminant and the like

Info

Publication number
JP2000081429A
JP2000081429A JP10267211A JP26721198A JP2000081429A JP 2000081429 A JP2000081429 A JP 2000081429A JP 10267211 A JP10267211 A JP 10267211A JP 26721198 A JP26721198 A JP 26721198A JP 2000081429 A JP2000081429 A JP 2000081429A
Authority
JP
Japan
Prior art keywords
chamber
soil
water
capillary
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10267211A
Other languages
Japanese (ja)
Other versions
JP3317906B2 (en
Inventor
Yasuo Ozaki
保夫 尾崎
Morihiro Maeda
守弘 前田
Akiyo Oshima
島 昭 代 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT AGRICULTURE RES CT
National Agriculture Research Center
Daiki Rika Kogyo Co Ltd
Original Assignee
NAT AGRICULTURE RES CT
National Agriculture Research Center
Daiki Rika Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT AGRICULTURE RES CT, National Agriculture Research Center, Daiki Rika Kogyo Co Ltd filed Critical NAT AGRICULTURE RES CT
Priority to JP26721198A priority Critical patent/JP3317906B2/en
Publication of JP2000081429A publication Critical patent/JP2000081429A/en
Application granted granted Critical
Publication of JP3317906B2 publication Critical patent/JP3317906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively collect infiltrating water without respect to a soil property by comprising first and second infiltration chambers arranged in a soil infiltrating water collecting device and a tensiometer and the like buried in the soil in the vicinity of the collecting device. SOLUTION: A leaching amount measurement device measuring a fertilizer constituent and the like in soil infiltrating water is constructed of a collecting device 21 provided with a first infiltration chamber 24, in which water from a sample chamber 41 moves in a capillary sheet 57a so as to be collected, and a second infiltration chamber 31, in which sample water is collected through a porous plate, and a tensiometer 59 connected to a controller 60 and provided with a built-in pressure sensor, and the like. In collection of water from dry soil according to a tension capillary lysimeter method, the infiltration chambers 24, 31 are shut off from the atmosphere and a vacuum pump 65 is operated so that a suction pressure and water condition in the soil are equilibrated, and consequently, water is collected into the inside of the infiltration chamber 31. In the case of a capillary lysimeter method, the infiltration chamber 24 is set to an atmospheric pressure, and water is collected through a rod type capillary part 57b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土中に埋設して自
然に近い状態または所定のポテンシャルで、土壌に含ま
れる浸透水を計測する肥料成分・環境汚染物質等の溶脱
量高精度簡易計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate and simple method for measuring the amount of leaching of fertilizer components and environmental pollutants, etc., for measuring permeated water contained in soil in a state close to nature or at a predetermined potential when buried in soil. It concerns the device.

【0002】[0002]

【従来の技術】湖や沼等の閉鎖性水域での水質汚染が最
近大きな公害問題になっている。この閉鎖性水域での主
な汚染原因は、付近の田畑またはゴルフ場等から流入す
る雨水や排水等に含まれる肥料成分や、住宅地等からの
生活排水などの混入による富栄養化現象であるといわれ
ている。
2. Description of the Related Art Water pollution in closed water areas such as lakes and swamps has recently become a major pollution problem. The main cause of pollution in this closed water area is the eutrophication phenomenon caused by the incorporation of fertilizer components contained in rainwater and wastewater flowing from nearby fields and golf courses, and domestic wastewater from residential areas and the like. It is said that.

【0003】実圃場で肥料成分等の溶脱量をモニタリン
グ(計測)する方法には、ポ−ラスカップとテンシオメ
−タ(土壌水分計)を使用する方法と、土壌を深さ別に
採取・分析するサンプリング方法とがある。前者の方法
は、テンシオメ−タの管理が煩雑且つ解析に多くのパラ
メ−タが必要で、溶脱量を把握するのに専門的知識と労
力がかかり過ぎ、また、土壌溶液を採取するポ−ラスカ
ップに与える吸引圧が高すぎるため、土壌に吸着してい
る土壌水を採取してしまう難点がある。後者の方法は、
毎回圃園に穴を堀って深さ別の土壌を採取し、その中に
含まれる肥料成分等を分析するものであるが、これらに
は手間がかかると共に、小さい圃園にあっては掘った穴
が水分動態を変えてしまい、長期の調査ができない等の
問題点を有していた。
[0003] Methods for monitoring (measuring) the amount of leaching of fertilizer components and the like in an actual field include a method using a porous cup and a tensiometer (soil moisture meter), and a method for sampling and analyzing soil by depth. There is a way. In the former method, the management of the tensiometer is complicated and a large number of parameters are required for the analysis. Therefore, it takes too much technical knowledge and effort to grasp the amount of leaching, and a porous cup for collecting the soil solution. Is too high, so that there is a problem that soil water adsorbed on the soil is collected. The latter method is
A hole is drilled in the field each time to collect soil at different depths, and fertilizer components and the like contained therein are analyzed. The holes changed the water dynamics, and had a problem that a long-term investigation could not be performed.

【0004】ここで、キャピラリ−ライシメ−タ法によ
る装置1は、図1に示すように、筒状に形成した本体2
の下部に浸透水を採取して貯留する浸透タンク3を設
け、キャピラリ−4を介して上方に試料土壌を充填する
試料室5を形成してある。前記浸透タンク3の底部中央
に設けた取出口6に一端を接続した採取管7の他端を地
表に露出し、また、一端を該浸透タンク3内に立ち上が
らせた大気開放パイプ8の他端を地表に露出させて大気
に連通させてある。
[0004] Here, an apparatus 1 based on the capillary lysimeter method is, as shown in FIG.
Is provided with a permeation tank 3 for collecting and storing permeated water, and a sample chamber 5 for filling sample soil upward through a capillary 4 is formed. The other end of a sampling pipe 7 having one end connected to an outlet 6 provided in the center of the bottom of the infiltration tank 3 is exposed to the ground surface, and the other end of an open-to-atmosphere pipe 8 having one end rising into the infiltration tank 3. Is exposed to the surface of the earth and communicates with the atmosphere.

【0005】本装置1を土壌中の所定箇所に埋設する
と、該浸透タンク3内の圧力と大気圧とは大気開放パイ
プ8を介して連通しているため、試料室5内に収容した
土壌で形成した土柱Xに含まれる水分は、自然に近い状
態で重力により下方に浸透してキャピラリ−4を通過し
て浸透タンク3内に貯留される。
When the apparatus 1 is buried in a predetermined location in the soil, the pressure in the infiltration tank 3 and the atmospheric pressure communicate with each other through an open-to-atmosphere pipe 8. The water contained in the formed soil column X penetrates downward by gravity in a state close to nature, passes through the capillary 4, and is stored in the permeation tank 3.

【0006】本装置1は土柱高またはキャピラリ−4を
使用した場合であり、大気圧下における自由水中に土
柱、即ち、試料室5内に土壌を充填して形成した土柱X
を垂直に設置し、自由水と土柱層間(またはキャピラリ
−)の水及び土中水が平衡に達した時の総ポテンシャル
Kは、以下の数式で表される。
The present apparatus 1 uses a column height or a capillary-4, and the column X is formed by filling soil in free water under atmospheric pressure, that is, by filling the sample chamber 5 with soil.
Is set vertically, and the total potential K when free water, water between soil columns (or capillaries) and soil water reach equilibrium is expressed by the following equation.

【0007】[0007]

【数1】Ψ=M+O1 = M + O

【0008】[0008]

【数2】Ψ=−ρgh数 = −ρgh

【0009】即ち、総ポテンシャルΨは、毛管ポテンシ
ャルMと浸透ポテンシャルOとの和であり、ρは水の密
度(g/cm3 )を表し、hは土柱Xの高さ(cm)ま
たはキャピラリ−を表し、gは重力の加速度を表してい
る。総ポテンシャルΨは自由水の温度と土壌水の温度と
が等しい場合には、毛管ポテンシャルMに相当する。但
し、浸透ポテンシャルOの影響は少ない。この時、マト
リックポテンシャルΦは、重力ポテンシャルZと逆向き
の等値のエネルギ−状態になる。これを数式で示すと以
下の通りである。
That is, the total potential Ψ is the sum of the capillary potential M and the osmotic potential O, ρ represents the density of water (g / cm 3 ), and h is the height (cm) of the column X or the capillary. Represents-and g represents the acceleration of gravity. The total potential Ψ corresponds to the capillary potential M when the temperature of the free water is equal to the temperature of the soil water. However, the influence of the permeation potential O is small. At this time, the matrix potential Φ becomes an energy state having an equivalent value opposite to the gravity potential Z. This is represented by the following equation.

【0010】[0010]

【数3】Φ=−ρgh(erg/g)Φ = −ρgh (erg / g)

【0011】[0011]

【数4】Z=ρgh(erg/g)## EQU4 ## Z = ρgh (erg / g)

【0012】このように土柱Xの高さh(またはキャピ
ラリ−の内径および長さ)を変えることにより、マトリ
ックポテンシャルΦを任意に設定して土壌の浸透水を採
取することができる。
By changing the height h of the earth column X (or the inner diameter and length of the capillary) in this way, it is possible to arbitrarily set the matrix potential Φ to collect the permeated water of the soil.

