JP2000077616A - Dielectric element, its manufacture, and semiconductor device - Google Patents

Dielectric element, its manufacture, and semiconductor device

Info

Publication number
JP2000077616A
JP2000077616A JP10250062A JP25006298A JP2000077616A JP 2000077616 A JP2000077616 A JP 2000077616A JP 10250062 A JP10250062 A JP 10250062A JP 25006298 A JP25006298 A JP 25006298A JP 2000077616 A JP2000077616 A JP 2000077616A
Authority
JP
Japan
Prior art keywords
dielectric
ferroelectric
thin film
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10250062A
Other languages
Japanese (ja)
Inventor
Toshihide Namatame
俊秀 生田目
Takaaki Suzuki
孝明 鈴木
Tetsuo Fujiwara
徹男 藤原
Kazuhisa Higashiyama
和寿 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10250062A priority Critical patent/JP2000077616A/en
Priority to KR1020007003089A priority patent/KR20010024248A/en
Priority to PCT/JP1999/004679 priority patent/WO2000014804A1/en
Publication of JP2000077616A publication Critical patent/JP2000077616A/en
Priority to US10/162,650 priority patent/US20030030967A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric element, its manufacturing method, and a semiconductor device which maintain a great residual polarization and sound functions. SOLUTION: A high dielectric thin film 32 used for a ferroelectric element is a ferroelectric containing an Ia group element, a Mg element, or a Ca element, and this high dielectric thin film 32 is pinched between an upper electrode 31 and a lower electrode 32, and formed on an underlayer substrate 34. In the high dielectric element, a high dielectric thin film is a high dielectric containing the Ia group element, the Mg element, or the Ca element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、FeRAMなどの
強誘電体素子またはDRAMなどの高誘電体素子として
用いられる、誘電体素子およびその製造方法並びに半導
体装置に関する。
The present invention relates to a dielectric element used as a ferroelectric element such as a FeRAM or a high dielectric element such as a DRAM, a method of manufacturing the same, and a semiconductor device.

【0002】[0002]

【従来の技術】不揮発性メモリーであるFeRAM(Fer
roelectric Random Access Memory)は、キャパシター材
料に強誘電体を用いている。FeRAMは、強誘電体が
極性の異なる2つの残留分極をもつことを利用して、電
源OFFでも記憶内容を保持できる。情報を書き換える
スピードもμs以下で、非常に高速であり、次世代の理
想的メモリーとして注目されている。そして、記憶容量
を大容量化するために、回路構成素子の微細化が要求さ
れ、キャパシターの微細化が行われている。キャパシタ
ーを微細化するためには、誘電体材料の薄膜化、より残
留分極の大きな強誘電体の利用、強誘電体とその上下の
電極からなる素子の構造の平坦化および立体化などの方
策がある。
2. Description of the Related Art A non-volatile memory, FeRAM (Fer
Roelectric Random Access Memory) uses a ferroelectric as a capacitor material. The FeRAM can retain the stored contents even when the power is turned off by utilizing the fact that the ferroelectric has two remanent polarizations having different polarities. The speed at which information is rewritten is also very fast, less than μs, and is attracting attention as an ideal next-generation memory. In order to increase the storage capacity, miniaturization of circuit components is required, and miniaturization of capacitors is being performed. In order to miniaturize the capacitor, measures such as thinning the dielectric material, using a ferroelectric substance with a larger remanent polarization, flattening the structure of the element consisting of the ferroelectric substance and the electrodes above and below it, and making them three-dimensional are necessary. is there.

【0003】特開平5−190797号公報は、強誘電
体にチタン酸ジルコン酸鉛(PZT)を用いて、強誘電
体と金属電極との反応性を抑制するために、強誘電体の
周りに拡散防止層として窒化ケイ素膜(SiNx)を形
成した半導体記憶装置を記載する。
Japanese Patent Application Laid-Open No. Hei 5-190797 discloses a method of using lead zirconate titanate (PZT) as a ferroelectric material to suppress the reactivity between the ferroelectric material and a metal electrode. A semiconductor memory device in which a silicon nitride film (SiNx) is formed as a diffusion preventing layer will be described.

【0004】半導体メモリーとしては、データの高速書
き換えに特徴があるDRAM(Dynamic Random Access
Memory)がある。このDRAMは、高密度、高集積技術
の進歩に伴い、16M、64Mビットの大容量化時代を
迎えている。このために、回路構成素子の微細化が要求
され、特に情報を蓄積するコンデンサーの微細化が行わ
れている。コンデンサーの微細化の手段としては、誘電
体材料の薄膜化、誘電率の高い材料の選択、上下電極と
誘電体からなる構造の平坦化から立体化などが挙げられ
る。誘電率の高い材料すなわち高誘電体として、結晶構
造がペロブスカイト構造の単一格子であるBST((B
a/Sr)TiO3)があり、SiO2/Si34に比べ
て大きな誘電率(ε)を有することが知られている。
As a semiconductor memory, a DRAM (Dynamic Random Access) characterized by high-speed rewriting of data is used.
Memory). This DRAM has entered the era of increasing the capacity of 16 Mbits and 64 Mbits with the progress of high density and high integration technology. For this reason, miniaturization of circuit components is required, and in particular, miniaturization of capacitors for storing information is being performed. Means for miniaturizing the capacitor include reducing the thickness of the dielectric material, selecting a material having a high dielectric constant, and flattening the structure formed by the upper and lower electrodes and the dielectric to make the capacitor three-dimensional. As a material having a high dielectric constant, that is, a high dielectric substance, a crystal structure of a single lattice of a perovskite structure, BST ((B
a / Sr) TiO 3 ), which is known to have a larger dielectric constant (ε) than SiO 2 / Si 3 N 4 .

【0005】また、BSTを用いたメモリーでは、高集
積化に伴い、低い電圧で動作することが目標とされてい
る。このためには、メモリーに用いられる誘電体素子の
キャパシタンスの容量を大きくする必要があり、より高
い誘電率の誘電体の利用、電極の面積の拡大、高誘電体
の薄膜化が検討されている。高誘電体を使用する例が、
インターナショナル・エレクトロン・デバイス・ミィー
ティング・テクニカル・ダイジェスト1991年823
頁(IEDM Tech. Dig. :823, 1961)に報告されている。
[0005] In addition, in the memory using the BST, it is aimed to operate at a low voltage in accordance with high integration. For this purpose, it is necessary to increase the capacitance of the dielectric element used in the memory, and the use of a dielectric having a higher dielectric constant, an increase in the area of the electrode, and a reduction in the thickness of the high dielectric are being studied. . An example using a high dielectric is
International Electron Device Meeting Technical Digest 823 1991
(IEDM Tech. Dig.:823, 1961).

【0006】しかしながら、上述したメモリーに用いら
れる誘電体素子には、電極と誘電体薄膜との間に低誘電
率層や粒成長した巨大結晶ができることがあった。低誘
電率層ができると、素子全体の静電容量が小さくなり、
残留分極(Pr)が小さくなって、誘電体素子としての
機能を持たなくなる。巨大結晶ができると、結晶の粒界
にリーク電流が流れて、誘電体素子の耐電圧特性が低下
するので、誘電体素子として動作させるのに十分な電圧
を印加できない。特に、電極が金属である場合は、誘電
体薄膜と金属電極との界面で、元素の拡散反応によって
遷移層ができる。遷移層は、残留分極(Pr)の低下、
抗電界(Ec)の増大、および膜疲労などを起こし、誘
電体素子としての機能が低下する問題がある。本発明の
目的は、大きな残留分極を維持し、健全に機能する誘電
体素子およびその製造方法並びに半導体装置を提供する
ことにある。
[0006] However, in the dielectric element used in the above-mentioned memory, a low dielectric constant layer or a gigantic crystal with grain growth may be formed between the electrode and the dielectric thin film. When a low dielectric constant layer is formed, the capacitance of the entire device becomes smaller,
The remanent polarization (Pr) becomes small, and does not have a function as a dielectric element. When a giant crystal is formed, a leak current flows in the grain boundary of the crystal, and the withstand voltage characteristic of the dielectric element is reduced. Therefore, a voltage sufficient for operating the dielectric element cannot be applied. In particular, when the electrode is a metal, a transition layer is formed at the interface between the dielectric thin film and the metal electrode by a diffusion reaction of elements. The transition layer has a decrease in remanent polarization (Pr),
There is a problem that the coercive electric field (Ec) increases, the film fatigue occurs, and the function as a dielectric element is reduced. An object of the present invention is to provide a dielectric element which maintains a large remanent polarization and functions satisfactorily, a method of manufacturing the same, and a semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の特徴は、誘電体が、Ia族元素、Mg元素、または
Ca元素を含むことにある。この特徴によれば、誘電体
がK元素を含むので、誘電体の結晶化温度を低くするこ
とができる。したがって、低い温度で結晶化のための熱
処理を行うことができるので、このときに誘電体と誘電
体に接する電極とが反応することなく、誘電体を形成す
ることができ、健全に機能する誘電体素子を得ることが
できる。Ia族元素はLi,Na,Kであるのが好まし
い。誘電体は、誘電体100重量部に対して、0.5重
量部以上10重量部以下の割合で、Ia族元素、Mg元
素、またはCa元素を含むのが好ましい。
A feature of the present invention that achieves the above object is that the dielectric contains a Group Ia element, an Mg element, or a Ca element. According to this feature, since the dielectric contains the K element, the crystallization temperature of the dielectric can be lowered. Therefore, a heat treatment for crystallization can be performed at a low temperature. At this time, the dielectric can be formed without reacting the dielectric with the electrode in contact with the dielectric, and a dielectric that functions properly can be formed. A body element can be obtained. The group Ia element is preferably Li, Na, K. The dielectric preferably contains a Group Ia element, a Mg element, or a Ca element at a ratio of 0.5 part by weight or more and 10 parts by weight or less based on 100 parts by weight of the dielectric.