【0013】次に、テンションキャピラリ−ライシメ−
タ法による装置11を、図2に基づいて説明すると、筒
状をした本体12の下部に気密性を有した浸透タンク1
3を設け、該浸透タンクの上部にフイルタ14を介して
試料室15を設けてある。この浸透タンク13の底部中
央に設けた取出口16に一端を接続させた採取管18の
他端に真空ポンプ17を連結してある。また、先端を浸
透タンク13の内部に立ち上がらせて設けた大気開放パ
イプ20の他端は、地表に突出させて大気開閉弁19を
装着してある。
Next, a tension capillary lysimeter
An apparatus 11 based on the air-tight method will be described with reference to FIG. 2.
3 is provided, and a sample chamber 15 is provided above the permeation tank via a filter 14. A vacuum pump 17 is connected to the other end of a sampling pipe 18 having one end connected to an outlet 16 provided at the bottom center of the permeation tank 13. The other end of the atmosphere opening pipe 20 provided with its tip rising inside the infiltration tank 13 is provided with an atmosphere opening / closing valve 19 protruding from the surface of the ground.

【0014】装置11を土中の一定の深さに埋設し、大
気開放パイプ20の大気開閉弁19を閉じて浸透タンク
13内を気密にした後、真空ポンプ17を作動させて浸
透タンク13内を所定の吸引圧に設定する。すると、試
料室15内の土中に含まれる水分は、該吸引圧によって
フイルタ14を介して浸透タンク13内に採取される。
ついで、大気開放パイプ20の先端に設けた大気開閉弁
19を開くと、浸透タンク13内の圧力と該浸透タンク
13の周囲に位置する土壌中の圧力とが平衡して吸引圧
が失われる。そのため、浸透タンク13の取出口16に
一端を取付けた採取管18の他端に連結した真空ポンプ
17の作動により、該浸透タンク13内に貯蔵した浸透
水を外部に取り出して各種の計測を行う。
The apparatus 11 is buried at a certain depth in the soil, the air opening / closing valve 19 of the air opening pipe 20 is closed to make the inside of the permeation tank 13 airtight, and then the vacuum pump 17 is operated to operate the inside of the permeation tank 13. Is set to a predetermined suction pressure. Then, the water contained in the soil in the sample chamber 15 is collected into the permeation tank 13 through the filter 14 by the suction pressure.
Next, when the atmosphere opening / closing valve 19 provided at the tip of the atmosphere opening pipe 20 is opened, the pressure in the permeation tank 13 and the pressure in the soil located around the permeation tank 13 are balanced, and the suction pressure is lost. Therefore, by operating a vacuum pump 17 connected to the other end of the sampling pipe 18 having one end attached to the outlet 16 of the permeation tank 13, the permeated water stored in the permeation tank 13 is taken out to perform various measurements. .

【0015】本装置11は真空ポンプ等の吸引圧を利用
し、土壌中に埋設させる本体12内にフイルタ14を装
着し、該フイルタに吸引圧を与えると、試料室15内の
土柱Xに保持しきれない水分は、圧力エネルギ−により
該フイルタ14を通って浸透タンク13内の圧力と平衡
するまで吸引して採取する。この時の浸透水のマトリッ
クポテンシャルΦは、吸引圧pと逆向きの等値となる。
これを数式で表すと以下のようになる。
The apparatus 11 uses a suction pressure of a vacuum pump or the like, mounts a filter 14 in a main body 12 buried in the soil, and applies a suction pressure to the filter to apply a suction pressure to the soil column X in a sample chamber 15. Moisture that cannot be retained is collected by suction through the filter 14 by pressure energy until the pressure in the permeation tank 13 is balanced. At this time, the matrix potential Φ of the permeated water has an equal value opposite to the suction pressure p.
This is represented by the following equation.

【0016】[0016]

【数5】Φ=−ρgh(erg/g)Φ = −ρgh (erg / g)

【0017】[0017]

【数6】P=ρgh=(erg/g)P = ρgh = (erg / g)

【0018】ここで、Φはマトリックポテンシャルを表
し、Zは真空ポンプなどによる吸引圧を表している。即
ち、吸引圧を変えることにより各マトリックポテンシャ
ルに対する浸透水を採取し、重力水レベル以上で土柱X
の内部に保持されている浸透水を採取することができ
る。
Here, Φ represents a matrix potential, and Z represents a suction pressure by a vacuum pump or the like. That is, the permeated water for each matrix potential is collected by changing the suction pressure, and the soil column X
The permeated water held inside the can be collected.

【0019】[0019]

【発明が解決しようとする課題】前記したように、土壌
地質により浸透水を採取する装置を使い分けるには、二
種類の採取装置を準備しなければならず、そのためには
設備に費用がかかり大変不経済であった。また一方の装
置を埋設して土壌に含まれる水の採取作業を行った結
果、十分に浸透水が得られなかった場合には、他の装置
を埋設し直して採取作業を行う必要が有り、作業が二重
手間となって非能率的であった。特に、田畑等の土壌に
含まれる水分にどの程度の肥料成分が含まれているかを
知ることは重要であり、その地域特性に合った環境保全
的な肥料管理を行うことにより、前記閉鎖性水域での水
質汚濁を防止するものである。
As described above, in order to properly use the apparatus for collecting infiltrated water depending on the soil geology, two types of collection apparatuses must be prepared. It was uneconomic. In addition, as a result of burying one device and collecting the water contained in the soil, if sufficient infiltration water could not be obtained, it is necessary to bury the other device and perform the collection work, The work was inefficient and required a lot of work. In particular, it is important to know how much fertilizer components are contained in the water contained in soil such as fields, and by performing environmentally-friendly fertilizer management in accordance with the local characteristics, the closed water area To prevent water pollution.

【0020】本発明は、土壌質に関係なく土壌の浸透水
に含まれる肥料成分・環境汚染物質等の溶脱量を高精度
且つ簡易に計測することを目的とする。
An object of the present invention is to measure the amount of leaching of fertilizer components and environmental pollutants contained in permeated water of soil irrespective of soil quality with high precision and ease.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
の手段として、第1の発明は、内底部を緩やかな略すり
鉢状に設けた円筒状の第1浸透室と、該第1浸透室の上
方に設けた仕切部の中心には上端を開口した筒部と該仕
切部とで上端を開口した環状の第2浸透室とを一体に形
成してなる下部体を設け、前記第1浸透室の内底部の中
心に一端を連結した第1採水管の他端と、前記第2浸透
室に夫々一端を連結させた第2採水管および吸引管の他
端とを夫々真空ポンプで接続し、前記第1浸透室内に上
端を立ち上がらせた第1大気連通管および前記第2浸透
室の側壁面に一端を連結した第2大気連通管の他端を夫
々地表に突出して夫々第1、2大気開閉弁を設け、上部
を開口して内部に設けた試料室の内底面を緩やかな略す
り鉢状に形成し、該内底面の中心部に前記下部体の筒部
係合用の連結口を設け、該連結口の周囲に複数形成した
凹入部内に前記下部体の第2浸透室に連通する複数の通
孔を夫々形成してなる上部体を設け、該上部体の各凹入
部にポ−ラスプレ−トを取外可能に装着すると共に、前
記試料室の底面全体にフイルタを取外可能に取付け、該
フイルタの下方に位置して前記内底面全体に装着させた
キャピラリ−シ−トの中心を束ねた棒状キャピラリ−部
を前記筒部内に配し、該上部体の外周下端に設けた連結
鍔部を前記下部体の上端に気密に連結してなる採取装置
と、前記採取装置に接近した土壌中に埋設させる圧力セ
ンサ−を内蔵したテンシオメ−タと、スイッチ、スタ−
トボタン、前記テンシオメ−タに接続してその測定値を
表示するコンパレ−タ、前記テンシオメ−タおよび前記
圧力センサ−との偏差やパラメ−タを表示する表示部、
デ−タロガ−、前記真空ポンプ、液面センサ−を夫々電
気的に接続した制御装置とからなることを特徴とする。
Means for Solving the Problems As means for solving the above-mentioned problems, a first invention is a cylindrical first permeation chamber having an inner bottom portion formed in a moderately mortar shape, and a first permeation chamber. A lower body formed integrally with a cylindrical portion having an upper end opened and an annular second permeation chamber having an upper end opened with the partition at the center of the partition provided above the first portion; The other end of the first water sampling pipe having one end connected to the center of the inner bottom of the chamber, and the other end of the second water sampling pipe and one end of the suction pipe each having one end connected to the second permeation chamber are connected by a vacuum pump. The other end of the first atmosphere communication pipe having an upper end rising into the first infiltration chamber and the other end of the second atmosphere communication pipe having one end connected to the side wall surface of the second infiltration chamber is protruded to the ground surface, respectively. Atmosphere opening and closing valve is provided, the upper surface is opened and the inner bottom surface of the sample chamber provided inside is formed in a moderately mortar-like shape, A connection port for engaging the cylindrical portion of the lower body is provided at the center of the inner bottom surface, and a plurality of through holes communicating with the second permeation chamber of the lower body are respectively formed in recesses formed around the connection port. An upper body formed is provided, and a porous plate is removably mounted in each recess of the upper body, and a filter is removably mounted on the entire bottom surface of the sample chamber. A rod-shaped capillary portion, which bundles the center of a capillary sheet attached to the entire inner bottom surface and is disposed in the cylindrical portion, is disposed in the cylindrical portion. A sampling device having a built-in pressure sensor buried in the soil close to the sampling device, a switch and a star.
A button, a comparator connected to the tensiometer and displaying the measured value, a display part for displaying deviations and parameters from the tensiometer and the pressure sensor,
It is characterized by comprising a control device to which a data logger, the vacuum pump and a liquid level sensor are electrically connected.

【0022】即ち、第1の発明は前記第1、2大気開閉
弁の開閉操作と前記真空ポンプの作用により、第2浸透
室に前記吸引管を介して吸引圧を発生させて水分の少な
い土壌試料から強制的に浸透水を採取することができる
し、また、前記第1、2大気開閉弁を開放して電気的制
御をすることなく大気圧を利用して第1浸透室内に浸透
水を採取することも可能である。さらに、浸透性を有し
た本体に圧力センサ−を内蔵したテンシオメ−タを前記
採取装置に接近して土壌中に埋設するため、該圧力セン
サ−により周囲土壌圧力と第2浸透室内の圧力を平衡し
て土壌水分の自動採取を可能にできる。このように採取
装置内に第1、2浸透室を設けることより、土壌質に関
係なく装置を埋設でき、使用時には土壌質に合わせてい
ずれかの浸透室を使い分けて浸透水を容易に採取でき
る。
That is, in the first invention, a suction pressure is generated in the second infiltration chamber through the suction pipe by the opening and closing operations of the first and second air on-off valves and the operation of the vacuum pump, so that the soil with low moisture content is generated. The infiltration water can be forcibly collected from the sample, and the infiltration water can be introduced into the first infiltration chamber by using the atmospheric pressure without opening the first and second air on-off valves and performing electrical control. It is also possible to collect. Further, since a tensiometer having a pressure sensor built into a permeable body is buried in the soil close to the sampling device, the pressure sensor balances the surrounding soil pressure with the pressure in the second permeation chamber. To enable automatic sampling of soil moisture. By providing the first and second permeation chambers in the collection apparatus in this way, the apparatus can be buried regardless of the soil quality, and when used, one of the permeation chambers can be properly used according to the soil quality to easily collect permeated water. .

【0023】上記課題を解決するための手段として、第
2の発明は、底面部を緩やかな略すり鉢状に形成した浸
透室を有した長尺筒体の中間部内側に、中心部に連通口
を有して上面を緩やかな略すり鉢状に形成した仕切部を
設け、前記仕切部の内底面全体に装着させたキャピラリ
−シ−トの上面にフイルタを取外可能に装着して前記長
尺筒体内に試料室を設け、該キャピラリ−シ−トの中心
を束ねた棒状キャピラリ−部を該仕切部の中心に設けた
連通口内に吊り下げるように配し、該長尺筒体の上端に
夫々高さの異なる接続筒を組み合わせて高さを調整する
ことによりマトリックポテンシャルを制御することを特
徴とする。
As a means for solving the above-mentioned problems, a second invention provides a communication port at a center portion inside a middle portion of a long cylindrical body having a penetrating chamber whose bottom portion is formed in a moderately mortar shape. A partition having a moderately mortar-shaped upper surface and a filter removably mounted on the upper surface of a capillary sheet mounted on the entire inner bottom surface of the partition. A sample chamber is provided in the cylindrical body, and a rod-shaped capillary section that binds the center of the capillary sheet is arranged so as to be suspended in a communication port provided in the center of the partition section, and is provided at an upper end of the long cylindrical body. Matrix potential is controlled by adjusting the height by combining connecting cylinders having different heights.

【0024】第2の発明は、簡便な構造であって電気的
な制御を必要としないためその操作および使用方法が簡
単である。その上、キャピラリ−シ−トを略すり鉢状に
傾斜させて設置すると共に、中心を纏めて棒状キャピラ
リ−部に形成したため、毛細管現象を有効に利用して浸
透水を無駄なく採取することができる。このキャピラリ
−シ−トの上面にはポ−ラスプレ−トを装着させてある
ため、浸透水に含まれる土壌粒子を遮断し、該キャピラ
リ−シ−トが短期間で目詰まりするのを防止できる。さ
らに、長尺筒体の上部に高さの異なる接続筒を重合して
試料の高さを調節し、それによってマトリックポテンシ
ャルを制御することが出来る。
Since the second invention has a simple structure and does not require electrical control, its operation and method of use are simple. In addition, since the capillary sheet is installed in a substantially mortar-like inclining manner and the center is formed in a rod-shaped capillary portion, the permeated water can be collected without waste by effectively utilizing the capillary phenomenon. . Since a porous plate is mounted on the upper surface of the capillary sheet, soil particles contained in the permeated water can be blocked, and the capillary sheet can be prevented from being clogged in a short period of time. . Furthermore, the height of the sample can be adjusted by superimposing connecting tubes having different heights on the upper portion of the long cylindrical body, thereby controlling the matrix potential.

【0025】[0025]

【発明の実施の形態】第1の発明の実施の形態を図面に
基づいて説明すると、図3において、土壌に含まれる水
を採取する採取装置21は、円筒状に形成した下部体2
2と同じく円筒状に形成した上部体40とを上下に重合
して連結し、必要に応じて上部体40の上部に1または
複数の高さが同じか或いは異なる接続筒53a、53b
を連結する。この接続筒53a、53bは被測定土壌の
性質や孔隙特性を基にして適切な高さを選定するために
高さ調整を可能にするため両者の高さが相違している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the first invention will be described with reference to the drawings. In FIG. 3, a sampling device 21 for sampling water contained in soil includes a lower body 2 formed in a cylindrical shape.
2 and an upper body 40 formed in the same cylindrical shape as above, and connected by being vertically overlapped, and one or more connection cylinders 53a, 53b having the same or different heights on the upper part of the upper body 40 as necessary.
Concatenate. The connecting cylinders 53a and 53b have different heights so that the height can be adjusted to select an appropriate height based on the properties of the soil to be measured and the pore characteristics.

【0026】図4において、円筒状をした下部体22の
内底部23は、傾斜が緩やかで略すり鉢状に形成して内
部に第1浸透室24を形成してある。この第1浸透室の
内底部23の中央部に設けた第1採水口25に第1採水
管26の一端を連結してある。また第1浸透室の内底部
23の一側には、上端を第1浸透室24内の上方に立ち
上がらせて第1大気連通管28を取付けてある。また、
第1大気連通管28の他端は、地表に位置させて第1大
気開放弁28aを取付けてある(図3)。
In FIG. 4, an inner bottom portion 23 of a cylindrical lower body 22 is formed in a generally mortar-like shape with a gentle inclination, and a first permeation chamber 24 is formed therein. One end of a first water sampling pipe 26 is connected to a first water sampling port 25 provided at the center of the inner bottom portion 23 of the first permeation chamber. Further, on one side of the inner bottom portion 23 of the first permeation chamber, a first air communication pipe 28 is attached with its upper end rising upward in the first permeation chamber 24. Also,
The other end of the first atmosphere communication pipe 28 is provided with a first atmosphere release valve 28a located on the ground surface (FIG. 3).

【0027】第1浸透室24の上面を閉鎖するように、
前記下部体22の上方に一体に形成した仕切部29の上
部内壁面に沿って第2浸透室31と前記第1浸透室24
とを一体に形成し、第2浸透室31の中心部には前記第
1浸透室24に連通する筒部32を上方に立ち上がらせ
て設けてある。第2浸透室31の底面である仕切部29
には、第2採水口33および吸引口34を夫々別個に形
成し、第2採水口33には第2採水管35の一端を接続
し、該吸引口34には吸引管36の一端を接続してあ
る。さらに、第2浸透室31の側壁には一端を連結した
第2大気連通管37の他端を地表に突出し、その端部に
第2大気開放弁37aを取付けてある(図3、4)。
In order to close the upper surface of the first permeation chamber 24,
A second permeation chamber 31 and a first permeation chamber 24 are formed along an upper inner wall surface of a partition portion 29 integrally formed above the lower body 22.
Are integrally formed, and a cylindrical portion 32 communicating with the first permeation chamber 24 is provided at the center of the second permeation chamber 31 so as to rise upward. The partition part 29 which is the bottom of the second permeation chamber 31
, A second water sampling port 33 and a suction port 34 are separately formed, one end of a second water sampling pipe 35 is connected to the second water sampling port 33, and one end of a suction pipe 36 is connected to the suction port 34. I have. Further, the other end of the second atmosphere communication pipe 37 having one end connected to the side wall of the second permeation chamber 31 is projected to the ground surface, and a second atmosphere release valve 37a is attached to the end (FIGS. 3 and 4).

【0028】図5において、40は同じく筒状に形成し
た上部体で、内部には試料土壌を収容するために設けた
試料室41の内底面42を緩やかな略すり鉢状に形成
し、該内底面の中央部には前記下部体22の上部中央に
設けた筒部32の上端を連結させる連結口43を設けて
ある。該連結口43の周囲には、前記下部体22の第2
浸透室31に連通する小径な通孔44を1または複数設
け、各通孔を夫々内部に位置させて複数の凹入部46を
夫々形成し、該凹入部46内には後記する小径なポ−ラ
スプレ−ト58を装着する(図6)。該上部体40の下
端外周には連結鍔部48を突設し、該連結鍔部の下方内
部にシ−ルリング50を装着する凹溝49を設けてあ
る。
In FIG. 5, reference numeral 40 denotes an upper body also formed in a cylindrical shape, in which an inner bottom surface 42 of a sample chamber 41 provided for accommodating the sample soil is formed in a moderately mortar-like shape. At the center of the bottom surface, there is provided a connection port 43 for connecting the upper end of the cylindrical portion 32 provided at the upper center of the lower body 22. Around the connection port 43, the second body 22
One or a plurality of small-diameter through-holes 44 communicating with the permeation chamber 31 are provided, and each of the through-holes is positioned inside thereof to form a plurality of recessed portions 46, respectively. The lath plate 58 is mounted (FIG. 6). A connecting flange 48 is provided on the outer periphery of the lower end of the upper body 40, and a concave groove 49 for mounting a seal ring 50 is provided below the connecting flange.