【0008】また、誘電体が、化学構造式(AO)
2+(By-1y3y+12-(但し、AはTl,Hg,P
b,Bi、または希土類元素であり、BはBi,Pb,
Ca,Sr、またはBaであり、かつ、CはTi,N
b,Ta,W,Mo,Fe,Co,Cr、またはZrで
ある。)の結晶構造をもてば、または、化学構造式(P
1-xx)(Zr1-yTiy)O3(但し、AはLa,B
a、またはNbであり、0≦x≦0.2、かつ、0<y
≦1である。)の結晶構造をもてば、誘電体は強誘電体
であり、強誘電体素子が得られる。この強誘電体素子
は、高い残留分極Pr値を維持し、低い抗電界Ec値を
もち、かつ、膜疲労が抑制された、健全に機能する強誘
電体素子である。
Further, the dielectric substance has a chemical structural formula (AO)
2+ (B y-1 C y O 3y + 1 ) 2- (where A is Tl, Hg, P
b, Bi, or a rare earth element, and B is Bi, Pb,
Ca, Sr, or Ba, and C is Ti, N
b, Ta, W, Mo, Fe, Co, Cr, or Zr. ) Or the chemical structural formula (P
b 1-x A x ) (Zr 1-y Ti y ) O 3 (where A is La, B
a or Nb, 0 ≦ x ≦ 0.2, and 0 <y
≦ 1. With the crystal structure of (1), the dielectric is a ferroelectric, and a ferroelectric element can be obtained. This ferroelectric element is a healthy ferroelectric element that maintains a high remanent polarization Pr value, has a low coercive electric field Ec value, and has suppressed film fatigue.

【0009】ここで、化学構造式(AO)2+(By-1y
3y+12-は(A222+(By-1y3y+12-の場合
を含んで表している。特に、A元素にBiを用いた場合
に(A222+(By-1y3y+12-となり、例えばA
=Bi,B=Sr,C=Ta,y=2の場合の上記化学
構造式(BiO)2+(Sr1Ta272-は(Bi
222+(Sr1Ta272-であるため、SrBi2
29と等価である。また、A元素にTl,Hgを用い
た場合には(AO)2+(By-1y3y+12-と(A
222+(By-1y3y+12-の両方の結晶構造とな
り、ここでは(AO)2+(By-1y3y+12-でその両
方を表している。
Here, the chemical structural formula (AO) 2+ (B y-1 C y
O 3y + 1 ) 2- includes the case of (A 2 O 2 ) 2+ (B y-1 C y O 3y + 1 ) 2- . In particular, when Bi is used as the A element, (A 2 O 2 ) 2+ (B y-1 C y O 3y + 1 ) 2- is obtained .
= Bi, B = Sr, C = Ta, y = 2 The above chemical structural formula (BiO) 2+ (Sr 1 Ta 2 O 7 ) 2− is represented by (Bi
Since 2 O 2 ) 2+ (Sr 1 Ta 2 O 7 ) 2− , SrBi 2 T
It is equivalent to a 2 O 9 . When Tl and Hg are used as the A element, (AO) 2+ (B y-1 C y O 3y + 1 ) 2- and (A
2 O 2 ) 2+ (B y-1 C y O 3y + 1 ) 2- crystal structure, where (AO) 2+ (B y-1 C y O 3y + 1 ) 2- It represents both.

【0010】また、誘電体が、化学構造式(Ba1-x
x)TiO3(但し、0≦x≦1である。)の結晶構造
をもてば、誘電体は高誘電体であり、高強誘電体素子が
得られる。この高強誘電体素子は、静電容量が大きく、
高い残留分極Pr値を維持し、かつ、耐電圧特性がよ
い、健全に機能する高強誘電体素子である。
Further, the dielectric substance has a chemical structural formula (Ba 1-x S
With a crystal structure of (r x ) TiO 3 (where 0 ≦ x ≦ 1), the dielectric is a high dielectric, and a high ferroelectric element can be obtained. This high ferroelectric element has a large capacitance,
It is a highly ferroelectric element that maintains a high remanent polarization Pr value, has good withstand voltage characteristics, and functions soundly.

【0011】本発明の他の特徴は、Ia族元素、Mg元
素、またはCa元素を含む誘電体の形成を250℃以上
500℃以下で行うことにある。この特徴によれば、K
元素が含まれている誘電体は結晶化温度が低く、250
℃以上500℃以下の温度で成膜を行うことができるの
で、誘電体と誘電体に接する電極との反応を抑制するこ
とができる。したがって、健全な誘電体を形成すること
ができ、健全に機能する誘電体素子を得ることができ
る。
Another feature of the present invention is that the formation of a dielectric containing a group Ia element, a Mg element, or a Ca element is performed at a temperature of 250 ° C. or more and 500 ° C. or less. According to this feature, K
The dielectric containing the element has a low crystallization temperature,
Since film formation can be performed at a temperature of higher than or equal to 500 ° C. and lower than 500 ° C., a reaction between the dielectric and an electrode in contact with the dielectric can be suppressed. Therefore, a sound dielectric can be formed, and a dielectric element that functions soundly can be obtained.

【0012】また、誘電体の形成を行うに当たって、I
a族元素、Mg元素、またはCa元素を含む非晶質な誘
電体を設けるステップと、非晶質な誘電体を結晶化する
熱処理を250℃以上500℃以下で行うステップとが
含まれてもよい。誘電体が強誘電体である場合は、35
0℃より低い温度で、Ia族元素、Mg元素、またはC
a元素を含む非晶質な強誘電体を設けることができ、非
晶質な強誘電体を結晶化する熱処理は350℃以上50
0℃以下で行うことができる。これらの温度範囲であれ
ば、強誘電体と強誘電体に接する電極との反応を抑制す
ることができる。したがって、健全な強誘電体を形成す
ることができ、健全に機能する誘電体素子を得ることが
できる。
In forming the dielectric, I
a step of providing an amorphous dielectric containing a group a element, a Mg element, or a Ca element; and a step of performing a heat treatment for crystallizing the amorphous dielectric at a temperature of 250 ° C. or more and 500 ° C. or less. Good. If the dielectric is ferroelectric, 35
At a temperature lower than 0 ° C., a group Ia element, a Mg element or C
An amorphous ferroelectric containing the element a can be provided, and heat treatment for crystallizing the amorphous ferroelectric is performed at 350 ° C. or higher and 50 ° C.
It can be performed at 0 ° C. or lower. Within these temperature ranges, the reaction between the ferroelectric and the electrode in contact with the ferroelectric can be suppressed. Therefore, a sound ferroelectric can be formed, and a sound dielectric element can be obtained.

【0013】誘電体が高誘電体である場合は、250℃
より低い温度で、Ia族元素、Mg元素、またはCa元
素を含む非晶質な高誘電体を設けることができ、非晶質
な高誘電体を結晶化する熱処理は250℃以上450℃
以下で行うことができる。これらの温度範囲であれば、
高誘電体と高誘電体に接する電極との反応を抑制するこ
とができる。したがって、健全な高誘電体を形成するこ
とができ、健全に機能する誘電体素子を得ることができ
る。また、誘電体の形成を行うに当たって、誘電体の材
料にIa族元素、Mg元素、またはCa元素を添加する
ステップが含まれてもよい。
When the dielectric is a high dielectric, the temperature is 250 ° C.
At a lower temperature, an amorphous high dielectric substance containing a Group Ia element, an Mg element, or a Ca element can be provided, and heat treatment for crystallizing the amorphous high dielectric substance is performed at 250 ° C. or higher and 450 ° C.
The following can be performed. In these temperature ranges,
The reaction between the high dielectric and the electrode in contact with the high dielectric can be suppressed. Therefore, a sound high dielectric can be formed, and a dielectric element that functions soundly can be obtained. In forming the dielectric, a step of adding a group Ia element, an Mg element, or a Ca element to the material of the dielectric may be included.

【0014】また、本発明の特徴は、半導体装置が、誘
電体がIa族元素、Mg元素、またはCa元素を含む誘
電体素子を有することにある。この特徴によれば、誘電
体がK元素を含むので、誘電体の結晶化温度を低くする
ことができる。したがって、低い温度で結晶化のための
熱処理を行うことができるので、このときに誘電体と誘
電体に接する電極とが反応することなく、誘電体を形成
することができ、健全に機能する誘電体素子を得ること
ができる。FeRAMやDRAMなどの半導体装置につ
いてこのような誘電体素子を用いれば、大容量化および
より低い電圧での動作が可能になる。
A feature of the present invention is that the semiconductor device has a dielectric element whose dielectric contains a group Ia element, Mg element or Ca element. According to this feature, since the dielectric contains the K element, the crystallization temperature of the dielectric can be lowered. Therefore, a heat treatment for crystallization can be performed at a low temperature. At this time, the dielectric can be formed without reacting the dielectric with the electrode in contact with the dielectric, and a dielectric that functions properly can be formed. A body element can be obtained. If such a dielectric element is used for a semiconductor device such as an FeRAM or a DRAM, it is possible to increase the capacity and operate at a lower voltage.

【0015】[0015]

【発明の実施の形態】本発明の発明者らは、誘電体素子
の電極と誘電体薄膜との間に、低誘電率層や粒成長した
巨大結晶ができる原因が、高温の熱処理にあることを見
出した。従来は、高温の熱処理による誘電体薄膜とその
上下に設けられた電極との反応については考慮されてい
なかった。誘電体素子を形成する際に、熱処理によっ
て、非結晶質な誘電体薄膜を結晶化させることが行われ
る。従来は、非結晶質な誘電体薄膜の結晶化を、固相反
応によって行っていたために、700℃以上の高温の熱
処理が必要であった。また、結晶化させながら誘電体薄
膜を成膜する場合にも、700℃以上の高温の熱処理が
必要であった。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have found that the cause of the formation of a low-dielectric layer or a grain-grown giant crystal between an electrode of a dielectric element and a dielectric thin film is a high-temperature heat treatment. Was found. Conventionally, no consideration has been given to the reaction between the dielectric thin film and the electrodes provided above and below the dielectric thin film due to the high-temperature heat treatment. When forming a dielectric element, a non-crystalline dielectric thin film is crystallized by heat treatment. Conventionally, since a non-crystalline dielectric thin film was crystallized by a solid-phase reaction, a heat treatment at a high temperature of 700 ° C. or more was required. Also, when forming a dielectric thin film while crystallizing, a heat treatment at a high temperature of 700 ° C. or more was required.