【0029】図7において、下部体22の上部には該上
部体40の連結鍔部48を嵌合させて該下部体22内の
第1浸透室24の上方に分離して設けた第2浸透室31
を密閉する。ついで、該上部体40の上部には必要に応
じて高さの異なる接続筒53a、53bを連結する。高
さを違えた円筒状の接続筒53a、53bの下端外周に
夫々連結用の連結鍔部54a、54bを設け、該連結鍔
部の内壁面にシ−ルリング50を装着させる凹溝55を
設けてある。
In FIG. 7, a connecting flange 48 of the upper body 40 is fitted to the upper part of the lower body 22, and a second permeation chamber is provided separately above the first permeation chamber 24 in the lower body 22. Room 31
Seal. Next, connecting cylinders 53a and 53b having different heights are connected to the upper portion of the upper body 40 as necessary. Connecting flanges 54a and 54b for connection are provided on the outer periphery of lower ends of cylindrical connection tubes 53a and 53b having different heights, and a concave groove 55 for mounting the seal ring 50 is provided on an inner wall surface of the connecting flange. It is.

【0030】接続筒53a、53bは、採取装置21を
土中の所定深さに埋設する際、上部体40の試料室41
内に収容する試料土壌の高さ調節のため必要に応じて使
用するもので、高さを調整することにより土壌に含まれ
る水の吸引力、即ち、マトリックポテンシャルを調整す
ることができる。通常、10cmと15cmの高さの接
続筒を用意してあるが、この高さに限るものではない。
When the sampling device 21 is buried at a predetermined depth in the soil, the connection tubes 53a and 53b
It is used as needed to adjust the height of the sample soil accommodated therein. By adjusting the height, the suction power of water contained in the soil, that is, the matrix potential can be adjusted. Usually, connection tubes having a height of 10 cm and 15 cm are prepared, but the height is not limited to this height.

【0031】図8、9において、57は糸径約0.03
7mm、長さ約200mmに形成したガラス繊維または
化学繊維(好ましくはポリエステル材)を束(一束約1
100本)にしたキャピラリ−シ−トである。このキャ
ピラリ−シ−ト57aの周縁部分を該上部体40の内底
面42全体に広げ、中央部分を縛って棒状にして筒部3
2内に吊り下げる。56はフイルタで、上部体40の試
料室41の下面全体に配し、土壌とキャピラリ−シ−ト
57aとの親和性を高めると共に、該試料室内に充填し
た試料土壌の土壌粒子によるキャピラリ−シ−ト57a
の目詰まりを最小限に防いでいる。さらにキャピラリ−
の下側に位置させ、且つ、該上部体40の内底面42に
設けた凹入部46内にポ−ラスプレ−ト(多孔隙板)5
8を収容し、試料土壌からの土壌粒子は該ポ−ラスプレ
−トの短期間における目詰まりを防いでいる。このよう
に試料土壌からの土壌粒子は、1次的にフイルタ56で
防ぎ、2次的にキャピラリ−シ−ト57aで防ぎ、3次
的にポ−ラスプレ−ト58で防ぐことができる。
8 and 9, reference numeral 57 denotes a yarn diameter of about 0.03.
A glass fiber or a chemical fiber (preferably a polyester material) formed to a length of about 7 mm and a length of about 200 mm is bundled (each bundle is about 1
100). The peripheral portion of the capillary sheet 57a is spread over the entire inner bottom surface 42 of the upper body 40, and the central portion is tied into a rod to form a cylindrical portion 3.
Hang it in 2. Reference numeral 56 denotes a filter which is disposed on the entire lower surface of the sample chamber 41 of the upper body 40 to enhance the affinity between the soil and the capillary sheet 57a, and to increase the affinity of the sample soil filled in the sample chamber by the soil particles of the soil. −G57a
Clogging is minimized. In addition, the capillary
And a porous plate (porous plate) 5 in a recess 46 provided in the inner bottom surface 42 of the upper body 40.
8 and soil particles from the sample soil prevent short-term clogging of the porous plate. As described above, soil particles from the sample soil can be prevented firstly by the filter 56, secondarily by the capillary sheet 57a, and thirdly by the porous plate 58.

【0032】前記採取装置21によって第1浸透室24
または第2浸透室31内に貯留した浸透水の採取および
取出しを行う制御装置60を図3により説明すると、電
源用のスイッチ61やスタ−トボタン62を有し、さら
に土壌中に埋設した該採取装置の周囲に複数のテンシオ
メ−タ59を埋設する。このテンシオメ−タ59の測定
値を表示するため、該テンシオメ−タに接続するコンパ
レ−タ63や、前記テンシオメ−タ、圧力センサ−、偏
差(テンシオメ−タや圧力センサの差)を表示する表示
部64を前記制御装置60に設け、該表示部により偏差
やパラメ−タなどの設定を行うものである。
The first infiltration chamber 24 is provided by the collection device 21.
A control device 60 for collecting and extracting permeated water stored in the second permeation chamber 31 will be described with reference to FIG. 3. The control device 60 includes a power switch 61 and a start button 62 and is further embedded in the soil. A plurality of tensiometers 59 are embedded around the device. In order to display the measured value of the tensiometer 59, a comparator 63 connected to the tensiometer, a display for displaying the tensiometer, the pressure sensor, and the deviation (difference between the tensiometer and the pressure sensor) are displayed. A unit 64 is provided in the control unit 60, and the deviation and parameters are set by the display unit.

【0033】テンシオメ−タ59は筒本体内に圧力セン
サ(図示せず)を収容してあり、先端に多孔質素焼で形
成した浸透部59aを設け、コンパレ−タ63および表
示部64と接続している。さらに第1浸透室24の下部
に連結する第1採水管26と、第2浸透室31に連結す
る第2採水管35および吸引管36の他端は、夫々前記
制御装置60の真空ポンプ65に直接または間接的に接
続している。真空ポンプ65は、前記採取装置21の第
2浸透室31内に吸引圧を供給したり、第1、2浸透室
内に貯留した浸透水を外部に取り出すために吸引圧を生
じさせる。
The tension meter 59 accommodates a pressure sensor (not shown) in the cylinder main body, and has a penetrating portion 59a formed by porous sintering at the tip, and is connected to the comparator 63 and the display portion 64. ing. Further, the other end of the first water sampling pipe 26 connected to the lower part of the first permeation chamber 24 and the other end of the second water sampling pipe 35 and the suction pipe 36 connected to the second permeation chamber 31 are connected to the vacuum pump 65 of the control device 60, respectively. Connected directly or indirectly. The vacuum pump 65 supplies a suction pressure into the second permeation chamber 31 of the sampling device 21 or generates a suction pressure to take out permeated water stored in the first and second permeation chambers.

【0034】66はデ−タ−ロガ−で、テンシオメ−タ
59と第2浸透室31内の圧力を測定する圧力センサの
測定値をロギングするもので、測定値はメモリ−カ−ド
(図示せず)に書き込まれ、パソコンでデ−タを回収し
て解析する。尚、サ−キットブレ−カ67、漏電ブレ−
カ68は100VのAC電源を使用する場合には必要で
あるが、バッテリ−や太陽電池を使用する場合は不要で
ある。69は電気系統、水注入防止器(図示せず)を有
して液面センサ−等に接続した液面計である。
Reference numeral 66 denotes a data logger for logging the measured values of the tension meter 59 and a pressure sensor for measuring the pressure in the second permeation chamber 31. The measured values are stored in a memory card (FIG. 1). (Not shown), and the data is collected and analyzed by a personal computer. Circuit breaker 67, earth leakage breaker
The power 68 is necessary when using a 100 V AC power supply, but is unnecessary when using a battery or a solar cell. Reference numeral 69 denotes a liquid level gauge having an electric system and a water injection preventing device (not shown) and connected to a liquid level sensor or the like.

【0035】採取装置21を埋設する穴の深さは、支障
のない程度の深さである30cm以上あればよいが、層
位別に土壌を分けながら原則として深さ120cm程度
の穴が好ましい。前記上部体40に任意の長さを有した
接続筒53a、53bを重合して採取装置の高さが高い
場合は、穴の深さを調整する必要がある。穴の中に採取
装置21を収容した後、埋設する深さおよび水平位置を
調整し、地表面に対して垂直に位置させる。次いで、穴
堀り時に層位別に分けて掘り出した土壌を試料室41内
に密度計等で土壌密度を計りながら当該土壌と同一密度
に充填して元の状態に埋め戻す。
The depth of the hole in which the collecting device 21 is buried may be 30 cm or more, which is a depth that does not cause any trouble. However, a hole having a depth of about 120 cm is preferable in principle while dividing the soil according to the stratum. If the height of the sampling device is high by connecting the connecting cylinders 53a and 53b having an arbitrary length to the upper body 40, it is necessary to adjust the depth of the hole. After accommodating the sampling device 21 in the hole, the depth and horizontal position of the embedding are adjusted, and the embedding device 21 is positioned perpendicular to the ground surface. Next, the soil excavated by stratification at the time of digging is filled into the sample chamber 41 at the same density as the soil while the soil density is measured with a densitometer or the like, and the soil is buried in the original state.

【0036】以下、第1の発明に係る実施の形態の作用
について説明すると、採取装置21は下部体22の上方
に上部体40を嵌合して第2浸透室31を密封し、該上
部体内の試料室41の下面に所定のキャピラリ−シ−ト
57aやフイルタ機能を有したフイルタ56やポ−ラス
プレ−ト58を装着する。
In the following, the operation of the embodiment according to the first invention will be described. The sampling device 21 fits the upper body 40 above the lower body 22 to seal the second permeation chamber 31, and A predetermined capillary sheet 57a, a filter 56 having a filter function, and a porous plate 58 are mounted on the lower surface of the sample chamber 41.

【0037】テンションキャピラリ−ライシメ−タ法に
より水分の少ない土壌から水を採取するには、まず、ス
イッチ61を入れ、さらに、スタ−トボタン62を操作
して第1浸透室24内に連通する第1大気連通管28の
端部で、地表に位置した第1大気開閉弁28aと、第2
浸透室31に連通する第2大気連通管37の端部で地表
に位置した第2大気開閉弁37aを夫々閉じて採取装置
21の第1浸透室24と第2浸透室31内を大器から社
団して密閉する。
In order to collect water from soil with low moisture by the tension capillary lysimeter method, first, the switch 61 is turned on, and further the start button 62 is operated to communicate with the first permeation chamber 24. (1) At the end of the atmosphere communication pipe 28, a first atmosphere open / close valve 28a located on the surface of the ground,
At the end of the second air communication pipe 37 communicating with the infiltration chamber 31, the second air on-off valves 37 a located on the ground surface are closed, respectively, so that the inside of the first infiltration chamber 24 and the second infiltration chamber 31 of the sampling device 21 is large. Incorporate and seal.

【0038】次いで、制御装置60の真空ポンプ65を
作動して第2浸透室31内に所定の吸引圧を発生させる
が、該吸引圧力は、0〜−1000cmH2Oに近い範
囲の値を設定することが可能である。ここで吸引圧と土
壌中の水分状態とを平衡させ、採取装置21に隣接した
土壌の各層に夫々埋設してコンパレ−タ63および表示
部64に接続した1又は複数本のテンシオメ−タ59に
より水分量を表示し、該表示器64により前記偏差、パ
ラメ−タ等を設定する。さらに真空ポンプ65の吸引力
を自動的に調節して土壌の水分状態と吸引圧とを平衡す
る。
Next, a predetermined suction pressure is generated in the second permeation chamber 31 by operating the vacuum pump 65 of the control device 60, and the suction pressure is set to a value close to 0 to -1000 cmH2O. Is possible. Here, the suction pressure and the moisture state in the soil are balanced, and one or a plurality of tensiometers 59 buried in each layer of the soil adjacent to the sampling device 21 and connected to the comparator 63 and the display unit 64 respectively. The water content is displayed, and the display 64 sets the deviation, parameters, and the like. Further, the suction force of the vacuum pump 65 is automatically adjusted to balance the water condition of the soil with the suction pressure.

【0039】試料室41内の土柱Xに含まれる水分は、
大気圧と第2浸透室31内とが平衡するまで第2浸透室
31内に採取される。第2浸透室31内の圧力が、大気
圧と平衡になると真空ポンプ64の作動を停止し、且
つ、第2大気連通管37の端部に装着した第2大気開閉
弁37aを開いて第2浸透室31内と大気圧を連通させ
る。
The water contained in the soil column X in the sample chamber 41 is:
The sample is collected in the second permeation chamber 31 until the atmospheric pressure and the inside of the second permeation chamber 31 are balanced. When the pressure in the second infiltration chamber 31 becomes equilibrium with the atmospheric pressure, the operation of the vacuum pump 64 is stopped, and the second atmosphere on-off valve 37a attached to the end of the second atmosphere communication pipe 37 is opened to open the second atmosphere open / close valve 37a. The inside of the permeation chamber 31 is communicated with the atmospheric pressure.

【0040】第2浸透室31内に貯留した浸透水は、真
空ポンプ64からの吸引圧により第2浸透室31に連通
する第2採取管35を介して取り出す。この場合、第2
大気開閉弁37aは開けておく。さらに、浸透水の所定
時間当たりの浸透水の量を測定し、該水分に含まれる窒
素、リン等の肥料成分等の濃度を計測する。
The permeated water stored in the second permeation chamber 31 is taken out through the second collection pipe 35 communicating with the second permeation chamber 31 by the suction pressure from the vacuum pump 64. In this case, the second
The open / close valve 37a is kept open. Further, the amount of the permeated water per predetermined time is measured, and the concentration of fertilizer components such as nitrogen and phosphorus contained in the water is measured.

【0041】つぎに、図3、7において、キャピラリ−
ライシメ−タ法により土壌Xから水分を採取するには、
第1浸透室24に連通する第1大気連通管28の地表に
位置した第1大気開閉弁28aを開いて第1浸透室24
内の圧力を地表の大気圧と平衡にする。この際、第2浸
透室31に連通する第2大気連通管37の地表に突出す
る端部に設けた第2大気開閉弁37aは開いている。
Next, referring to FIGS.
To collect water from soil X by the lysimeter method,
The first air on-off valve 28a located on the surface of the first air communication pipe 28 communicating with the first permeation chamber 24 is opened to open the first permeation chamber 24.
Equilibrium with atmospheric pressure at the surface. At this time, the second atmosphere on-off valve 37a provided at the end of the second atmosphere communication pipe 37 that communicates with the second permeation chamber 31 and protruding from the ground surface is open.

【0042】大気圧下において、試料室41内の土柱X
を時間をかけて重力で下方に浸透する水は、該土柱Xの
下端に位置するフイルタ56を浸透し、内底面42上に
広げたキャピラリ−シ−ト57aの毛細管現象を利用し
て中央部に位置する棒状キャピラリ−部57bを移動
し、筒部32内を通って第1浸透室24内に貯留する。
At atmospheric pressure, the earth column X in the sample chamber 41
The water that permeates downward by gravity over time penetrates the filter 56 located at the lower end of the earth column X, and utilizes the capillary phenomenon of the capillary sheet 57a spread on the inner bottom surface 42 to form a central portion. The rod-shaped capillary portion 57b located in the portion moves and is stored in the first permeation chamber 24 through the inside of the cylindrical portion 32.

【0043】第1浸透室24内に溜まった浸透水は、例
えば、真空ポンプ65による吸引圧を利用し、第1大気
開閉弁28aは閉じた状態で第1浸透室24の底部に連
結した第1採水管26を介して外部に取り出す。この浸
透水の所定時間当たりの浸透した量を計測し、その水
質、即ち、浸透水に含まれる窒素、リン等の肥料濃度を
所定の計測機器等により分析する。このキャピラリ−ラ
イシメ−タ法により土壌に含まれる水を採取するには電
気的な制御は必要としない。
The permeated water accumulated in the first permeation chamber 24 is connected to the bottom of the first permeation chamber 24 by using, for example, a suction pressure of a vacuum pump 65 while the first air on-off valve 28a is closed. 1 Take it out through the water sampling pipe 26. The amount of the permeated water permeated for a predetermined time is measured, and the quality of the permeated water, that is, the concentration of fertilizers such as nitrogen and phosphorus contained in the permeated water is analyzed by a predetermined measuring device or the like. No electrical control is required to collect the water contained in the soil by the capillary lysimeter method.

【0044】図10により第2の発明である改良された
キャピラリ−ライシメ−タ法について説明すると、長尺
筒体22aの底部に形成した底面部23aは緩やかな略
すり鉢状に形成してあり、該長尺筒体22aの内部に浸
透室24aを設けてある。この長尺筒体22aの内側中
間部に形成した仕切部29aの上方に試料土壌Yを収容
する試料室41aを設け、さらに、該仕切部29aの中
心に連通口32aを設けてある。この仕切部29aの上
面は、緩やかな略すり鉢状をして中心方向に下り勾配を
有した内底面29bを形成してある。
Referring to FIG. 10, the improved capillary-lysimeter method according to the second invention will be described. The bottom surface 23a formed at the bottom of the long cylindrical body 22a is formed in a gentle and substantially mortar-like shape. A permeation chamber 24a is provided inside the long cylindrical body 22a. A sample chamber 41a for accommodating the sample soil Y is provided above a partition portion 29a formed at an intermediate portion inside the long cylindrical body 22a, and a communication port 32a is provided at the center of the partition portion 29a. The upper surface of the partition portion 29a forms an inner bottom surface 29b having a gentle mortar shape and a downward slope in the center direction.