【0016】しかし、このような高温では、誘電体薄膜
とそれに接して設けられた電極とが反応して、電極と誘
電体薄膜との間に、上述したような素子機能の障害とな
る層や結晶ができてしまう。発明者らは、誘電体にアル
カリ金属またはアルカリ土類金属を添加することで、誘
電体の結晶化温度を低温化し、強誘電体と電極とを反応
させないで強誘電体を結晶化できることを見出した。誘
電体の結晶化温度を低温化できる原理を以下に説明す
る。
However, at such a high temperature, the dielectric thin film reacts with the electrode provided in contact with the dielectric thin film, and a layer or the like which hinders the element function as described above is placed between the electrode and the dielectric thin film. Crystals are formed. The inventors have found that by adding an alkali metal or an alkaline earth metal to a dielectric, the crystallization temperature of the dielectric can be lowered, and the ferroelectric can be crystallized without reacting the ferroelectric with the electrode. Was. The principle by which the crystallization temperature of the dielectric can be lowered will be described below.

【0017】強誘電体である(AO)2+(By-1y
3y+12-(但し、AはTl,Hg,Pb,Bi、または
希土類元素であり、BはBi,Pb,Ca,Sr、また
はBaであり、かつ、CはTi,Nb,Ta,W,M
o,Fe,Co,Cr、またはZrである。)、または
(Pb1-xx)(Zr1-yTiy)O3(但し、AはL
a,Ba、またはNbであり、0≦x≦0.2、かつ、
0<y≦1である。)に、Ia族のLi元素、Na元
素、K元素を添加すると、添加されたアルカリ金属と強
誘電体との液相生成が容易になる。この液相生成は固相
反応の温度よりも低い温度で起こり、液相反応によって
強誘電体の結晶化が起こる。すなわち、強誘電体の結晶
化温度は350℃以上500℃以下の範囲になる。した
がって、350℃以上500℃以下の従来より低い温度
で熱処理を行っても、強誘電体と電極とが反応すること
なく、強誘電体を結晶化させることができる。
(AO) 2+ (B y-1 C y O) which is a ferroelectric substance
3y + 1 ) 2- (where A is Tl, Hg, Pb, Bi, or a rare earth element, B is Bi, Pb, Ca, Sr, or Ba, and C is Ti, Nb, Ta, W, M
o, Fe, Co, Cr, or Zr. ) Or (Pb 1-x A x ) (Zr 1-y Ti y ) O 3 (where A is L
a, Ba, or Nb, 0 ≦ x ≦ 0.2, and
0 <y ≦ 1. ), The addition of a Group Ia Li element, Na element, or K element facilitates the liquid phase formation between the added alkali metal and the ferroelectric. This liquid phase generation occurs at a temperature lower than the temperature of the solid phase reaction, and crystallization of the ferroelectric occurs by the liquid phase reaction. That is, the crystallization temperature of the ferroelectric is in the range of 350 ° C. or more and 500 ° C. or less. Therefore, even if the heat treatment is performed at a temperature lower than the conventional temperature of 350 ° C. or more and 500 ° C. or less, the ferroelectric can be crystallized without reacting the ferroelectric and the electrode.

【0018】また、アルカリ土類金属のMg元素、Ca
元素を強誘電体に添加しても、Ia族の場合と同様に液
相を利用した結晶化によって、結晶化温度を低温にする
ことができる。高誘電体である(Ba1-xSrx)TiO
3(但し、0≦x≦1である。)に、Li元素、Na元
素、K元素、Mg元素およびCa元素を添加しても、強
誘電体の場合と同様に液相を利用した結晶化によって、
結晶化温度を250℃以上450℃以下に低くすること
ができる。
Also, an alkaline earth metal Mg element, Ca
Even if an element is added to the ferroelectric, the crystallization temperature can be lowered by crystallization using a liquid phase as in the case of the group Ia. High dielectric (Ba 1-x Sr x ) TiO
3 (where 0 ≦ x ≦ 1), even if Li, Na, K, Mg and Ca elements are added, crystallization using a liquid phase is performed similarly to the case of ferroelectrics. By
The crystallization temperature can be lowered from 250 ° C to 450 ° C.

【0019】Li元素、Na元素、K元素、Mg元素お
よびCa元素を単独に用いても、組み合わせてもよい
が、合計の添加量は、強誘電体100重量部に対して
0.5重量部以上10重量部以下の割合であるのが好ま
しい。以下に、従来よりも低温で誘電体の結晶化を行っ
て誘電体素子を製造することを具体的に説明する。
The Li element, the Na element, the K element, the Mg element and the Ca element may be used alone or in combination, but the total amount added is 0.5 parts by weight with respect to 100 parts by weight of the ferroelectric. The proportion is preferably at least 10 parts by weight or less. Hereinafter, a method of manufacturing a dielectric element by crystallization of a dielectric at a lower temperature than in the related art will be specifically described.

【0020】〔実施例1〕本発明の第1の実施例である
強誘電体素子を説明する。図3に本実施例の強誘電体素
子の断面模式図を示す。本実施例の強誘電体素子に用い
られている強誘電体薄膜32は、K元素を含み、化学構
造式(BiO)2+(SrTa272-の結晶構造をもつ
ものである。強誘電体薄膜32は上部電極31と下部電
極32に挟まれており、下地基板34上に形成されてい
る。本実施例の強誘電体素子の製造方法を図10を用い
て説明する。
Embodiment 1 A ferroelectric device according to a first embodiment of the present invention will be described. FIG. 3 shows a schematic cross-sectional view of the ferroelectric element of this example. The ferroelectric thin film 32 used in the ferroelectric element of the present embodiment contains the K element and has a crystal structure of the chemical structural formula (BiO) 2+ (SrTa 2 O 7 ) 2− . The ferroelectric thin film 32 is sandwiched between the upper electrode 31 and the lower electrode 32 and is formed on a base substrate 34. A method for manufacturing the ferroelectric element of this embodiment will be described with reference to FIG.

【0021】(1)はじめに、下地基板34を用意す
る。下地基板34は、表面にSiO2層を有するSiウ
エハ上に、バリヤ層となる厚み200ÅのTiN層を形
成したものである。 (2)下地基板34上に下部電極33を作る。下地基板
34上にスパッタリング法で1000Åの厚さのPt薄
膜を形成して、下部電極33とする。
(1) First, a base substrate 34 is prepared. The base substrate 34 is formed by forming a 200-nm-thick TiN layer serving as a barrier layer on a Si wafer having a SiO 2 layer on the surface. (2) The lower electrode 33 is formed on the base substrate 34. A Pt thin film having a thickness of 1000 ° is formed on the base substrate 34 by a sputtering method to form a lower electrode 33.

【0022】(3)下部電極33上に、K元素を含む
(BiO)2+(SrTa272-の強誘電体薄膜32を
スパッタリング法で作る。スパッタリング法では、Sr
Bi2Ta29にK2CO3を添加したターゲットを用い
る。雰囲気ガスは酸素とアルゴンの1:1混合ガス、成
膜圧力は2Pa、RFパワーは200Wとし、下地基板
34の温度を350℃よりも低くして強誘電体薄膜32
を250nmの厚さまで成膜する。ターゲット中のSr
Bi2Ta29とK2CO3の割合は、100重量部のS
rBi2Ta29に対してK元素が5重量部となるよう
な割合にする。
(3) On the lower electrode 33, a ferroelectric thin film 32 of (BiO) 2+ (SrTa 2 O 7 ) 2− containing K element is formed by a sputtering method. In the sputtering method, Sr
A target obtained by adding K 2 CO 3 to Bi 2 Ta 2 O 9 is used. The atmosphere gas was a 1: 1 mixed gas of oxygen and argon, the film formation pressure was 2 Pa, the RF power was 200 W, and the temperature of the base substrate 34 was lower than 350 ° C.
Is formed to a thickness of 250 nm. Sr in target
The proportion of Bi 2 Ta 2 O 9 and K 2 CO 3 is 100 parts by weight of S
The ratio is such that the K element is 5 parts by weight with respect to rBi 2 Ta 2 O 9 .

【0023】下地基板34の温度を結晶化温度よりも低
くして成膜したので、ここで成膜されたのは、K元素を
含む(BiO)2+(SrTa272-の強誘電体薄膜3
2で、非結晶質な薄膜である。また、下地基板34の温
度が350℃より低いので、強誘電体薄膜32と下地電
極33と反応することなく、成膜することができた。
Since the film was formed at a temperature lower than the crystallization temperature of the undersubstrate 34, the film formed here was made of (BiO) 2+ (SrTa 2 O 7 ) 2− containing K element. Dielectric thin film 3
2 is an amorphous thin film. Further, since the temperature of the base substrate 34 was lower than 350 ° C., the film could be formed without reacting with the ferroelectric thin film 32 and the base electrode 33.

【0024】(4)次に、熱処理を行って非結晶質な強
誘電体薄膜32を結晶化させる。熱処理は、下地基板3
4の温度を、強誘電体薄膜32の結晶化温度である50
0℃まで上げて、1atmの空気中または酸素中で10
〜15分間行う。 (5)最後に、結晶化した強誘電体薄膜32の上に、上
部電極31を作る。強誘電体薄膜32上にスパッタリン
グ法で1000Åの厚さのPt薄膜を形成して、上部電
極31とする。以上により、強誘電体素子を作成した。
本実施例では(4)で結晶化のための熱処理を行い、次
いで(5)で上部電極31を作ったが、上部電極31を
作ってから結晶化のための熱処理を行ってもよい。
(4) Next, heat treatment is performed to crystallize the amorphous ferroelectric thin film 32. Heat treatment is performed on the base substrate 3
4 is set to 50, which is the crystallization temperature of the ferroelectric thin film 32.
Raise to 0 ° C, and in air at 1 atm or oxygen
Perform for ~ 15 minutes. (5) Finally, the upper electrode 31 is formed on the crystallized ferroelectric thin film 32. A Pt thin film having a thickness of 1000 ° is formed on the ferroelectric thin film 32 by a sputtering method to form an upper electrode 31. Thus, a ferroelectric element was prepared.
In this embodiment, the heat treatment for crystallization is performed in (4), and then the upper electrode 31 is formed in (5). However, the heat treatment for crystallization may be performed after the upper electrode 31 is formed.