【0045】仕切部29aの内底面29b上の全面にキ
ャピラリ−シ−ト57aの周縁部を拡げて装着したキャ
ピラリ−シ−トの中心部分を縛った棒状キャピラリ−部
57bを、前記連通口32a内に位置してある。前記試
料室41a内の土壌試料Yに含まれる水分は重力で下方
に浸透し、該キャピラリ−シ−ト57aの毛細管現象に
より中心部に設けた棒状キャピラリ−部57bに集めら
れ、無駄なく下方の浸透室24a内に貯留される。この
場合、該キャピラリ−シ−ト57aの上方にフイルタ5
6を設置してあるので、土壌Yの内部を浸透する浸透水
に含まれる土壌粒子はポ−ラスプレ−ト58で遮断され
る。そのため、キャピラリ−シ−ト57aの目詰まりを
最小限に防ぎ、機能が短期間に劣化するのを防いでい
る。
A rod-shaped capillary portion 57b, which is formed by extending the peripheral portion of the capillary sheet 57a and extending over the entire inner bottom surface 29b of the partition portion 29a and binding the central portion of the capillary sheet to the communication port 32a. Located within. The water contained in the soil sample Y in the sample chamber 41a penetrates downward due to gravity, and is collected in a rod-shaped capillary portion 57b provided at the center by capillary action of the capillary sheet 57a, so that the lower portion can be used without waste. It is stored in the permeation chamber 24a. In this case, a filter 5 is provided above the capillary sheet 57a.
6, soil particles contained in the permeated water penetrating the inside of the soil Y are blocked by the porous plate 58. Therefore, the clogging of the capillary sheet 57a is minimized, and the function is prevented from being deteriorated in a short time.

【0046】この浸透室の底面部23aの中心部に設け
た採水口25aに取付けた採水コネクタ25bに採水チ
ュ−ブ25cの一端に連結してある。また、浸透室の底
面部23aの一側に設けた大気解放コネクタ28aに
は、上部を該浸透室内に立ち上がらせたパイプ28bを
大気解放コネクタ28aに連結し、該大気解放コネクタ
に連結した他の大気解放チュ−ブ28cの他端は地表に
位置させて大気に連通している。この場合、該チュ−ブ
の先端にはバルブやコック等を取付ける必要はないが、
必要に応じて取付けてもよい。
One end of a water sampling tube 25c is connected to a water sampling connector 25b attached to a water sampling port 25a provided at the center of the bottom portion 23a of the permeation chamber. Further, a pipe 28b having an upper part rising into the permeation chamber is connected to the air release connector 28a, and another air connection connector connected to the air release connector is provided on the atmosphere release connector 28a provided on one side of the bottom portion 23a of the permeation chamber. The other end of the atmosphere release tube 28c is located on the ground surface and communicates with the atmosphere. In this case, it is not necessary to attach a valve, a cock, etc. to the tip of the tube,
It may be attached as needed.

【0047】第2の発明の実施の形態の作用について説
明すると、浸透室24aは大気解放チュ−ブ28c、採
水チュ−ブ25cにより大気に連通している。ついで、
試料室41a内に自然に近い状態で形成した土柱Yに含
まれる水分は自重で下方に浸透し、該土柱Yの下端に位
置するフイルタ56を通って仕切部29の傾斜する内底
面29b上に装着させたキャピラリ−シ−ト57aを通
って該内底面の中心に設けた連通口32a内に位置する
棒状キャピラリ−部57bを伝わって浸透水を無駄なく
浸透室24a内に貯留させることができる。
The operation of the second embodiment will be described. The infiltration chamber 24a is communicated with the atmosphere by an atmosphere release tube 28c and a water sampling tube 25c. Then
Moisture contained in the soil column Y formed in a state close to nature in the sample chamber 41a penetrates downward by its own weight, passes through the filter 56 located at the lower end of the soil column Y, and the inclined inner bottom surface 29b of the partition portion 29. The permeated water is stored in the permeation chamber 24a through the capillary sheet 57a mounted thereon and transmitted through the rod-shaped capillary portion 57b located in the communication port 32a provided at the center of the inner bottom surface. Can be.

【0048】キャピラリ−シ−ト57aの上方にフイル
タ56が位置しているため、浸透水に含まれる土壌粒子
は該フイルタのフィルタ作用により除去され、該キャピ
ラリ−シ−トが短期間に目詰まりすることはない。
Since the filter 56 is located above the capillary sheet 57a, the soil particles contained in the permeated water are removed by the filter action of the filter, and the capillary sheet is clogged in a short time. I will not do it.

【0049】浸透室24a内に溜まった浸透水を取り出
すには、真空ポンプ(図示せず)や手動式ポンプなどを
用いて吸引圧を採水チュ−ブ25c内に供給し、該採水
チュ−ブの先端を挿入させた三角フラスコ(図示せず)
内に取り出す。この場合、必要なら大気解放チュ−ブ2
8cの端部をクリップ等で一時的に塞いで大気圧の進入
を遮断し、真空ポンプの機能を高めれば短時間に浸透水
を取り出すことができるものである。この浸透水を所定
時間当たりの量や、該水分に含まれる窒素、リン等の肥
料成分等の濃度を計測する。
To remove the permeated water accumulated in the permeation chamber 24a, a suction pressure is supplied into the water sampling tube 25c using a vacuum pump (not shown) or a manual pump, and the water sampling tube 25c is taken out. Erlenmeyer flask with the tip of the tube inserted (not shown)
Take out inside. In this case, if necessary, open air tube 2
If the end of 8c is temporarily closed with a clip or the like to block the entry of atmospheric pressure and the function of the vacuum pump is enhanced, permeated water can be taken out in a short time. The amount of permeated water per unit time and the concentration of fertilizer components such as nitrogen and phosphorus contained in the water are measured.

【0050】本発明は、浸透水の測定の際に真空ポンプ
を必要とせず最もベ−シックタイプの測定装置である。
この場合、マトリックポテンシャルの調節は、長尺筒体
の上部に高さの異なる接続筒53a、53bを適当に組
み合わせることにより高さを調整することにより行う。
The present invention is the most basic type of measuring device which does not require a vacuum pump when measuring permeated water.
In this case, the adjustment of the matrix potential is performed by adjusting the height by appropriately combining connection cylinders 53a and 53b having different heights on the upper part of the long cylindrical body.

【0051】尚、キャピラリ−ライシメ−タ−法では十
分に土柱Yに含まれる水分を採取できない場合は、前記
したテンションキャピラリ−ライシメ−タ法により浸透
水を採取することになる。しかし、第2の発明は土壌質
により容易に浸透水を採取できるように場所や手軽に測
定するような場合に便利である。
If the water contained in the soil column Y cannot be sufficiently collected by the capillary lysimeter method, the permeated water will be collected by the tension capillary lysimeter method described above. However, the second invention is convenient in a case where the infiltration water can be easily collected depending on the soil quality and where the measurement is easily performed.

【0052】[0052]

【発明の効果】第1の発明は、採取装置の上部体内に設
けた試料室の内底面にフイルタ、キャピラリ−およびポ
−ラスプレ−トを装着して第1、2浸透室を分離するこ
とより、一台でキャピラリ−ライシメ−タ法およびテン
ションキャピラリ−ライシメ−タ法により、土壌質に関
係なく測定法を使い分けて浸透水の採取を能率的に行う
ことができる。また採取装置に隣接する土壌中に夫々制
御装置に接続した複数の土壌水分計を埋設し、各土壌層
の水分量を計りながら真空ポンプの吸引力を自動的に調
節して土壌の水分状態と吸引圧を平衡させて採取するこ
とができるので自動的に土壌水を採取する。さらに、採
取装置と制御装置を一体に接続したことにより、簡単で
迅速に浸透水を採取、分析、記録を行うことができる。
第2の発明は、装置が簡単であるから安価となり、電気
的な制御を必要としないため操作が容易である。その
上、長尺筒体に接続筒を組み合わせて高さを調整するこ
とによりマトリックポテンシャルを調整することができ
て最もベ−シックタイプである。第1および第2の発明
は、キャピラリ−シ−トが緩やかな略すり鉢状をした仕
切部や内底面の上に取付け、中心方向に傾斜して装着し
てあるので毛細管現象が有効に作用し、その上、キャピ
ラ−リシ−トの中心に設けた棒状キャピラリ−部から浸
透室内に浸透水が採取されるので、浸透水を有効に採取
することができるため測定デ−タの誤差を小さくできる
利点がある。
The first aspect of the present invention is to separate the first and second permeation chambers by mounting a filter, a capillary, and a porous plate on the inner bottom surface of a sample chamber provided in the upper body of the sampling device. By using a single device, the capillary lysimeter method and the tension capillary lysimeter method can efficiently collect permeated water regardless of the soil quality by using a different measuring method. In addition, a plurality of soil moisture meters connected to the control device are buried in the soil adjacent to the sampling device, and the suction power of the vacuum pump is automatically adjusted while measuring the moisture content of each soil layer to check the moisture status of the soil. Soil water is automatically collected because the suction pressure can be equilibrated and collected. Further, by integrally connecting the sampling device and the control device, it is possible to easily, quickly collect, analyze, and record permeated water.
According to the second aspect of the present invention, the apparatus is simple and inexpensive, and does not require electrical control, so that the operation is easy. In addition, the matrix type can be adjusted by adjusting the height by combining the long cylindrical body with the connecting cylinder, and this is the most basic type. According to the first and second inventions, the capillary sheet is mounted on a gently substantially mortar-shaped partition portion or an inner bottom surface, and is mounted obliquely toward the center, so that the capillary phenomenon effectively acts. In addition, since the permeated water is collected into the permeation chamber from the rod-shaped capillary portion provided at the center of the capillary sheet, the permeated water can be effectively collected, so that the error of the measurement data can be reduced. There are advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のキャピラリ−ライシメ−タ法による浸透
水を採取する装置の略図の断面を示した説明図である。
FIG. 1 is an explanatory view showing a cross section of a schematic view of a conventional apparatus for collecting permeated water by a capillary lysimeter method.