【0025】(4)の熱処理後の強誘電体薄膜32をS
EM観察したところ、図1のSEM写真に示されるよう
に、強誘電体薄膜32は、粒成長した巨大結晶は見られ
ず、粒径100〜1000Åの微細な強誘電体の結晶で
膜が構成されていた。この強誘電体薄膜32をICP分
析した結果、遷移層や低誘電層を示すような組成は検出
されず、強誘電体薄膜32は、100重量部の(Bi
O)2+(SrTa272-に対して5.0重量部のK元
素を含んでいた。
The ferroelectric thin film 32 after the heat treatment (4) is
As a result of EM observation, as shown in the SEM photograph of FIG. 1, the ferroelectric thin film 32 does not show a giant crystal having a grain growth, and is composed of fine ferroelectric crystals having a grain size of 100 to 1000 °. It had been. As a result of ICP analysis of the ferroelectric thin film 32, no composition indicating a transition layer or a low dielectric layer was detected, and the ferroelectric thin film 32 contained 100 parts by weight of (Bi
O) 2+ (SrTa 2 O 7 ) 2- contained 5.0 parts by weight of element K with respect to 2- .

【0026】本実施例の強誘電体素子の電圧と分極の関
係を調べた結果を図2に示す。5Vにおける2Pr=1
4μC/cm2、Ec=50kV/cmの電気特性を示
した。また、電圧3Vの±反転による書き込み回数10
12回で特性劣化約3%と優れた強誘電体特性を示し、K
元素の添加による特性低下は認められなかった。従来
は、非結晶質な誘電体薄膜の結晶化を、固相反応によっ
て行っていたために、700℃以上の高温の熱処理が必
要であった。しかし、このような高温では、誘電体薄膜
と上下の電極とが反応して、電極と誘電体薄膜との間に
機能の障害となる層や結晶ができ、耐電圧特性の低下、
残留分極(Pr)の低下、抗電界(Ec)の増大、およ
び膜疲労が起こって、強誘電体素子として機能しないこ
とがあった。
FIG. 2 shows the result of examining the relationship between the voltage and the polarization of the ferroelectric element of this embodiment. 2Pr = 1 at 5V
It showed electrical characteristics of 4 μC / cm 2 and Ec = 50 kV / cm. Also, the number of times of writing 10 by ± inversion of voltage 3V is 10
It shows excellent ferroelectric properties with about 3% deterioration in properties after 12 cycles.
No deterioration in characteristics due to the addition of elements was observed. Conventionally, since a non-crystalline dielectric thin film was crystallized by a solid-phase reaction, a heat treatment at a high temperature of 700 ° C. or more was required. However, at such a high temperature, the dielectric thin film reacts with the upper and lower electrodes to form a layer or crystal between the electrode and the dielectric thin film that hinders the function, resulting in a decrease in withstand voltage characteristics,
In some cases, the remanent polarization (Pr) was reduced, the coercive electric field (Ec) was increased, and the film was fatigued, so that it did not function as a ferroelectric element.

【0027】本実施例によれば、強誘電体薄膜32にK
元素が添加されているので、アルカリ金属(K元素)と
強誘電体との液相生成が容易になる。この液相生成は固
相反応の温度よりも低い温度で起こり、液相反応によっ
て強誘電体薄膜32の結晶化が行われるので、強誘電体
薄膜32の結晶化温度は500℃に低くなる。したがっ
て、低い温度で熱処理を行うことができるので、誘電体
薄膜32と上下の電極とが反応することなく、強誘電体
薄膜32を結晶化させることができ、健全に機能する強
誘電体素子を作ることができる。
According to the present embodiment, the ferroelectric thin film 32 has K
The addition of the element facilitates the generation of a liquid phase between the alkali metal (K element) and the ferroelectric. This liquid phase generation occurs at a temperature lower than the temperature of the solid phase reaction, and the crystallization of the ferroelectric thin film 32 is performed by the liquid phase reaction, so that the crystallization temperature of the ferroelectric thin film 32 is lowered to 500 ° C. Therefore, since the heat treatment can be performed at a low temperature, the ferroelectric thin film 32 can be crystallized without reacting the dielectric thin film 32 with the upper and lower electrodes, and a ferroelectric element that functions properly can be obtained. Can be made.

【0028】K元素を含む(BiO)2+(SrTa
272-強誘電体素子の熱処理温度とPr特性との関係
を図5に示す。図5の縦軸は、500℃で作製した強誘
電体素子の5VにおけるPrで規格化した値(Pr/P
r(500))である。図5に示されているように、3
50℃以上の温度範囲でPr/Pr(500)>0.9
5と非常に優れた特性を示した。
(BiO) 2+ (SrTa) containing element K
FIG. 5 shows the relationship between the heat treatment temperature of the 2 O 7 ) 2- ferroelectric element and the Pr characteristics. The vertical axis in FIG. 5 is a value (Pr / P) normalized by Pr at 5 V of a ferroelectric element manufactured at 500 ° C.
r (500)). As shown in FIG.
Pr / Pr (500)> 0.9 in a temperature range of 50 ° C. or more
5 showed very excellent characteristics.

【0029】100重量部の(BiO)2+(SrTa2
72-に対して、K元素が0.5重量部以上10重量
部以下となる範囲でK2CO3を添加すると、5Vにおけ
る2Pr>10μC/cm2、Ec=45〜60kV/
cmの電気特性を示した。K2CO3の代わりにLi2
3,Na2CO3,MgCO3,CaCO3を添加した場
合でも上記と同様の製造方法を行うと、5Vにおける2
Pr>10μC/cm2、Ec=45〜60kV/cm
の電気特性を示した。
100 parts by weight of (BiO) 2+ (SrTa 2
When K 2 CO 3 is added to O 7 ) 2- in a range where the K element is 0.5 part by weight or more and 10 parts by weight or less, 2Pr at 5 V> 10 μC / cm 2 , and Ec = 45 to 60 kV /
cm electrical characteristics. Li 2 C instead of K 2 CO 3
Even when O 3 , Na 2 CO 3 , MgCO 3 , and CaCO 3 are added, if the same manufacturing method as described above is performed, 2 at 5 V
Pr> 10 μC / cm 2 , Ec = 45-60 kV / cm
The electrical characteristics of

【0030】図8に、添加量と結晶化温度の関係につい
て調べた結果を示す。作製方法は、上記と同様に((B
iO)2+(SrTa272-)100重量部に対してK
2CO3をK元素でみて0〜15重量部の範囲、Li2
3をLi元素でみて0〜15重量部の範囲、Na2CO
3をNa元素でみて0〜15重量部の範囲、MgCO3
Mg元素でみて0〜15重量部の範囲、CaCO3をC
a元素でみて0〜15重量部の範囲で添加した。図中の
結晶化温度は、得られた強誘電体素子が5Vにおける2
Pr>10μC/cm2を満足する最小結晶化温度を示
している。図8から、いずれの添加元素でも、0.5重
量部以上10重量部以下の範囲で添加すれば、最小の結
晶化温度が350℃以上500℃以下となることが分か
る。また、350℃の結晶化温度を達成するのに必要な
添加量の幅(許容度)が大きな元素は、K>Na>M
g,Ca>Liの順であった。
FIG. 8 shows the results of a study on the relationship between the amount of addition and the crystallization temperature. The fabrication method is the same as described above ((B
iO) 2+ (SrTa 2 O 7 ) 2- ) 100 parts by weight of K
2 CO 3 in the range of 0 to 15 parts by weight in terms of K element, Li 2 C
O 3 in the range of 0 to 15 parts by weight in terms of Li element, Na 2 CO
3 range from 0 to 15 parts by weight as viewed in Na elements, the range of 0 to 15 parts by weight of MgCO 3 as viewed in Mg element, the CaCO 3 C
It was added in the range of 0 to 15 parts by weight in view of element a. The crystallization temperature in the figure is 2 at 5 V.
It shows the minimum crystallization temperature that satisfies Pr> 10 μC / cm 2 . FIG. 8 shows that the minimum crystallization temperature becomes 350 ° C. or more and 500 ° C. or less when any of the additional elements is added in the range of 0.5 part by weight or more and 10 parts by weight or less. Further, an element having a large width (tolerance) of an addition amount required to achieve a crystallization temperature of 350 ° C. is K>Na> M
g, Ca> Li.

【0031】同様に、K2CO3,Li2CO3,Na2
3,MgCO3,CaCO3を混合してLi,Na,
K,Mg,Caの総添加量が0〜15重量部となる範囲
で添加した。添加量と結晶化温度の関係について調べた
結果を図9に示す。図9から明らかなように、Li,N
a,K,Mg,Caからなる群から選択された元素を2
種類以上組み合わせて添加する場合においても、上記の
単一元素の場合と同様に総添加量が0.5重量部以上1
0重量部以下となる範囲で添加すれば、結晶化温度を3
50℃以上500℃以下とすることができる。
Similarly, K 2 CO 3 , Li 2 CO 3 , Na 2 C
O 3 , MgCO 3 , and CaCO 3 are mixed to form Li, Na,
K, Mg, and Ca were added in a total amount of 0 to 15 parts by weight. FIG. 9 shows the result of examining the relationship between the amount of addition and the crystallization temperature. As is clear from FIG.
an element selected from the group consisting of a, K, Mg, Ca
In the case of adding in combination of more than one kind, the total addition amount is 0.5 parts by weight or more as in the case of the single element described above.
If it is added within a range of 0 parts by weight or less, the crystallization temperature becomes 3
The temperature can be 50 ° C or higher and 500 ° C or lower.

【0032】〔実施例2〕本発明の第2の実施例である
強誘電体素子を説明する。本実施例の強誘電体素子に用
いられている強誘電体薄膜は、K元素を含み、化学構造
式Pb(Zr0.4Ti0.6)O3の結晶構造をもつもの
で、化学構造式(Pb1-xx)(Zr1-yTiy)O
3で、x=0かつy=0.6の場合に相当する。本実施
例の強誘電体素子についても、第1の実施例と同様に製
造する。実施例1の場合と同様のPt(1000Å)/
TiN(200Å)/SiO2/Si基板上に、Pb
(Zr0.4Ti0.6)O3100重量部に対してK2CO3
をK元素でみて5重量部の割合で添加したターゲットを
用いてスパッタリング法で成膜した。スパッタガスは酸
素とアルゴンの1:1混合ガス、成膜圧力は2Pa、R
Fパワーは200Wとし、膜厚250nmを得た。その
後、1atmの空気中又は酸素中にて、温度500℃で
10〜150分間熱処理を行った。
Embodiment 2 A ferroelectric device according to a second embodiment of the present invention will be described. The ferroelectric thin film used in the ferroelectric element of this embodiment contains the element K and has a crystal structure of the chemical structural formula Pb (Zr 0.4 Ti 0.6 ) O 3 , and the chemical structural formula (Pb 1 -x A x ) (Zr 1-y Ti y ) O
3 corresponds to the case where x = 0 and y = 0.6. The ferroelectric element of this embodiment is manufactured in the same manner as in the first embodiment. Pt (1000 °) / the same as in the first embodiment
Pb on TiN (200 °) / SiO 2 / Si substrate
(Zr 0.4 Ti 0.6 ) O 2 100 parts by weight of K 2 CO 3
Was formed by a sputtering method using a target to which 5 parts by weight was added in view of K element. The sputtering gas is a 1: 1 mixed gas of oxygen and argon, the deposition pressure is 2 Pa, R
The F power was 200 W and a film thickness of 250 nm was obtained. Thereafter, heat treatment was performed at a temperature of 500 ° C. for 10 to 150 minutes in the air or oxygen at 1 atm.

【0033】以上の操作により、K元素を含む強誘電体
層Pb(Zr0.4Ti0.6)O3を得た。この強誘電体素
子の電圧と分極の関係を調べた結果、5Vにおける2P
r=36μC/cm2、Ec=50kV/cmの電気特
性を示した。また、電圧3Vの±反転による書き込み回
数109回で特性劣化約10%と優れた強誘電体特性を
示し、K元素の添加による特性低下は認められなかっ
た。また、500℃で作製した強誘電体素子の5Vにお
けるPrで規格化したPr値(Pr/Pr(500))
は、350℃以上の温度範囲でPr/Pr(500)>
0.95と非常に優れた特性を示した。
Through the above operation, a ferroelectric layer Pb (Zr 0.4 Ti 0.6 ) O 3 containing the element K was obtained. As a result of examining the relationship between the voltage and the polarization of the ferroelectric element, 2P at 5 V was obtained.
It showed electrical characteristics of r = 36 μC / cm 2 and Ec = 50 kV / cm. In addition, when the number of writings was 10 9 times due to ± inversion of the voltage of 3 V, the characteristics were degraded by about 10%, indicating excellent ferroelectric characteristics, and no characteristic deterioration due to the addition of the K element was observed. Pr value normalized by Pr at 5 V of the ferroelectric element manufactured at 500 ° C. (Pr / Pr (500))
Is Pr / Pr (500) in a temperature range of 350 ° C. or more>
0.95 showed very excellent characteristics.

【0034】Pb(Zr0.4Ti0.6)O3100重量部
に対してK2CO3をK元素で0.5重量部以上10重量
部以下の範囲で添加して上記と同様の方法で作製したと
ころ、5Vにおける2Pr>30μC/cm2、Ec=
45〜60kV/cmの電気特性が得られた。さらに、
化学構造式(Pb1-xx)(Zr0.4Ti0.6)O3から
なる結晶構造において、A元素にLa,Ba,Nb元素
を置換し、xの比率を0≦x≦0.2の範囲内で変化さ
せて、上記と同様にして強誘電体薄膜を形成した。強誘
電体薄膜の形成に当たっては、(Pb1-xx)(Zr
0.4Ti0.6)O3100重量部に対して添加元素として
K元素を5重量部の割合で添加した。表1は、500℃
で作製したこれらの強誘電体素子の5Vにおける2Pr
値(単位はμC/cm2)を示す。表1に示されている
ように、上記と同様にして500℃で作製した強誘電体
素子の5Vにおける2Pr値は、全て30μC/cm2
以上と優れた特性を示した。
K 2 CO 3 was added in the range of 0.5 to 10 parts by weight of K element with respect to 100 parts by weight of Pb (Zr 0.4 Ti 0.6 ) O 3 , and was prepared in the same manner as described above. However, 2Pr> 30 μC / cm 2 at 5 V, Ec =
Electrical characteristics of 45 to 60 kV / cm were obtained. further,
In a crystal structure consisting of the chemical structural formula (Pb 1-x A x ) (Zr 0.4 Ti 0.6 ) O 3 , the element A is replaced with La, Ba, and Nb elements, and the ratio of x is 0 ≦ x ≦ 0.2. A ferroelectric thin film was formed in the same manner as described above while changing the thickness within the range. In forming the ferroelectric thin film, (Pb 1-x A x ) (Zr
0.4 Ti 0.6 ) 5 parts by weight of K element was added as an additional element to 100 parts by weight of O 3 . Table 1 shows 500 ° C
2Pr at 5 V of these ferroelectric devices manufactured by
Values (unit: μC / cm 2 ). As shown in Table 1, the 2Pr values at 5 V of the ferroelectric devices manufactured at 500 ° C. in the same manner as above were all 30 μC / cm 2.
The above and excellent characteristics were shown.

【0035】[0035]

【表1】 [Table 1]

【0036】また、化学構造式(Pb0.90.1)(Zr
1-yTiy)O3からなる結晶構造において、A元素にL
a,Ba,Nb元素を置換し、yの比率を0<y≦1.
0の範囲内で変化させて、上記と同様にして強誘電体薄
膜を形成した。強誘電体薄膜の形成に当たっては、(P
0.90.1)(Zr1-yTiy)O3100重量部に対し
て添加元素としてK元素を5重量部の割合で添加した。
表2は、500℃で作製したこれらの強誘電体素子の5
Vにおける2Pr値(単位はμC/cm2)を示す。表
2に示されているように、y値によって2Pr値が大き
く変わり、0.5≦y≦0.75の範囲で特に高いPr
特性が得られた。
Further, the chemical structural formula (Pb 0.9 A 0.1 ) (Zr
1-y Ti y ) In the crystal structure composed of O 3 ,
a, Ba, and Nb elements are substituted, and the ratio of y is 0 <y ≦ 1.
The ferroelectric thin film was formed in the same manner as described above except that the thickness was changed within the range of 0. In forming a ferroelectric thin film, (P
b 0.9 A 0.1 ) (Zr 1 -y Ti y ) O 3 was added in an amount of 5 parts by weight of element K to 100 parts by weight of O 3 .
Table 2 shows 5 of these ferroelectric devices manufactured at 500 ° C.
The 2Pr value at V (unit: μC / cm 2 ) is shown. As shown in Table 2, the 2Pr value greatly changes depending on the y value, and particularly high Pr in the range of 0.5 ≦ y ≦ 0.75.
Characteristics were obtained.

【0037】[0037]

【表2】 [Table 2]

【0038】〔実施例3〕本発明の第3の実施例である
高誘電体素子を説明する。図4に、本実施例の高誘電体
素子の断面模式図を示す。本実施例の高誘電体素子に用
いられている高誘電体薄膜は、K元素を含み、化学構造
式(Ba0.5Sr0.5TiO3)の結晶構造をもつもので
ある。本実施例の高誘電体素子についても、第1の実施
例と同様に製造する。下地基板44には、300℃に加
熱しながら形成した厚み200ÅのTiN層のバリア層
及び熱酸化で作製したSiO2層を含むSiウエハを用
いた。次に、この下地基板44上に下部電極43を作製
した。下部電極43は、下地基板44を350℃に加熱
しながらスパッタリング法によりPt薄膜を200Å形
成することで作製した。この下部電極43上に、高誘電
体薄膜42を形成するために、Ba,Sr,Ti,K元
素を(Ba0.5Sr0.5)TiO3の100重量部に対し
てK2CO3をK元素でみて5重量部の割合で添加したタ
ーゲットを用いてスパッタリング法で成膜した。スパッ
タガスはアルゴンガス、成膜圧力は2Pa、RFパワー
は200Wとし、膜厚25nmを得た。その後、1at
mの空気中又は酸素中、温度450℃で1〜30分間熱
処理を行った。以上の操作により、K元素を含む高誘電
体層(Ba0.5Sr0.5)TiO3を得た。
[Embodiment 3] A high dielectric device according to a third embodiment of the present invention will be described. FIG. 4 shows a schematic cross-sectional view of the high dielectric element of this example. The high-dielectric thin film used in the high-dielectric element of the present embodiment contains the element K and has a crystal structure represented by a chemical structural formula (Ba 0.5 Sr 0.5 TiO 3 ). The high dielectric element of this embodiment is also manufactured in the same manner as in the first embodiment. As the base substrate 44, a Si wafer including a 200-nm-thick TiN layer barrier layer formed while heating to 300 ° C. and a SiO 2 layer formed by thermal oxidation was used. Next, the lower electrode 43 was formed on the base substrate 44. The lower electrode 43 was formed by forming a Pt thin film at 200 ° by a sputtering method while heating the base substrate 44 to 350 ° C. In order to form the high dielectric thin film 42 on the lower electrode 43, Ba, Sr, Ti, and K elements are replaced by (Ba 0.5 Sr 0.5 ) TiO 3 with 100 parts by weight of K 2 CO 3 by K element. The film was formed by a sputtering method using a target added at a ratio of 5 parts by weight. The sputtering gas was argon gas, the deposition pressure was 2 Pa, the RF power was 200 W, and a film thickness of 25 nm was obtained. Then 1at
The heat treatment was performed in air or oxygen at a temperature of 450 ° C. for 1 to 30 minutes. Through the above operation, a high dielectric layer (Ba 0.5 Sr 0.5 ) TiO 3 containing the element K was obtained.

【0039】ICP分析の結果、得られた高誘電体層に
は100重量部の(Ba0.5Sr0.5)TiO3に対して
5.0重量部のK元素が含有されていた。次に、高誘電
体薄膜42の上に上部電極41のPt薄膜を室温でスパ
ッタリング法により200Å形成して、高誘電体素子を
作製した。このK元素を含む(Ba0.5Sr0.5)TiO
3高誘電体素子の熱処理温度とε特性の関係を図6に示
す。図6の縦軸は、450℃で作製した高誘電体素子の
εで規格化した値(ε/ε(450))とした。図6に
示されているように、250℃以上の温度範囲でε/ε
(450)>0.95と非常に優れた特性を示した。
As a result of ICP analysis, the obtained high dielectric layer contained 5.0 parts by weight of K element with respect to 100 parts by weight of (Ba 0.5 Sr 0.5 ) TiO 3 . Next, a Pt thin film of the upper electrode 41 was formed on the high dielectric thin film 42 by a sputtering method at room temperature at 200 ° to produce a high dielectric element. (Ba 0.5 Sr 0.5 ) TiO containing the K element
3 the relationship between the heat treatment temperature and ε characteristics of the high dielectric element shown in FIG. The vertical axis in FIG. 6 is a value (ε / ε (450)) normalized by ε of the high dielectric element manufactured at 450 ° C. As shown in FIG. 6, ε / ε over a temperature range of 250 ° C. or higher.
(450)> 0.95, showing very excellent characteristics.

【0040】本実施例において、(Ba0.5Sr0.5)T
iO3100重量部に対してK2CO3をK元素でみて
0.5重量部以上10重量部以下の範囲で添加すれば、
ε>250の電気特性を示した。K2CO3の代わりにL
2CO3,Na2CO3,MgCO3,CaCO3を添加し
た場合においても、上記と同様の方法で成膜すると、ε
>250の電気特性を示した。
In this embodiment, (Ba 0.5 Sr 0.5 ) T
If K 2 CO 3 is added in a range of 0.5 part by weight or more and 10 parts by weight or less based on K element with respect to 100 parts by weight of iO 3 ,
Electrical characteristics of ε> 250 were shown. L instead of K 2 CO 3
Even when i 2 CO 3 , Na 2 CO 3 , MgCO 3 , and CaCO 3 are added, when a film is formed in the same manner as described above, ε
> 250.

【0041】また、結晶構造(Ba1-xSrx)TiO3
の高誘電体において、xが0の場合のBaTiO3にお
いても、上記と同様に450℃で作製した高誘電体素子
のε値は、K2CO3をK元素でみて0.5重量部以上1
0重量部以下の範囲で添加すれば、ε>400の電気特
性を示した。結晶構造(Ba1-xSrx)TiO3の高誘
電体において、xが1の場合のSrTiO3において
も、上記と同様に450℃で作製した高誘電体素子のε
値は、K2CO3をK元素でみて0.5重量部以上10重
量部以下の範囲で添加すれば、ε>180の電気特性を
示した。
The crystal structure (Ba 1 -x Sr x ) TiO 3
In the high dielectric material of the above, also in BaTiO 3 when x is 0, the ε value of the high dielectric element manufactured at 450 ° C. in the same manner as above is 0.5 parts by weight or more when K 2 CO 3 is viewed as a K element. 1
When added in a range of 0 parts by weight or less, the electric properties of ε> 400 were exhibited. In the high dielectric substance of the crystal structure (Ba 1-x Sr x ) TiO 3 , the ε of the high dielectric element manufactured at 450 ° C. in the same manner as described above is also used for SrTiO 3 when x is 1.
As for the value, when K 2 CO 3 was added in the range of 0.5 part by weight or more and 10 parts by weight or less in terms of K element, electric characteristics of ε> 180 were exhibited.

【0042】〔実施例4〕図7は、本発明による強誘電
体素子を用いた半導体装置の略断面図である。作製方法
を以下に示す。まず、Siウエハ75にイオン打ち込み
と熱処理により拡散層77を形成し、次に表面酸化によ
りSiO2ゲート膜79を、さらにその上にゲート電極
78を形成した。トランジスタとキャパシタの素子分離
としてSiO2膜76を形成した後に、強誘電体素子7
3,72,72を形成した。その後、SiO2膜74を
形成した後にアルミ配線710を形成して、上部電極7
1と拡散層77を接続している。強誘電体素子として、
実施例1で説明したPt電極71、SrBi2Ta29
薄膜72、Pt電極73からなる構造を形成すること
で、強誘電体メモリ素子を含む半導体装置を得た。得ら
れた強誘電体メモリ素子の半導体装置は、3Vの電圧で
得られた蓄積電化容量の変化で検出できる半導体装置で
ある。
[Embodiment 4] FIG. 7 is a schematic sectional view of a semiconductor device using a ferroelectric element according to the present invention. The fabrication method is described below. First, a diffusion layer 77 was formed on a Si wafer 75 by ion implantation and heat treatment, and then a SiO 2 gate film 79 was formed by surface oxidation, and a gate electrode 78 was further formed thereon. After forming the SiO 2 film 76 as an element isolation between a transistor and a capacitor, the ferroelectric element 7
3, 72, 72 were formed. Then, after forming the SiO 2 film 74, the aluminum wiring 710 is formed, and the upper electrode 7 is formed.
1 and the diffusion layer 77. As a ferroelectric element,
The Pt electrode 71 and SrBi 2 Ta 2 O 9 described in the first embodiment
By forming a structure including the thin film 72 and the Pt electrode 73, a semiconductor device including a ferroelectric memory element was obtained. The obtained semiconductor device of the ferroelectric memory element is a semiconductor device which can be detected by a change in the storage charge capacity obtained at a voltage of 3V.

【0043】ここでは、Pt電極71、SrBi2Ta2
9強誘電体薄膜72、Pt電極73からなる構造を用
いて説明したが、Pt電極、(Ba0.5Sr0.5)TiO
3等の高誘電体薄膜、Pt電極からなる構造の高誘電体
メモリ素子を形成してもよい。こうして得られる高誘電
体メモリ素子の半導体装置は、3Vの電圧で30fF蓄
積電化容量を有する半導体装置である。また、FeRA
MやDRAMなどの半導体装置について、本発明の誘電
体素子を用いれば、大容量化およびより低い電圧での動
作が可能になる。
Here, the Pt electrode 71, SrBi 2 Ta 2
Although the description has been made using the structure including the O 9 ferroelectric thin film 72 and the Pt electrode 73, the Pt electrode, (Ba 0.5 Sr 0.5 ) TiO
A high dielectric memory element having a structure composed of a high dielectric thin film such as 3 and a Pt electrode may be formed. The semiconductor device of the high dielectric memory element thus obtained is a semiconductor device having a voltage of 3 V and a storage capacitance of 30 fF. In addition, FeRA
For semiconductor devices such as M and DRAM, the use of the dielectric element of the present invention enables an increase in capacity and operation at a lower voltage.

【0044】以上の実施例では、Si基板上に形成され
るバリア層として、TiN層を用いたが、Ti,TiA
IN,Taなどを用いてもよい。上部電極および下部電
極には、Pt以外に、W,PtTi,Ru,Ir,A
l,Cu,RuO2,IrO2 などを用いることができ
る。また、誘電体膜を作る方法は、スパッタリング法以
外に、酸素あるいは励起した酸素中で行うMOCVD
法、金属アルコキシドあるいは有機酸塩を出発原料とし
たスピンコート法、ディップコート法を適宜選択してよ
い。
In the above embodiment, the TiN layer was used as the barrier layer formed on the Si substrate.
IN, Ta, etc. may be used. In addition to Pt, W, PtTi, Ru, Ir, A
1, Cu, RuO 2, IrO 2 and the like can be used. In addition to the sputtering method, MOCVD performed in oxygen or excited oxygen may be used to form the dielectric film.
Method, a spin coating method using a metal alkoxide or an organic acid salt as a starting material, or a dip coating method may be appropriately selected.

【0045】〔実施例5〕本発明の第5の実施例である
非接触型メモリーカード50を説明する。図11に示す
本実施例の非接触型メモリーカード50は、データを記
憶しておくデータ用ROM51、FeRAM素子52、
非接触用インターフェイス53、およびアンテナ54が
カードに設けられている。FeRAM素子52には、第
1〜第4の実施例で説明した強誘電体素子を用いる。デ
ータ用ROM51、FeRAM素子52、および非接触
用インターフェイス53は、データが行き来する信号線
で相互に接続されている。非接触用インターフェイス5
3にはアンテナ54が信号線が接続されている。
[Fifth Embodiment] A non-contact type memory card 50 according to a fifth embodiment of the present invention will be described. The non-contact type memory card 50 of this embodiment shown in FIG. 11 has a data ROM 51 for storing data, a FeRAM element 52,
A contactless interface 53 and an antenna 54 are provided on the card. As the FeRAM element 52, the ferroelectric element described in the first to fourth embodiments is used. The data ROM 51, the FeRAM element 52, and the non-contact interface 53 are mutually connected by a signal line through which data flows. Non-contact interface 5
An antenna 54 is connected to the signal line 3.

【0046】外部からの情報は、アンテナ54から非接
触用インターフェイス53に送られ、電圧信号に変換さ
れる。この電圧信号によって、FeRAM素子52を駆
動し、情報を書き込んだり、データ用ROM51から情
報を読み出したりすることができる。従来のメモリーカ
ードでは、EEPROM素子の不揮発性素子を利用して
いたので16Vの印加電圧が必要であった。本実施例で
は、FeRAM素子を用いるので、電圧信号を5V以下
に低電圧化できる。
Information from the outside is sent from the antenna 54 to the non-contact interface 53 and is converted into a voltage signal. With this voltage signal, the FeRAM element 52 can be driven to write information or read information from the data ROM 51. In a conventional memory card, an applied voltage of 16 V was required because a nonvolatile element such as an EEPROM element was used. In this embodiment, since the FeRAM element is used, the voltage signal can be reduced to 5 V or less.

【0047】[0047]

【発明の効果】本発明によれば、誘電体がIa族元素、
Mg元素、またはCa元素を含むことにより、低い温度
で結晶化のための熱処理を行うことができるので、この
ときに誘電体と誘電体に接する電極とが反応することな
く、誘電体を形成することができ、健全に機能する誘電
体素子を得ることができる。
According to the present invention, the dielectric is a group Ia element,
By containing the Mg element or the Ca element, a heat treatment for crystallization can be performed at a low temperature, and at this time, the dielectric and the electrode in contact with the dielectric do not react with each other to form the dielectric. Thus, a dielectric element that functions properly can be obtained.

【0048】また、誘電体が、化学構造式(AO)
2+(By-1y3y+12-(但し、AはTl,Hg,P
b,Bi、または希土類元素であり、BはBi,Pb,
Ca,Sr、またはBaであり、かつ、CはTi,N
b,Ta,W,Mo,Fe,Co,Cr、またはZrで
ある。)の結晶構造をもてば、または、化学構造式(P
1-xx)(Zr1-yTiy)O3(但し、AはLa,B
a、またはNbであり、0≦x≦0.2、かつ、0<y
≦1である。)の結晶構造をもてば、誘電体は強誘電体
であり、強誘電体素子が得られる。この強誘電体素子
は、高い残留分極Pr値を維持し、低い抗電界Ec値を
もち、かつ、膜疲労が抑制された、健全に機能する強誘
電体素子である。
Further, the dielectric substance has a chemical structural formula (AO)
2+ (B y-1 C y O 3y + 1 ) 2- (where A is Tl, Hg, P
b, Bi, or a rare earth element, and B is Bi, Pb,
Ca, Sr, or Ba, and C is Ti, N
b, Ta, W, Mo, Fe, Co, Cr, or Zr. ) Or the chemical structural formula (P
b 1-x A x ) (Zr 1-y Ti y ) O 3 (where A is La, B
a or Nb, 0 ≦ x ≦ 0.2, and 0 <y
≦ 1. With the crystal structure of (1), the dielectric is a ferroelectric, and a ferroelectric element can be obtained. This ferroelectric element is a healthy ferroelectric element that maintains a high remanent polarization Pr value, has a low coercive electric field Ec value, and has suppressed film fatigue.

【0049】また、誘電体が、化学構造式(Ba1-x
x)TiO3(但し、0≦x≦1である。)の結晶構造
をもてば、誘電体は高誘電体であり、高強誘電体素子が
得られる。この高強誘電体素子は、静電容量が大きく、
高い残留分極Pr値を維持し、かつ、耐電圧特性がよ
い、健全に機能する高強誘電体素子である。
Further, the dielectric substance has the chemical structural formula (Ba 1-x S
With a crystal structure of (r x ) TiO 3 (where 0 ≦ x ≦ 1), the dielectric is a high dielectric, and a high ferroelectric element can be obtained. This high ferroelectric element has a large capacitance,
It is a highly ferroelectric element that maintains a high remanent polarization Pr value, has good withstand voltage characteristics, and functions soundly.

【0050】また、本発明の他の特徴によれば、K元素
が含まれている誘電体は結晶化温度が低く、250℃以
上500℃以下の温度で成膜を行うことができるので、
誘電体と誘電体に接する電極との反応を抑制することが
できる。したがって、健全な誘電体を形成することがで
き、健全に機能する誘電体素子を得ることができる。
According to another feature of the present invention, the dielectric containing K element has a low crystallization temperature and can be formed at a temperature of 250 ° C. or more and 500 ° C. or less.
Reaction between the dielectric and the electrode in contact with the dielectric can be suppressed. Therefore, a sound dielectric can be formed, and a dielectric element that functions soundly can be obtained.

【0051】誘電体が強誘電体である場合は、350℃
より低い温度で、Ia族元素、Mg元素、またはCa元
素を含む非晶質な強誘電体を設けることができ、非晶質
な強誘電体を結晶化する熱処理は350℃以上500℃
以下で行うことができる。これらの温度範囲であれば、
強誘電体と強誘電体に接する電極との反応を抑制するこ
とができる。したがって、健全な強誘電体を形成するこ
とができ、高い残留分極Pr値を維持し、低い抗電界E
c値をもち、かつ、膜疲労が抑制された、健全に機能す
る誘電体素子を得ることができる。
When the dielectric is a ferroelectric, the temperature is 350 ° C.
At a lower temperature, an amorphous ferroelectric substance containing a Group Ia element, a Mg element, or a Ca element can be provided, and heat treatment for crystallizing the amorphous ferroelectric substance is performed at 350 ° C. or higher and 500 ° C.
The following can be performed. In these temperature ranges,
Reaction between the ferroelectric and the electrode in contact with the ferroelectric can be suppressed. Therefore, a sound ferroelectric can be formed, a high remanent polarization Pr value is maintained, and a low coercive electric field E is maintained.
It is possible to obtain a soundly functioning dielectric element having a c value and suppressing film fatigue.

【0052】誘電体が高誘電体である場合は、250℃
より低い温度で、Ia族元素、Mg元素、またはCa元
素を含む非晶質な高誘電体を設けることができ、非晶質
な高誘電体を結晶化する熱処理は250℃以上450℃
以下で行うことができる。これらの温度範囲であれば、
高誘電体と高誘電体に接する電極との反応を抑制するこ
とができる。したがって、健全な高誘電体を形成するこ
とができ、静電容量が大きく、高い残留分極Pr値を維
持し、かつ、耐電圧特性がよい、健全に機能する誘電体
素子を得ることができる。
When the dielectric is a high dielectric, the temperature is 250 ° C.
At a lower temperature, an amorphous high dielectric substance containing a Group Ia element, an Mg element, or a Ca element can be provided, and heat treatment for crystallizing the amorphous high dielectric substance is performed at 250 ° C. or higher and 450 ° C.
The following can be performed. In these temperature ranges,
The reaction between the high dielectric and the electrode in contact with the high dielectric can be suppressed. Accordingly, a sound high dielectric can be formed, a dielectric element having a large capacitance, maintaining a high remanent polarization Pr value, and having good withstand voltage characteristics and functioning well can be obtained.

【0053】また、半導体装置が、誘電体がIa族元
素、Mg元素、またはCa元素を含む誘電体素子を有す
れば、低い温度で熱処理を行うことができるので、誘電
体と誘電体に接する電極とが反応することなく、誘電体
を形成することができ、健全に機能する誘電体素子を得
ることができる。FeRAMやDRAMなどの半導体装
置についてこのような誘電体素子を用いれば、大容量化
およびより低い電圧での動作が可能になる。
If the semiconductor device has a dielectric element containing a group Ia element, a Mg element, or a Ca element, the heat treatment can be performed at a low temperature, so that the dielectric is in contact with the dielectric. A dielectric can be formed without reacting with the electrode, and a soundly functioning dielectric element can be obtained. If such a dielectric element is used for a semiconductor device such as an FeRAM or a DRAM, it is possible to increase the capacity and operate at a lower voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SrBi2Ta29100重量部に対してKの
添加量を5重量部とした場合の450℃で作製したSr
Bi2Ta29層のSEM写真。
FIG. 1 shows Sr produced at 450 ° C. when the amount of K added is 5 parts by weight based on 100 parts by weight of SrBi 2 Ta 2 O 9.
SEM photograph of Bi 2 Ta 2 O 9 layer.

【図2】SrBi2Ta29100重量部に対してKの
添加量を5重量部とした場合の450℃で作製したSr
Bi2Ta29層のP−Eヒステリシス図。
FIG. 2 Sr produced at 450 ° C. when the amount of K added is 5 parts by weight with respect to 100 parts by weight of SrBi 2 Ta 2 O 9
FIG. 4 is a PE hysteresis diagram of a Bi 2 Ta 2 O 9 layer.

【図3】本発明による強誘電体素子を示す断面模式図。FIG. 3 is a schematic sectional view showing a ferroelectric element according to the present invention.

【図4】本発明による高誘電体素子を示す断面模式図。FIG. 4 is a schematic sectional view showing a high dielectric element according to the present invention.

【図5】熱処理温度と規格化したPr値の関係を示す
図。
FIG. 5 is a diagram showing a relationship between a heat treatment temperature and a normalized Pr value.

【図6】熱処理温度と規格化したε値の関係を示す図。FIG. 6 is a diagram showing a relationship between a heat treatment temperature and a normalized ε value.

【図7】本発明の強誘電体素子を用いた半導体装置の断
面模式図。
FIG. 7 is a schematic cross-sectional view of a semiconductor device using the ferroelectric element of the present invention.

【図8】単一元素添加量と結晶化温度の関係を示す図。FIG. 8 is a graph showing the relationship between the amount of a single element added and the crystallization temperature.

【図9】混合元素添加量と結晶化温度の関係を示す図。FIG. 9 is a graph showing the relationship between the amount of mixed element added and the crystallization temperature.

【図10】第1の実施例の強誘電体素子の製造方法を示
す図。
FIG. 10 is a diagram illustrating a method of manufacturing the ferroelectric element according to the first embodiment.

【図11】第5の実施例の非接触型メモリーカードを示
す図。
FIG. 11 is a view showing a non-contact type memory card according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

31,41,81,71…上部電極 32,72…強誘電体薄膜 42…高誘電体薄膜 33,43,73…下部電極 34,44…下地基板 50…非接触型メモリーカード 51…データ用ROM 52…FeRAM素子 53…非接触用インターフェイス 54…アンテナ 74,76…SiO2膜 75…Si 77…拡散層 78…ゲート電極 79…SiO2ゲート膜 710…アルミ配線31, 41, 81, 71: upper electrode 32, 72: ferroelectric thin film 42: high dielectric thin film 33, 43, 73: lower electrode 34, 44: base substrate 50: non-contact type memory card 51: data ROM 52: FeRAM element 53: non-contact interface 54: antenna 74, 76: SiO 2 film 75: Si 77: diffusion layer 78: gate electrode 79: SiO 2 gate film 710: aluminum wiring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 徹男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5F038 AC05 AC09 AC15 AC18 DF05 EZ14 EZ17 5F083 AD21 FR02 JA12 JA14 JA15 JA38 JA40 PR22 PR33  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuo Fujiwara 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kazutoshi Higashiyama 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 F term in Hitachi Research Laboratory, Hitachi Ltd. (reference) 5F038 AC05 AC09 AC15 AC18 DF05 EZ14 EZ17 5F083 AD21 FR02 JA12 JA14 JA15 JA38 JA40 PR22 PR33

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 誘電体と、前記誘電体に電圧を与える2
つの電極とを備える誘電体素子において、前記誘電体
は、Ia族元素、Mg元素、またはCa元素を含むこと
を特徴とする誘電体素子。
1. A dielectric, and a voltage applying means for applying a voltage to the dielectric.
A dielectric element, comprising: a group Ia element, an Mg element, or a Ca element.
【請求項2】 前記Ia族元素はLi,Na,Kである
ことを特徴とする請求項1の誘電体素子。
2. The dielectric device according to claim 1, wherein said group Ia element is Li, Na, K.
【請求項3】 前記誘電体は、前記誘電体100重量部
に対して、0.5重量部以上10重量部以下の割合で、
Ia族元素、Mg元素、またはCa元素を含むことを特
徴とする請求項1の誘電体素子。
3. The composition according to claim 1, wherein the dielectric is present in an amount of from 0.5 part by weight to 10 parts by weight based on 100 parts by weight of the dielectric.
2. The dielectric device according to claim 1, comprising a group Ia element, a Mg element, or a Ca element.
【請求項4】 前記誘電体は、化学構造式(AO)
2+(By-1y3y+12-(但し、AはTl,Hg,P
b,Bi、または希土類元素であり、 BはBi,Pb,Ca,Sr、またはBaであり、か
つ、 CはTi,Nb,Ta,W,Mo,Fe,Co,Cr、
またはZrである。)の結晶構造をもつことを特徴とす
る請求項1の誘電体素子。
4. The method according to claim 1, wherein the dielectric has a chemical structural formula (AO):
2+ (B y-1 C y O 3y + 1 ) 2- (where A is Tl, Hg, P
b, Bi, or a rare earth element, B is Bi, Pb, Ca, Sr, or Ba, and C is Ti, Nb, Ta, W, Mo, Fe, Co, Cr,
Or Zr. 2. The dielectric element according to claim 1, wherein the dielectric element has the crystal structure of (1).
【請求項5】 前記誘電体は、化学構造式(Pb
1-xx)(Zr1-yTiy)O3(但し、AはLa,B
a,またはNbであり、 0≦x≦0.2、かつ、 0<y≦1である。)の結晶構造をもつことを特徴とす
る請求項1の誘電体素子。
5. The method according to claim 1, wherein the dielectric has a chemical formula (Pb)
1-x A x ) (Zr 1-y Ti y ) O 3 (where A is La, B
a, or Nb, where 0 ≦ x ≦ 0.2 and 0 <y ≦ 1. 2. The dielectric element according to claim 1, wherein the dielectric element has the crystal structure of (1).
【請求項6】 前記誘電体は、化学構造式(Ba1-x
x)TiO3(但し、0≦x≦1である。)の結晶構造
をもつことを特徴とする請求項1の誘電体素子。
6. The dielectric material has a chemical structural formula (Ba 1-x S)
2. The dielectric element according to claim 1, wherein the dielectric element has a crystal structure of r x ) TiO 3 (where 0 ≦ x ≦ 1).
【請求項7】 誘電体と、前記誘電体に電圧を与える2
つの電極とを備える誘電体素子の製造方法において、I
a族元素、Mg元素、またはCa元素を含む誘電体の形
成を250℃以上500℃以下で行うことを特徴とする
誘電体素子の製造方法。
7. A dielectric, and 2 for applying a voltage to said dielectric
A method for manufacturing a dielectric element comprising:
A method for manufacturing a dielectric element, comprising forming a dielectric containing a group a element, a Mg element, or a Ca element at 250 ° C. or more and 500 ° C. or less.
【請求項8】 前記Ia族元素、前記Mg元素、または
前記Ca元素を含む非晶質な前記誘電体を設けるステッ
プと、非晶質な前記誘電体を結晶化する熱処理を、25
0℃以上500℃以下で行うステップとを含むことを特
徴とする請求項7の誘電体素子の製造方法。
8. A step of providing the amorphous dielectric containing the group Ia element, the Mg element, or the Ca element, and performing a heat treatment for crystallizing the amorphous dielectric.
8. The method for manufacturing a dielectric element according to claim 7, comprising a step of performing the heating at a temperature of 0 ° C. or more and 500 ° C. or less.
【請求項9】 前記誘電体の材料に、Ia族元素、Mg
元素、またはCa元素を添加するステップを含むことを
特徴とする請求項7の誘電体素子の製造方法。
9. The method according to claim 9, wherein the dielectric material is a group Ia element, Mg
The method for manufacturing a dielectric element according to claim 7, further comprising a step of adding an element or a Ca element.
【請求項10】 誘電体と、前記誘電体に電圧を与える
2つの電極とを備える誘電体素子を有する半導体装置に
おいて、前記誘電体は、Ia族元素、Mg元素、または
Ca元素を含むことを特徴とする半導体装置。
10. A semiconductor device having a dielectric element including a dielectric and two electrodes for applying a voltage to the dielectric, wherein the dielectric contains a group Ia element, a Mg element, or a Ca element. Characteristic semiconductor device.
JP10250062A 1998-09-03 1998-09-03 Dielectric element, its manufacture, and semiconductor device Pending JP2000077616A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10250062A JP2000077616A (en) 1998-09-03 1998-09-03 Dielectric element, its manufacture, and semiconductor device
KR1020007003089A KR20010024248A (en) 1998-09-03 1999-08-30 Dielectric capacitor and production process and semiconductor device
PCT/JP1999/004679 WO2000014804A1 (en) 1998-09-03 1999-08-30 Dielectric element and production method thereof and semiconductor device
US10/162,650 US20030030967A1 (en) 1998-09-03 2002-06-06 Dielectric capacitor and production process and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10250062A JP2000077616A (en) 1998-09-03 1998-09-03 Dielectric element, its manufacture, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2000077616A true JP2000077616A (en) 2000-03-14

Family

ID=17202243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250062A Pending JP2000077616A (en) 1998-09-03 1998-09-03 Dielectric element, its manufacture, and semiconductor device

Country Status (3)

Country Link
JP (1) JP2000077616A (en)
KR (1) KR20010024248A (en)
WO (1) WO2000014804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190476A (en) * 2000-12-20 2002-07-05 Ulvac Japan Ltd Method of forming dielectric film
JP2016066822A (en) * 2016-01-20 2016-04-28 株式会社ユーテック Ferroelectric crystal film and manufacturing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545850B2 (en) * 1995-09-08 2004-07-21 シャープ株式会社 Ferroelectric thin film element
JPH09139474A (en) * 1995-11-14 1997-05-27 Murata Mfg Co Ltd Dielectric thin film element and its manufacture
JP3595098B2 (en) * 1996-02-22 2004-12-02 株式会社東芝 Thin film capacitors
JPH10229080A (en) * 1996-12-10 1998-08-25 Sony Corp Processing method of oxide, deposition method of amorphous oxide film and amorphous tantalun oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190476A (en) * 2000-12-20 2002-07-05 Ulvac Japan Ltd Method of forming dielectric film
JP2016066822A (en) * 2016-01-20 2016-04-28 株式会社ユーテック Ferroelectric crystal film and manufacturing method of the same

Also Published As

Publication number Publication date
WO2000014804A1 (en) 2000-03-16
KR20010024248A (en) 2001-03-26

Similar Documents

Publication Publication Date Title
US6777248B1 (en) Dielectric element and manufacturing method therefor
JP3103916B2 (en) Ferroelectric capacitor, method of manufacturing the same, and memory cell using the same
US8357585B2 (en) Semiconductor device and method of manufacturing the same
JPH10189906A (en) Capacitor structure of semiconductor memory cell and manufacture thereof
KR100322220B1 (en) Semiconductor memory device and manufacturing method thereof
JP4299959B2 (en) Manufacturing method of semiconductor device
JP2004214569A (en) Ferroelectric capacitor, method for manufacturing same, and semiconductor device
JP3564354B2 (en) Nonvolatile ferroelectric capacitor and nonvolatile ferroelectric memory
JP2003258202A (en) Method for manufacturing semiconductor device
WO1998008255A1 (en) Method for manufacturing oxide dielectric device, and memory and semiconductor device usign the device
JPH11233733A (en) Electronic parts and its manufacture
JP2002151656A (en) Semiconductor device and manufacturing method therefor
US6495412B1 (en) Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JPH11243179A (en) Ferroelectric memory and packaging method thereof
JP2000077616A (en) Dielectric element, its manufacture, and semiconductor device
US20110140238A1 (en) Semiconductor device and manufacturing method thereof
US6441415B1 (en) Ferroelectric and paraelectric thin film devices using dopants which eliminate ferroelectricity
JP2002190578A (en) Semiconductor device and manufacturing method therefor
JP2002016234A (en) Ferroelectric thin-film memory device and method of manufacturing the same
US20030030967A1 (en) Dielectric capacitor and production process and semiconductor device
JP2005216951A (en) Stratified anti-ferroelectric, capacitor and memory and manufacturing methods for these
JP2001028426A (en) Semiconductor device and manufacture thereof
JP2001094065A (en) Ferroelectric memory and method for manufacture thereof
JPH09213899A (en) Non-volatile memory device provided with ferroelectric film
JP2006128718A (en) Oxide dielectric element