【図2】従来のテンションキャピラリ−メ−タ法による
浸透水を採取する装置の略図の断面を示した説明図であ
る。
FIG. 2 is an explanatory view showing a cross section of a schematic view of a conventional apparatus for collecting permeated water by a tension capillary meter method.

【図3】第1の発明に係る簡易計測装置の一部破断した
概略説明図である。
FIG. 3 is a schematic explanatory view of the simplified measuring device according to the first invention, partially cut away;

【図4】配管類を一部省略した下部体の断面図である。FIG. 4 is a cross-sectional view of a lower body in which piping is partially omitted.

【図5】上部体の上部に接続筒を連結した状態を示す断
面図である。
FIG. 5 is a cross-sectional view showing a state where a connection cylinder is connected to an upper part of an upper body.

【図6】図5のA−A線方向断面図である。FIG. 6 is a sectional view taken along line AA of FIG. 5;

【図7】キャピラリ−ライシメ−タ法による浸透水の採
取状態を示す簡易計測装置の一部省略した断面図であ
る。
FIG. 7 is a partially omitted cross-sectional view of a simple measuring device showing a state of collecting permeated water by a capillary-lysimeter method.

【図8】テンションキャピラリ−メ−タ法による浸透水
の採取状態を示す簡易計測装置の一部省略した断面図で
ある。
FIG. 8 is a partially omitted cross-sectional view of a simplified measuring device showing a state of collecting permeated water by a tension capillary meter method.

【図9】下部体と上部体の連結部分にフイルタとキャピ
ラリ−シ−トとポ−ラスプレ−トの取付状態を示す要部
拡大断面図である。
FIG. 9 is an enlarged sectional view of a main part showing a state where a filter, a capillary sheet, and a porous plate are attached to a connecting portion between a lower body and an upper body.

【図10】第2の発明にかかる改良型キャピラリ−ライ
シメ−タ法により浸透水を採取する装置の断面図であ
る。
FIG. 10 is a sectional view of an apparatus for collecting permeated water by an improved capillary-lysimeter method according to the second invention.

【符号の説明】[Explanation of symbols]

21 採取装置 22 下部体 22a 長尺筒体 23 内底部 23a 底面部 24 第1浸透室 24a 浸透室 25a 採水口 25c 採水チュ−ブ 26 第1採水管 28 第1大気連通管 28a 第1大気開閉弁 28b パイプ 28c 大気解放チュ−ブ 29 仕切部 29a 仕切部 29b 内底面 31 第2浸透室 32 筒部 32a 連通口 35 第2採水管 37 第2大気連通管 40 上部体 41 試料室 41a 試料室 42 内底部 43 連結口 44 開口部 48 連結鍔部 53a 接続筒 53b 接続筒 56 フイルタ 57a キャピラリ−シ−ト 57b 棒状キャピラリ−部 58 ポ−ラスプレ−ト 59 テンンシオメ−タ 60 制御装置 65 真空ポンプ DESCRIPTION OF SYMBOLS 21 Sampling apparatus 22 Lower body 22a Long cylindrical body 23 Inner bottom part 23a Bottom part 24 1st infiltration chamber 24a Infiltration chamber 25a Sampling port 25c Sampling tube 26 1st sampling pipe 28 1st air communication pipe 28a 1st air opening and closing Valve 28b Pipe 28c Air release tube 29 Partition part 29a Partition part 29b Inner bottom surface 31 Second permeation chamber 32 Cylindrical part 32a Communication port 35 Second water sampling pipe 37 Second air communication pipe 40 Upper body 41 Sample chamber 41a Sample chamber 42 Inner bottom 43 Connection port 44 Opening 48 Connection flange 53a Connection tube 53b Connection tube 56 Filter 57a Capillary sheet 57b Bar-shaped capillary section 58 Porous plate 59 Tensiometer 60 Control device 65 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 守弘 茨城県つくば市観音台3−1−1 農林水 産省 農業 研究センタ−内 (72)発明者 大 島 昭 代 東京都荒川区西尾久7−60−3 大起理化 工業株式会 社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Morihiro Maeda 3-1-1 Kannondai, Tsukuba, Ibaraki Pref. Ministry of Agriculture, Forestry and Fisheries Agricultural Research Center (72) Inventor Akiyo Oshima 7 Hisashi Nishio Arakawa-ku, Tokyo −60-3 Daikurika Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内底部を緩やかな略すり鉢状に設けた円
筒状の第1浸透室と、該第1浸透室の上方に設けた仕切
部の中心には上端を開口した筒部と該仕切部とで上端を
開口した環状の第2浸透室とを一体に形成してなる下部
体を設け、 前記第1浸透室の内底部の中心に一端を連結した第1採
水管の他端と、前記第2浸透室に夫々一端を連結させた
第2採水管および吸引管の他端とを夫々真空ポンプで接
続し、前記第1浸透室内に上端を立ち上がらせた第1大
気連通管および前記第2浸透室の側壁面に一端を連結し
た第2大気連通管の他端を夫々地表に突出して夫々第
1、2大気開閉弁を設け、 上部を開口して内部に設けた試料室の内底面を緩やかな
略すり鉢状に形成し、該内底面の中心部に前記下部体の
筒部係合用の連結口を設け、該連結口の周囲に複数形成
した凹入部内に前記下部体の第2浸透室に連通する複数
の通孔を夫々形成してなる上部体を設け、 該上部体の各凹入部にポ−ラスプレ−トを取外可能に装
着すると共に、前記試料室の底面全体にフイルタを取外
可能に取付け、該フイルタの下方に位置して前記内底面
全体に装着させたキャピラリ−シ−トの中心を束ねた棒
状キャピラリ−部を前記筒部内に配し、該上部体の外周
下端に設けた連結鍔部を前記下部体の上端に気密に連結
してなる採取装置と、 前記採取装置に接近した土壌中に埋設させる圧力センサ
−を内蔵したテンシオメ−タと、スイッチ、スタ−トボ
タン、前記テンシオメ−タに接続してその測定値を表示
するコンパレ−タ、前記テンシオメ−タおよび前記圧力
センサ−との偏差やパラメ−タを表示する表示部、デ−
タロガ−、前記真空ポンプ、液面センサ−を夫々電気的
に接続した制御装置とからなることを特徴とする肥料成
分・環境汚染物質等の溶脱量高精度簡易計測装置。
1. A cylindrical first infiltration chamber having an inner bottom formed in a moderately mortar-like shape, a cylindrical portion having an upper end opened at the center of a partition provided above the first infiltration chamber, and the partition. A lower body formed integrally with an annular second permeation chamber having an upper end opened at the portion, and the other end of a first water sampling pipe having one end connected to the center of the inner bottom of the first permeation chamber; The second water sampling pipe and the other end of the suction pipe each having one end connected to the second permeation chamber are connected to each other by a vacuum pump, and a first atmospheric communication pipe having an upper end rising into the first permeation chamber and the first air communication pipe. The other end of the second atmosphere communication pipe, one end of which is connected to the side wall surface of the second permeation chamber, is respectively protruded to the surface of the ground, and the first and second atmosphere on-off valves are respectively provided. Is formed in a moderately mortar-like shape, and a connection port for engaging the cylindrical portion of the lower body is provided at the center of the inner bottom surface. An upper body having a plurality of through holes communicating with the second permeation chamber of the lower body is provided in a plurality of recesses formed in the periphery, and a porous plate is attached to each of the recesses of the upper body. A rod-shaped capillary which is detachably mounted on the entire bottom surface of the sample chamber and detachably mounted on the bottom surface of the sample chamber, and which is located below the filter and bundles the center of the capillary sheet mounted on the entire inner bottom surface. A collecting device in which a minus portion is disposed in the cylindrical portion, and a connecting flange portion provided at an outer peripheral lower end of the upper body is air-tightly connected to an upper end of the lower body, and buried in soil close to the collecting device. A tension meter with a built-in pressure sensor, a switch, a start button, a comparator connected to the tension meter and displaying the measured value, a deviation and a parameter from the tension meter and the pressure sensor. Display to display data Department, date
A high-precision simple measuring device for leaching amounts of fertilizer components and environmental pollutants, which comprises a control device electrically connected to a taro, the vacuum pump, and a liquid level sensor.
【請求項2】 底面部を緩やかな略すり鉢状に形成した
浸透室を有した長尺筒体の中間部内側に、中心部に連通
口を有して上面を緩やかな略すり鉢状に形成した仕切部
を設け、 前記仕切部の内底面全体に装着したキャピラリ−シ−ト
の上面にフイルタを取外可能に装着して該長尺筒体内に
試料室を設け、該キャピラリ−シ−トの中心を束ねて設
けた棒状キャピラリ−部を、該仕切部の中心に設けた連
通口内に吊り下げるように配し、 該長尺筒体の上端に夫々高さの異なる接続筒を組み合わ
せて高さを調整することによりマトリックポテンシャル
を制御することを特徴とする肥料成分・環境汚染物質等
の溶脱量高精度簡易計測装置。
2. A middle portion of a long cylindrical body having a permeation chamber whose bottom portion is formed in a moderately mortar-like shape, having a communication port in the center portion and having a gently mortar-shaped upper surface. A partition is provided, a filter is removably mounted on the upper surface of a capillary sheet mounted on the entire inner bottom surface of the partition, and a sample chamber is provided in the long cylindrical body. A rod-shaped capillary portion provided with a bundled center is arranged so as to be suspended in a communication port provided at the center of the partition portion, and connection tubes having different heights are combined at the upper end of the long tubular body. A high-precision simple measurement device for the amount of leaching of fertilizer components and environmental pollutants, characterized in that the matrix potential is controlled by adjusting the volume.
JP26721198A 1998-09-07 1998-09-07 High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants Expired - Fee Related JP3317906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26721198A JP3317906B2 (en) 1998-09-07 1998-09-07 High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26721198A JP3317906B2 (en) 1998-09-07 1998-09-07 High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants

Publications (2)

Publication Number Publication Date
JP2000081429A true JP2000081429A (en) 2000-03-21
JP3317906B2 JP3317906B2 (en) 2002-08-26

Family

ID=17441690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26721198A Expired - Fee Related JP3317906B2 (en) 1998-09-07 1998-09-07 High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants

Country Status (1)

Country Link
JP (1) JP3317906B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590472A (en) * 2012-01-20 2012-07-18 舒安平 Portable dynamic soil erosion monitor
CN104215747A (en) * 2014-08-15 2014-12-17 杭州师范大学 Soil column leaching device
CN104244697A (en) * 2012-02-27 2014-12-24 阿吉齐科技公司 Monitoring and control of soil conditions
RU2596703C1 (en) * 2015-07-01 2016-09-10 Юрий Анатольевич Мажайский Device to control water balance of soil
CN106769217A (en) * 2017-01-20 2017-05-31 贵州师范大学 A kind of Karst Mountain Areas soil liquid exempts from filter samples and ion activity save set
CN107014645A (en) * 2017-06-16 2017-08-04 山东农业大学 A kind of soil eluviation thing sleeve pipe collection system based under the conditions of in-situ monitoring
CN107063763A (en) * 2017-03-31 2017-08-18 安徽工业大学 A kind of soil permeability water stratification sampler and its application method and collecting board
CN107144514A (en) * 2017-06-29 2017-09-08 榆林学院 A kind of device tested for the radial penetration of cylinder hollow soil sample and application method
JP2017173316A (en) * 2016-03-17 2017-09-28 国立研究開発法人産業技術総合研究所 Dynamic monitoring device for radioactive cesium and method thereof
CN108444870A (en) * 2018-06-21 2018-08-24 湖南农业大学 A kind of soil apparatus for measuring contact angle
CN108562461A (en) * 2018-06-07 2018-09-21 中国农业科学院农业资源与农业区划研究所 Agricultural land soil leaching liquor automated watch-keeping facility and method
CN113092313A (en) * 2021-03-16 2021-07-09 湖北工业大学 Composite pollution heavy metal ion migration test device with loading function
CN113465984A (en) * 2021-07-29 2021-10-01 海南三友海洋科技有限公司 Wetland ecological remediation monitoring devices
JP7015427B1 (en) * 2021-02-01 2022-02-03 生態環境部南京環境科学研究所 Intelligent collection and analysis equipment for integrated collection and analysis of groundwater deliquescent
KR102436913B1 (en) * 2022-06-22 2022-08-25 한국시험연구원(주) Undisturbed soil sample collecting and permeability testing method for in-situ permeability test

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556920A (en) * 2018-12-11 2019-04-02 浙江省嘉兴市农业科学研究院(所) A kind of field plot trial leakage laden water collecting device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590472B (en) * 2012-01-20 2015-04-29 舒安平 Portable dynamic soil erosion monitor
CN102590472A (en) * 2012-01-20 2012-07-18 舒安平 Portable dynamic soil erosion monitor
CN104244697B (en) * 2012-02-27 2018-04-27 阿吉齐科技公司 The monitoring and control of edaphic condition
CN104244697A (en) * 2012-02-27 2014-12-24 阿吉齐科技公司 Monitoring and control of soil conditions
US11237145B2 (en) 2012-02-27 2022-02-01 Agq Technological Corporate S.A. Monitoring and control of soil conditions
US10663447B2 (en) 2012-02-27 2020-05-26 Agq Technological Corporate S.A. Monitoring and control of soil conditions
AU2012372081B2 (en) * 2012-02-27 2017-06-08 Agq Technological Corporate S.A. Monitoring and control of soil conditions
US10620180B2 (en) 2012-02-27 2020-04-14 Agq Technological Corporate S.A. Monitoring and control of soil conditions
CN104215747A (en) * 2014-08-15 2014-12-17 杭州师范大学 Soil column leaching device
CN104215747B (en) * 2014-08-15 2015-11-18 杭州师范大学 Native fish device
RU2596703C1 (en) * 2015-07-01 2016-09-10 Юрий Анатольевич Мажайский Device to control water balance of soil
JP2017173316A (en) * 2016-03-17 2017-09-28 国立研究開発法人産業技術総合研究所 Dynamic monitoring device for radioactive cesium and method thereof
CN106769217B (en) * 2017-01-20 2023-09-08 贵州师范大学 Karst mountain area soil solution exempts from to filter sampling and ion activity save set
CN106769217A (en) * 2017-01-20 2017-05-31 贵州师范大学 A kind of Karst Mountain Areas soil liquid exempts from filter samples and ion activity save set
CN107063763A (en) * 2017-03-31 2017-08-18 安徽工业大学 A kind of soil permeability water stratification sampler and its application method and collecting board
CN107063763B (en) * 2017-03-31 2023-03-10 安徽工业大学 Soil osmotic water layered sampler and using method and collecting plate thereof
CN107014645A (en) * 2017-06-16 2017-08-04 山东农业大学 A kind of soil eluviation thing sleeve pipe collection system based under the conditions of in-situ monitoring
CN107014645B (en) * 2017-06-16 2023-06-06 山东农业大学 Soil leaching matter sleeve collecting system based on in-situ monitoring condition
CN107144514A (en) * 2017-06-29 2017-09-08 榆林学院 A kind of device tested for the radial penetration of cylinder hollow soil sample and application method
CN107144514B (en) * 2017-06-29 2023-04-11 榆林学院 Device for radial penetration experiment of cylindrical hollow soil sample and using method
CN108562461A (en) * 2018-06-07 2018-09-21 中国农业科学院农业资源与农业区划研究所 Agricultural land soil leaching liquor automated watch-keeping facility and method
CN108562461B (en) * 2018-06-07 2023-07-11 中国农业科学院农业资源与农业区划研究所 Automatic monitoring device and method for farmland soil leaching solution
CN108444870A (en) * 2018-06-21 2018-08-24 湖南农业大学 A kind of soil apparatus for measuring contact angle
JP7015427B1 (en) * 2021-02-01 2022-02-03 生態環境部南京環境科学研究所 Intelligent collection and analysis equipment for integrated collection and analysis of groundwater deliquescent
CN113092313A (en) * 2021-03-16 2021-07-09 湖北工业大学 Composite pollution heavy metal ion migration test device with loading function
CN113465984B (en) * 2021-07-29 2023-03-10 海南三友海洋科技有限公司 Wetland ecological remediation monitoring devices
CN113465984A (en) * 2021-07-29 2021-10-01 海南三友海洋科技有限公司 Wetland ecological remediation monitoring devices
KR102436913B1 (en) * 2022-06-22 2022-08-25 한국시험연구원(주) Undisturbed soil sample collecting and permeability testing method for in-situ permeability test

Also Published As

Publication number Publication date
JP3317906B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP3317906B2 (en) High-accuracy simple measuring device for leaching fertilizer components and environmental pollutants
US7520186B2 (en) Apparatus and method for measuring soil gases
DK1982047T3 (en) VADOSE ZONE PROBE, PROCEDURE AND SYSTEM FOR MONITORING OF SOIL PROPERTIES
CN107389896B (en) Top layer bed material pollutant adsorption/desorption characteristic measuring device and its application method
JP4844924B2 (en) In-situ permeability test method
Amoozegar et al. Methods for measuring hydraulic conductivity and drainable porosity
US6178808B1 (en) Apparatus and method for testing the hydraulic conductivity of geologic materials
CN110426336A (en) A kind of subgrade soils Unsaturated Hydraulic Conductivity measuring system and its relevant measurement method
US5941121A (en) Tensiometer for shallow or deep measurements including vadose zone and aquifers
CN203287297U (en) Test device for soil-water characteristic curve and permeability coefficient of unsaturated coarse grained soil
CN109000967A (en) The System and method for of the acquisition of native stone binary medium earth pillar and hydrologic parameter measurement
US6308563B1 (en) Vadose zone isobaric well
US6986281B1 (en) Exfiltrometer apparatus and method for measuring unsaturated hydrologic properties in soil
CN108196036A (en) One-dimensional island underground water desalination simulation test device and its method
CN110208497A (en) A kind of portable soil specific yield tester and test method
Mohamed et al. Solute transport through unsaturated soil due to evaporation
US6957573B2 (en) Vadose zone water fluxmeter
CA2547413A1 (en) Apparatus and method for measuring soil gases
JP4375885B2 (en) Soil water sampling method and apparatus
Livingston et al. Soil water potential
Stannard Theory, construction and operation of simple tensiometers
CN100535662C (en) Urban house refuse geologic landfill analogue experiment method and device
JP3006525U (en) Unsaturated water permeability measuring device
CN208239268U (en) A kind of laterally abutted anisotropic unsaturated soil rainfall infiltration apparatus for demonstrating
Bloem et al. A field experiment with variable-suction multi-compartment samplers to measure the spatio-temporal distribution of solute leaching in an agricultural soil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees