JP2000047031A - Polarizer - Google Patents

Polarizer

Info

Publication number
JP2000047031A
JP2000047031A JP21585298A JP21585298A JP2000047031A JP 2000047031 A JP2000047031 A JP 2000047031A JP 21585298 A JP21585298 A JP 21585298A JP 21585298 A JP21585298 A JP 21585298A JP 2000047031 A JP2000047031 A JP 2000047031A
Authority
JP
Japan
Prior art keywords
polarizer
substrate
single crystal
metal
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21585298A
Other languages
Japanese (ja)
Inventor
Mineo Isokami
峯男 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21585298A priority Critical patent/JP2000047031A/en
Publication of JP2000047031A publication Critical patent/JP2000047031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarizer having excellent homogeneity and stable performance without performing a conventional procedure for dispersing metallic particles in a parent phase. SOLUTION: This polarizer 1 is formed by arranging granules 5 having optical absorption anisotropy in plural recessed part 4 formed on at least one principal surface 2a of a substrate 2 consisting of a transparent single crystal. Accordingly, the arrangement of the granules 5 in a polarization section can easily be made to have a desired form. In particular, by integrating the granules 5 with the crystal lattice of the transparent single crystal that is a parent phase material, in a specific crystallographic direction to closely combine them, a polarizer having uniform high homogeneity can be formed. Further, the post- processing stages affecting polarization characteristics, such as conventional stretching stage and lamination stage, can be eliminated. Thus, the objective epochal polarizer which has very stable quality and further, excellent characteristics, can be manufactured in high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信機器,光記
録機器,光センサー等に使用可能な偏光子に関するもの
であり、特に光通信用機器に用いられる光アイソレータ
に好適に使用可能な偏光子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer which can be used for optical communication equipment, optical recording equipment, optical sensors, etc., and more particularly to a polarizer which can be suitably used for an optical isolator used for optical communication equipment. About the child.

【0002】[0002]

【従来技術とその課題】従来の偏光子は、ある種の溶液
をセル内に入れたものや、プラスチックに着色剤を入れ
たもののごとく着色イオンを利用した素子、基板上に誘
電体薄膜を多数積層し多層薄膜の干渉を利用した素子、
複屈折の大きな結晶で構成されたグラントムソンプリズ
ムに代表される偏光プリズム、ブリュースター条件を利
用して、偏光成分を分離するPBS(偏光ビームスプリ
ッター)、あるいは高分子材料を一定方向に配向させ、
一方向の偏光成分を吸収する偏光フィルムなどが主流で
あった。
2. Description of the Related Art Conventional polarizers include elements using colored ions, such as a cell in which a certain kind of solution is put in a cell, a cell in which a colorant is put in a plastic, and a large number of dielectric thin films on a substrate. An element that uses stacked multilayer thin film interference,
A polarizing prism typified by a Glan-Thompson prism composed of a crystal having a large birefringence, a PBS (polarizing beam splitter) that separates polarized light components using Brewster conditions, or a polymer material is oriented in a certain direction.
A polarizing film or the like that absorbs a polarized light component in one direction has been mainly used.

【0003】上記偏光子では着色イオンを利用したもの
は波長依存性が大きく、波長毎に最適な波長特性を有す
るものを選択しなければならなかった。また、屈折率の
大きな結晶で構成されたものは波長依存性は小さいが、
加工が困難で素子寸法に制限があり、小型化し難いな
ど、これまで小型で且つ波長特性に優れた偏光子はなか
った。
[0003] Among the above polarizers, those using colored ions have a large wavelength dependence, and it is necessary to select a polarizer having an optimum wavelength characteristic for each wavelength. In addition, a crystal composed of a crystal having a large refractive index has a small wavelength dependency,
Until now, there has been no compact polarizer with excellent wavelength characteristics, for example, it is difficult to process, the element size is limited, and it is difficult to reduce the size.

【0004】上記偏光子に対して、最近光通信用デバイ
スとして偏光ガラスが使用されており、例えば、透明な
ガラスを透明固体媒体とし、この媒体中に楕円状の銀粒
子を一定方向に揃えて分散させ異方性を持たせた構造の
ものが知られている(特公平2−40619号公報等を
参照)。
For the above-mentioned polarizer, a polarizing glass has recently been used as an optical communication device. For example, a transparent glass is used as a transparent solid medium, and elliptical silver particles are aligned in a certain direction in this medium. A structure having a dispersed and anisotropic structure is known (see Japanese Patent Publication No. 2-40619).

【0005】この偏光ガラスは、以下のようにして製造
される。まず、銀及び塩化物、臭化物及びヨウ化物より
成る群から選択された少なくとも一つのハロゲン化物よ
り成るガラス用バッチを溶融し、必要とされる形状のガ
ラス素地に成型する。次に、上記ガラス素地を定められ
た条件にて熱処理を行い、ガラス中にハロゲン化銀粒子
を析出させる。さらに、上記ガラス素地を定められた温
度範囲において張力を加えて延伸し、上記ハロゲン化銀
粒子を伸長させ、張力方向へ整列させる。最後に、上記
伸長されたガラス素地を定められた温度範囲において還
元雰囲気中に暴露し、ハロゲン化銀の一部を金属銀粒子
に還元することによって、上記偏光子を得ることができ
る。
[0005] This polarizing glass is manufactured as follows. First, a glass batch consisting of at least one halide selected from the group consisting of silver and chloride, bromide and iodide is melted and formed into a glass body of the required shape. Next, a heat treatment is performed on the above-mentioned glass base under predetermined conditions to precipitate silver halide grains in the glass. Further, the glass base is stretched by applying a tension in a predetermined temperature range, so that the silver halide grains are elongated and aligned in the tension direction. Finally, the above polarizer can be obtained by exposing the stretched glass substrate to a reducing atmosphere in a predetermined temperature range to reduce a part of the silver halide to metallic silver particles.

【0006】ところが、この偏光子の製造方法は、ハロ
ゲン化銀から金属銀を析出するために、還元雰囲気中に
て熱処理を行っているため、これによりガラス素地内に
析出する金属銀の量を制御することは困難であり、安定
した光学特性を得ることが出来なかった。そのため、こ
のガラス素地を加熱延伸しても、安定して再現性良く偏
光特性を得ることが困難であった。
However, in this method for producing a polarizer, heat treatment is performed in a reducing atmosphere in order to precipitate metallic silver from silver halide. Therefore, the amount of metallic silver precipitated in the glass substrate is reduced. It is difficult to control, and stable optical characteristics cannot be obtained. For this reason, it has been difficult to stably obtain polarization characteristics with good reproducibility even when the glass substrate is stretched by heating.

【0007】また、ガラス素地内の厚さ方向に温度分布
が存在することにより、中心部に金属銀に還元されなか
ったハロゲン化銀が残留し、これが透過率に悪影響を及
ぼすという問題もあった。
In addition, there is a problem that silver halide not reduced to metallic silver remains in the center due to the temperature distribution in the thickness direction in the glass base, which adversely affects the transmittance. .

【0008】さらに、ハロゲン化銀粒子は、金属銀に還
元される際に1/3程の体積収縮を伴うため、還元が行
われているガラス素地の表面部分はポーラスとなり、長
期信頼性において問題があった。
Further, since silver halide grains undergo volume contraction of about 1/3 when reduced to metallic silver, the surface portion of the glass substrate being reduced becomes porous, which causes a problem in long-term reliability. was there.

【0009】そこで、ガラス等の誘電体基板上に真空蒸
着等の薄膜製造プロセスを利用して不連続な島状粒子層
と、ガラス等の誘電体層を交互に形成し、加熱延伸によ
って異方性を持たせるようにしたものが提案されている
(例えば、1990年電子情報通信学会秋季全国大会予
稿集C−212を参照)。
Therefore, a discontinuous island-like particle layer and a dielectric layer such as glass are alternately formed on a dielectric substrate such as glass by using a thin film manufacturing process such as vacuum deposition and the like. A proposal has been made to have the property (see, for example, Proceedings of the Institute of Electronics, Information and Communication Engineers Autumn National Convention 1990, C-212).

【0010】この偏光子は、上記島状の金属粒子層にお
ける各島が金属粒子の役割を果たし、金属粒子を分散さ
せたものと同じ構造になるが、積層中に金属粒子がガラ
ス膜中へ拡散してしまい、安定した偏光特性を得ること
が難しく、特に、所望の波長において、消光比を得るこ
とが困難であった。以上のように、これまでの金属粒子
分散によるガラス偏光子は、ガラス中への金属粒子の分
散の不均質、分散金属粒子の力学的な伸長の不均質、金
属粒子のガラス中への拡散と固溶による局所的な不均質
など均質性に問題があり、また積層タイプの偏光子で
は、製造工程が煩雑となる上に、歩留りに問題があっ
た。
In this polarizer, each island in the island-shaped metal particle layer functions as a metal particle and has the same structure as that in which the metal particles are dispersed, but the metal particles are deposited in the glass film during lamination. However, it is difficult to obtain stable polarization characteristics, and it is particularly difficult to obtain an extinction ratio at a desired wavelength. As described above, conventional glass polarizers based on metal particle dispersion have inhomogeneous dispersion of metal particles in glass, inhomogeneous mechanical elongation of dispersed metal particles, diffusion of metal particles into glass. There is a problem in homogeneity such as local inhomogeneity due to solid solution, and in the case of a laminated type polarizer, the production process is complicated and there is a problem in yield.

【0011】そこで、本発明は従来のように金属粒子を
母相中に分散させることなしに、均質性に優れ、安定し
た性能を有する偏光子を提供することを目的とする。
Accordingly, an object of the present invention is to provide a polarizer having excellent homogeneity and stable performance without dispersing metal particles in a matrix as in the prior art.

【0012】[0012]

【課題を解決するための手段】上記課題を達成するため
に、本発明の偏光子は、透明単結晶から成る基板の少な
くとも一主面に形成させた複数の凹部に、光吸収異方性
を有する粒状体を配設して成る。
In order to achieve the above object, the polarizer of the present invention has a plurality of concave portions formed on at least one main surface of a substrate made of a transparent single crystal, and has a light absorption anisotropy. Having a granular material having the same.

【0013】また、本発明の偏光子は、粒状体が例えば
柱状(針状を含む)を成す単結晶体であることを特徴と
する。
The polarizer of the present invention is characterized in that the granular material is, for example, a single crystal having a columnar shape (including a needle shape).

【0014】また、本発明の偏光子は、基板がSi
2 、LiNbO3 、LiTaO3 、Gd3 Ga
5 12、Al2 3 のうち一種以上から成り、粒状体が
Al、Cu、Fe、Sn、Ti、Zn、Cd、Ag、N
i、Mn、Coのうち一種以上から成ることを特徴とす
る。ここで、上記基板は無色透明な光学結晶であり、大
型単結晶が容易に育成できる点で好適である。また、上
記金属元素は針状単結晶が得られやすいものとして好適
である。
In the polarizer of the present invention, the substrate is made of Si.
O 2 , LiNbO 3 , LiTaO 3 , Gd 3 Ga
It is composed of at least one of 5 O 12 and Al 2 O 3 , and the granular material is Al, Cu, Fe, Sn, Ti, Zn, Cd, Ag, N
It is characterized by comprising at least one of i, Mn, and Co. Here, the substrate is a colorless and transparent optical crystal, which is preferable in that a large single crystal can be easily grown. Further, the above metal elements are suitable as those from which needle-like single crystals can be easily obtained.

【0015】また、本発明の偏光子は、光吸収異方性を
有する粒状体の平均短軸長さが10nm〜100nmで
あることを特徴とする。これは、10nm未満である
と、所望の波長領域(光通信で使用される1.3μm〜
1.55μm帯域)で吸収が生じず、良好な偏光特性が
得られないからであり、100nmを越えると上記波長
領域で回折,反射,散乱などが生じ、良好な偏光特性が
得られないからである。
Further, the polarizer of the present invention is characterized in that the granular material having anisotropic light absorption has an average minor axis length of 10 nm to 100 nm. If this is less than 10 nm, the desired wavelength range (from 1.3 μm to
(1.55 μm band), no absorption occurs, and good polarization characteristics cannot be obtained. If it exceeds 100 nm, diffraction, reflection, scattering, etc. occur in the above-mentioned wavelength region, and good polarization characteristics cannot be obtained. is there.

【0016】上記凹部は、例えば、まず透明単結晶への
サブミクロンオーダーの埋設溝を形成するようにしても
よい。そして、この埋設溝へ金属微結晶を充填し、その
後の充填金属結晶の長さを一定に揃えるための後処理工
程でもって所望の偏光子を製造する。
In the recess, for example, a submicron-order buried groove may be formed in a transparent single crystal. Then, the buried groove is filled with metal microcrystals, and a desired polarizer is manufactured in a post-processing step for making the length of the metal crystal filled thereafter uniform.

【0017】また、金属微結晶の生成は、還元法、気相
からの凝縮、固相からの成長法等が適用でき、金属元素
源としては低融点金属もしくはハロゲン化物が利用され
る。また、上記サブミクロンオーダーの埋設溝の形成
は、各種超微細加工技術を用いることができ、また金属
微結晶の充填法は凹部に直接金属結晶を成長させる手法
や別工程で生成させた金属微結晶を物理的手法や機械的
手法により凹部を充填する方法が使用できる。さらに後
処理工程は金属微結晶の長さを一定にし、凹部以外の金
属微結晶を除去するための表面処理とそれに引き続く基
板との固着を確実にし、一体化させるために加熱処理や
加圧処理等が適宜用いられる。
For the production of metal microcrystals, a reduction method, condensation from a gas phase, growth from a solid phase, and the like can be applied. A low melting point metal or halide is used as a metal element source. Various submicron processing techniques can be used to form the buried trench on the order of submicron, and the method of filling metal microcrystals can be a method of directly growing metal crystals in the recesses or a metal microcrystal formed by another process. A method of filling the concave portion of the crystal by a physical method or a mechanical method can be used. In the post-treatment process, the length of the metal microcrystals is kept constant, surface treatment for removing the metal microcrystals other than the recesses is ensured, and subsequent fixation to the substrate, and heat treatment and pressure treatment for integration. And the like are appropriately used.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1に示すように、偏光子1は、Si
2 、LiNbO3 、LiTaO3 、Gd3 Ga
5 12、Al2 3 のうち一種以上から成る透明単結晶
から成る基板2の少なくとも一方の主面2aに、偏光部
3を設けたものである。この偏光部3は基板2の表面下
に数10nmの間隔をおいて多数形成された、径10n
m〜100nm、深さサブミクロンオーダーの凹部であ
る配設穴4に、充填された柱状(針状を含む)の金属単
結晶等の粒状体5から構成される。ここで、粒状体5は
Al、Cu、Fe、Sn、Ti、Zn、Cd、Ag、N
i、Mn、Coのうち一種以上から成るものとする。ま
た、基板2の上記偏光部以外の面に入射する光を遮蔽す
るために、Cr,Au,もしくはそれらの合金の遮蔽膜
6を被着形成する。なお、上記透明単結晶の透明とは偏
光子1の使用波長の光に対して透明という意味である。
As shown in FIG. 1, the polarizer 1 is made of Si.
O 2 , LiNbO 3 , LiTaO 3 , Gd 3 Ga
A polarizing part 3 is provided on at least one main surface 2a of a substrate 2 made of a transparent single crystal made of at least one of 5 O 12 and Al 2 O 3 . A large number of the polarizing parts 3 are formed under the surface of the substrate 2 at intervals of several tens nm, and have a diameter of 10 n.
An arrangement hole 4 which is a concave portion having a depth of submicron order of m to 100 nm is formed of a granular material 5 such as a columnar (including needle-like) metal single crystal filled therein. Here, the granular material 5 is made of Al, Cu, Fe, Sn, Ti, Zn, Cd, Ag, N
It shall be composed of one or more of i, Mn, and Co. Further, in order to shield light incident on the surface of the substrate 2 other than the above-mentioned polarizing portion, a shielding film 6 made of Cr, Au, or an alloy thereof is formed. Note that the transparency of the transparent single crystal means that the transparent single crystal is transparent to light having the wavelength used by the polarizer 1.

【0020】このように構成された偏光子1は、基板2
の側面2b側から入射された光L1が、粒状体5の長軸
方向で光が吸収されるため、この長軸方向成分が除去さ
れた偏光光L2となって出射される。このような偏光特
性を有する偏光子1は、特に光アイソレータとして好適
に使用可能である。
The polarizer 1 configured as described above includes a substrate 2
Since the light L1 incident from the side surface 2b of the granular material 5 is absorbed in the long axis direction of the granular material 5, the light L1 is emitted as the polarized light L2 from which the long axis direction component is removed. The polarizer 1 having such polarization characteristics can be suitably used particularly as an optical isolator.

【0021】次に、この偏光子1の製造方法の一例を図
2(a),(b)に基づいて説明する。例えば、図2
(a)に示すように、C面を主面2aとする1インチサ
イズで厚み約500 μm 程度の水晶基板2を用意し、この
基板2の表面2aにホトリソグラフィーとリアクティブ
イオンエッチング等により、C面に垂直な径約30n
m、深さ約300nmの配設穴4を形成する。なお、こ
の凹部である配設穴の形状は凹部を形成するマスク形状
により主に決定され、種々の形状に形成可能である。
Next, an example of a method for manufacturing the polarizer 1 will be described with reference to FIGS. 2 (a) and 2 (b). For example, FIG.
As shown in (a), a 1-inch quartz substrate 2 having a thickness of about 500 μm having a C surface as a main surface 2a is prepared, and the surface 2a of the substrate 2 is subjected to photolithography and reactive ion etching or the like. Approximately 30n in diameter perpendicular to the C plane
An arrangement hole 4 having a depth of about 300 nm is formed. Note that the shape of the arrangement hole, which is the concave portion, is mainly determined by the shape of the mask that forms the concave portion, and can be formed into various shapes.

【0022】次に、石英管の下部に高純度Sn原料を入
れたボートを、上部に上記水晶基板2の表面2aを対向
配置した後、石英管を封入し、2段炉で加熱処理を行
う。この際、上の炉の温度を約160℃、下の炉の温度
を約240℃と設定する。この結果、基板2の表面2a
及び配設穴4には、径20nm〜500nmで最大長さ
0.1mm程度の〔100〕方位の針状結晶が生成す
る。次いで、フッ酸を用い配設穴4中に成長した以外の
表面に成長付着した余分なSn微結晶を除去し、基板2
の表面を清浄化する。そして、清浄化した基板2を最終
的に真空炉で約180℃の熱処理を行うことで、図2
(b)に示すような所望の偏光子1を得ることが出来
る。
Next, a boat containing a high-purity Sn raw material is placed at the bottom of the quartz tube, and the surface 2a of the quartz substrate 2 is placed at the top of the boat. The quartz tube is sealed, and heat treatment is performed in a two-stage furnace. . At this time, the temperature of the upper furnace is set to about 160 ° C., and the temperature of the lower furnace is set to about 240 ° C. As a result, the surface 2a of the substrate 2
In the arrangement hole 4, needle-like crystals having a diameter of 20 nm to 500 nm and a maximum length of about 0.1 mm and having a [100] orientation are generated. Next, excess Sn microcrystals grown and adhered to the surface other than those grown in the arrangement holes 4 using hydrofluoric acid were removed.
Clean the surface of. Then, the cleaned substrate 2 is finally subjected to a heat treatment at about 180 ° C. in a vacuum furnace, thereby obtaining the heat treatment shown in FIG.
A desired polarizer 1 as shown in (b) can be obtained.

【0023】上述した金属微結晶の充填法についての直
接的な手法以外に、以下のような間接的な手法も適用可
能である。すなわち、スパッタ装置などの薄膜形成装置
を用い、Sn粒子を上記基板2の配設穴4中に堆積充填
せしめ、イオンスパッタリングにより表面2aの清浄化
の後、Snの融液からの結晶成長を行い、〔100〕柱
状結晶を得る方法も適用可能である。
In addition to the above-described direct method of filling the metal microcrystals, the following indirect method is also applicable. That is, Sn particles are deposited and filled in the arrangement holes 4 of the substrate 2 using a thin film forming apparatus such as a sputtering apparatus, and after the surface 2a is cleaned by ion sputtering, crystal growth from a melt of Sn is performed. , [100] A method of obtaining columnar crystals is also applicable.

【0024】これによれば、配設穴4は特定の結晶学的
方位に形成できるため、母材と埋設した金属微結晶の格
子整合性を制御可能で、特に柱状(針状を含む)結晶の
成長が容易となり、且つ結晶境界面は整合性良く一体化
され、緻密な構造となるので好適である。
According to this, since the disposing holes 4 can be formed in a specific crystallographic orientation, the lattice matching between the base material and the buried metal microcrystals can be controlled. In particular, the columnar (including needle-like) crystals can be formed. This is preferable because the growth of GaAs becomes easy, and the crystal boundary surface is integrated with good consistency to form a dense structure.

【0025】さらに、金属微結晶の形状及び密度分布
は、形成する配設穴により一義的に決定されるので、バ
ラツキのほどんとない非常に高い均質性が得られ、この
結果、従来にない優れた偏光特性を有する偏光子が得ら
れる。
Further, since the shape and density distribution of the metal microcrystals are uniquely determined by the arrangement holes to be formed, very high homogeneity with little variation can be obtained, and as a result, there is no prior art. A polarizer having excellent polarization characteristics is obtained.

【0026】偏光部3の態様は上記のように限定される
ものではなく、例えば、図3に示す偏光子31のよう
に、基板31に形成する凹部である配設穴34を主面3
2aに対して垂直ではなく、光入射方向に対して斜め方
向に形成して、この配設穴34内に粒状体35を充填
(形成)するようにしてもよい。この偏光子31は、偏
光子1のように基板32に遮蔽膜6の形成は不要であ
る。この偏光子31の場合、主面32a側から入射させ
た光L1は、粒状体35の長軸方向成分が除去され、出
射光L2となる。
The mode of the polarizing section 3 is not limited as described above. For example, as shown in a polarizer 31 shown in FIG.
Instead of being perpendicular to 2a, it may be formed obliquely to the light incident direction, and the arrangement holes 34 may be filled (formed) with the granular material 35. The polarizer 31 does not require the formation of the shielding film 6 on the substrate 32 like the polarizer 1. In the case of the polarizer 31, the light L1 made incident from the main surface 32a side has the long-axis direction component of the granular material 35 removed, and becomes the emitted light L2.

【0027】また、図4に示すように、基板41に凹部
を直方体状の配設溝44に形成してもよく、この配設溝
44に粒状体45を充填(形成)するようにしてもよ
い。この偏光子31も、偏光子1のように基板32に遮
蔽膜6の形成は不要であり。偏光子31と同様に、主面
42a側から入射させた光L1は、粒状体45の長軸方
向成分が除去され、出射光L2となる。
As shown in FIG. 4, a concave portion may be formed in the substrate 41 in a rectangular parallelepiped arrangement groove 44, and the arrangement groove 44 may be filled (formed) with a granular material 45. Good. This polarizer 31 also does not require the formation of the shielding film 6 on the substrate 32 like the polarizer 1. As in the case of the polarizer 31, the light L1 incident from the main surface 42a side has the long-axis direction component of the granular material 45 removed, and becomes the emitted light L2.

【0028】[0028]

【実施例】以下、本発明の具体的な実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0029】(例1)C面を主面とする1インチサイズ
で厚み500μm の水晶基板を用意し、この基板の表面
にフォトリソグラフィーとリアクティブイオンエッチン
グによりC面に垂直に平均約300nmの間隔で、径約
30nm,深さ約500nmの配設穴を形成した。
(Example 1) A 1-inch-size, 500-μm-thick quartz substrate having a C-plane as a main surface is prepared, and the surface of the substrate is vertically perpendicular to the C-plane by an average distance of about 300 nm by photolithography and reactive ion etching. Thus, an arrangement hole having a diameter of about 30 nm and a depth of about 500 nm was formed.

【0030】次に、石英管の下部に高純度Al原料を入
れたボートを、上部に水晶基板の表面を対向配置した
後、石英管を減圧封止し、2段炉で約30分間加熱処理
を行った。この際、上の炉の温度を550℃、下の炉の
温度を630℃に設定した。
Next, a boat containing high-purity Al raw material is placed at the bottom of the quartz tube, and the surface of the quartz substrate is placed at the top. The quartz tube is sealed under reduced pressure, and heat-treated in a two-stage furnace for about 30 minutes. Was done. At this time, the temperature of the upper furnace was set to 550 ° C, and the temperature of the lower furnace was set to 630 ° C.

【0031】この結果、水晶基板の表面及び配設穴には
径20nm〜200nm、最大長約0.5mmの<10
0>針状結晶が生成していた。
As a result, a diameter of 20 nm to 200 nm and a maximum length of about 0.5 mm <10 mm
0> Needle-like crystals were formed.

【0032】次いで、基板を20%か性ソーダ水溶液
(60℃〜90℃)中で洗浄し、基板表面の清浄化を行
った後、真空炉で約500,約3時間の熱処理を行っ
た。
Next, the substrate was washed in a 20% aqueous solution of caustic soda (60 ° C. to 90 ° C.) to clean the surface of the substrate, and then heat-treated for about 500 hours in a vacuum furnace for about 3 hours.

【0033】また、偏光部以外の面から光が入射しない
ように、遮蔽膜であるCr膜を蒸着法により数μmの厚
みで被着形成した。
Further, a Cr film as a shielding film was formed to a thickness of several μm by a vapor deposition method so that light did not enter from a surface other than the polarizing portion.

【0034】このようにして得られた基板から3mm×
3mmサイズの偏光子を製作し、その偏光特性を測定し
たところ、消光比50dB、挿入損失0.06dBと優
れた特性値を示した。
The substrate thus obtained is 3 mm ×
When a polarizer having a size of 3 mm was manufactured and its polarization characteristics were measured, it showed excellent characteristics such as an extinction ratio of 50 dB and an insertion loss of 0.06 dB.

【0035】(例2)C面を主面とする2インチサイズ
で厚み500μm のLiNbO3 単結晶を用意し、例1
と同様な方法で、平均約200nmの間隔で、径約25
nm,深さ約300nmの配設穴を形成した。
Example 2 A 2-inch LiNbO 3 single crystal having a thickness of 500 μm and having a C-plane as a main surface was prepared.
In the same manner as described above, the average diameter is about
An arrangement hole having a thickness of about 300 nm and a depth of about 300 nm was formed.

【0036】次に、金属原料として高純度亜鉛を用い、
ガラス管に約300mmHgのヘリウムを封入し、蒸発
部の温度約375℃、凝縮部の温度約350℃となるよ
うに設定した温度勾配炉中で、基板を約30分間加熱処
理を施した。
Next, using high-purity zinc as a metal raw material,
Helium of about 300 mmHg was sealed in a glass tube, and the substrate was subjected to heat treatment for about 30 minutes in a temperature gradient furnace set so that the temperature of the evaporating section was about 375 ° C and the temperature of the condensing section was about 350 ° C.

【0037】この結果、基板表面及び配設穴には径10
nm〜150nm、最大長約1mmの針状結晶が生成し
ていた。
As a result, a diameter of 10 mm is applied to the substrate surface and the arrangement holes.
Needle-like crystals having a maximum length of about 1 mm were formed.

【0038】次いで、基板を約10%硝酸溶液中で表面
清浄化処理を行い、しかる後に真空炉で約330℃、約
2時間の熱処理を施した。このようにして得られた基板
から例1と同サイズの偏光子を作製し、その偏光特性を
測定したところ、消光比55dB、挿入損失0.05d
Bと優れた特性値を示した。
Next, the substrate was subjected to a surface cleaning treatment in an approximately 10% nitric acid solution, followed by a heat treatment at approximately 330 ° C. for approximately 2 hours in a vacuum furnace. A polarizer of the same size as in Example 1 was produced from the substrate thus obtained, and its polarization characteristics were measured. The extinction ratio was 55 dB and the insertion loss was 0.05 d.
B and excellent characteristic values were exhibited.

【0039】(例3)C面を主面とする2インチサイズ
で厚み約350μm のLiTaO3 単結晶を用意し、例
1と同様な方法で、平均約500nmの間隔で、径約4
0nm,深さ約600nmの溝を形成した。次に、金属
原料として高純度カドミウムを用い、ガラス管に約50
0mmHgの水素を封入し、蒸発部の温度約330℃、
凝縮部の温度約250℃となるように設定した温度勾配
炉中で、基板を約15分間加熱処理を施した。
(Example 3) A LiTaO 3 single crystal having a thickness of about 350 μm and a size of about 350 μm and having a C-plane as a main surface was prepared.
A groove having a thickness of 0 nm and a depth of about 600 nm was formed. Next, using high-purity cadmium as a metal raw material, about 50
0 mmHg of hydrogen is sealed, and the temperature of the evaporating section is about 330 ° C.
The substrate was subjected to a heat treatment for about 15 minutes in a temperature gradient furnace set to a temperature of about 250 ° C. in the condenser section.

【0040】この結果、基板表面及び配設穴には径30
nm〜500nm、最大長約2mmの針状結晶が生成し
ていた。次いで、基板を濃塩酸溶液で表面清浄化処理を
行った後、真空炉で約230℃、約2時間の熱処理を施
した。
As a result, a diameter of 30 mm is applied to the substrate surface and the arrangement holes.
Needle-like crystals having a maximum length of about 2 mm were formed. Next, the substrate was subjected to a surface cleaning treatment with a concentrated hydrochloric acid solution, and then subjected to a heat treatment in a vacuum furnace at about 230 ° C. for about 2 hours.

【0041】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を製作し、その偏光特性を
測定したところ、消光比50dB、挿入損失0.07d
Bと優れた特性値を示した。
A polarizer having the same size as in Example 1 was manufactured from the polarizer substrate thus obtained, and its polarization characteristics were measured. The extinction ratio was 50 dB and the insertion loss was 0.07 d.
B and excellent characteristic values were exhibited.

【0042】(例4)(110)面を主面とする2イン
チサイズで厚み約400μm のGa3 Gd512単結晶
を用意し、例1と同様な方法で、平均約600nmの間
隔で、径約350nm,深さ約700nmの配設穴を形
成した。次に、金属源として高純度銀を用い、例1と同
様な加熱方法で約15分加熱処理を行った。本例では上
の炉の温度は約850℃、下の炉の温度は約940℃と
した。
Example 4 A 2 inch-sized Ga 3 Gd 5 O 12 single crystal having a (110) plane as a main surface and a thickness of about 400 μm was prepared, and was prepared in the same manner as in Example 1 at an average interval of about 600 nm. An arrangement hole having a diameter of about 350 nm and a depth of about 700 nm was formed. Next, using high-purity silver as a metal source, a heat treatment was performed for about 15 minutes by the same heating method as in Example 1. In this example, the temperature of the upper furnace was about 850 ° C., and the temperature of the lower furnace was about 940 ° C.

【0043】この結果、基板表面及び配設穴には<11
0>方位で径20nm〜150nm,最大長約0.1m
mの針状結晶が生成していた。次いで、基板を約55%
硝酸第二鉄溶液で表面清浄化処理を行った後、真空炉で
約800℃、約3時間の熱処理を行った。
As a result, <11
0> azimuth diameter 20nm-150nm, maximum length about 0.1m
m of acicular crystals were formed. Then, about 55%
After performing a surface cleaning treatment with a ferric nitrate solution, heat treatment was performed in a vacuum furnace at about 800 ° C. for about 3 hours.

【0044】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その偏光特性を
測定したところ、消光比55dB、挿入損失0.05d
Bと優れた特性値を示した。
A polarizer having the same size as in Example 1 was produced from the polarizer substrate thus obtained, and its polarization characteristics were measured. The extinction ratio was 55 dB and the insertion loss was 0.05 d.
B and excellent characteristic values were exhibited.

【0045】(例5)例4と同じ基板で、金属源として
CuIを用い、水素還元法でCuの針状結晶の生成を行
った。本例では、横型炉を用い、Ptボートに上記原料
粉末を入れ、水素気流中(3cc/秒)、約630℃で約
10分間加熱し、その後冷却部に移動し、ヘリウムガス
置換した。
(Example 5) On the same substrate as in Example 4, CuI was used as a metal source, and needle-like crystals of Cu were produced by a hydrogen reduction method. In this example, the raw material powder was put in a Pt boat using a horizontal furnace, heated in a hydrogen stream (3 cc / sec) at about 630 ° C. for about 10 minutes, and then moved to a cooling section to be replaced with helium gas.

【0046】この結果、基板表面及び配設穴には<11
0>方位で径30nm〜500nm,最大長約2mmの
針状結晶が生成していた。次いで、基板を濃硝酸300
ミリリットル+水700ミリリットル中で表面清浄化処
理を行った後、真空炉で約600℃,2時間の熱処理を
行った。
As a result, <11
Needle-like crystals having a diameter of 30 nm to 500 nm and a maximum length of about 2 mm were generated in the 0> direction. Then, the substrate was concentrated
After the surface cleaning treatment was performed in milliliter + 700 ml of water, heat treatment was performed in a vacuum furnace at about 600 ° C for 2 hours.

【0047】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その偏光特性を
測定したところ、消光比58dB,挿入損失0.03d
Bと優れた特性値を示した。
From the polarizer substrate thus obtained, a polarizer having the same size as in Example 1 was produced, and its polarization characteristics were measured. The extinction ratio was 58 dB and the insertion loss was 0.03 d.
B and excellent characteristic values were exhibited.

【0048】(例6)例4と同じ基板で、金属源として
FeBr2 を用い、窒素+水素混合気流中(流量比N2
/H2 =5/1)で還元処理を行い、針状結晶の生成を
行った。本例での生成温度は約700℃とし、処理時間
は約15分であった。
[0048] (Example 6) with the same substrate as in Example 4, using FeBr 2 as a metal source, a nitrogen and hydrogen mixed gas stream (flow rate ratio N 2
/ H 2 = 5/1) to produce needle-like crystals. The generation temperature in this example was about 700 ° C., and the processing time was about 15 minutes.

【0049】この結果、基板表面及び配設穴には<10
0>方位で径25nm〜350nm,最大長約1mmの
針状結晶が生成していた。次いで、基板を濃硝酸中で表
面清浄化処理を行った後、真空炉で約800℃,約3時
間の熱処理を行った。
As a result, <10
Needle-like crystals having a diameter of 25 nm to 350 nm and a maximum length of about 1 mm in the 0> direction were formed. Next, the surface of the substrate was cleaned in concentrated nitric acid, and then heat-treated at about 800 ° C. for about 3 hours in a vacuum furnace.

【0050】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その特性を測定
したところ、消光比56dB,挿入損失0.04dBと
優れた特性値を示した。
From the polarizer substrate thus obtained, a polarizer having the same size as that of Example 1 was produced, and its characteristics were measured. As a result, it was found that the extinction ratio was 56 dB, the insertion loss was 0.04 dB, and excellent characteristics were obtained. Indicated.

【0051】(例7)C面を主面とする2インチサイズ
で厚み約350μm のサファイアを用意し、例1と同様
な方法で、平均間隔約180nmで、径約15nm,深
さ約250nmの配設穴を形成した。
(Example 7) Sapphire having a size of about 350 μm and a thickness of about 350 μm having a C-plane as a main surface was prepared, and in the same manner as in Example 1, an average spacing of about 180 nm, a diameter of about 15 nm, and a depth of about 250 nm. Arranged holes were formed.

【0052】次に、金属源としてNiBrを用い、例5
と同様な水素還元法で、Ni針状結晶の生成を行った。
本例では水素は水を通して湿った水素とし、生成条件は
温度700℃〜900℃で加熱時間数分とした。
Next, NiBr was used as a metal source.
Ni needle crystals were produced by the same hydrogen reduction method as in Example 1.
In this example, the hydrogen was made wet through water, and the generation conditions were a temperature of 700 ° C. to 900 ° C. and a heating time of several minutes.

【0053】この結果、基板表面及び配設穴には<10
0>方位で径約10nm〜100nm,最大長0.1m
m程度の針状結晶が生成した。次いで、基板を沸騰塩化
第二鉄飽和水溶液で表面清浄化処理を行った後、真空炉
で約900℃、約3時間の熱処理を行った。
As a result, <10
0> azimuth diameter about 10nm ~ 100nm, maximum length 0.1m
About m needle-like crystals were formed. Next, the substrate was subjected to a surface cleaning treatment with a saturated aqueous solution of ferric chloride, and then a heat treatment was performed in a vacuum furnace at about 900 ° C. for about 3 hours.

【0054】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その偏光特性を
測定したところ、消光比57dB、挿入損失0.04dBの
優れた特性を示した。
From the polarizer substrate thus obtained, a polarizer having the same size as in Example 1 was produced, and its polarization characteristics were measured. As a result, it was shown that the extinction ratio was 57 dB and the insertion loss was 0.04 dB. Was.

【0055】(例8)例7と同じ基板で、金属源として
MnCl2 を用い、例5と同様な水素還元法で、Mn針
状結晶の生成を行った。生成条件は温度850℃〜95
0℃で加熱時間は約5分とした。
(Example 8) On the same substrate as in Example 7, MnCl 2 was used as a metal source, and a Mn needle-like crystal was produced by the same hydrogen reduction method as in Example 5. Generation conditions are temperature 850 ° C to 95
The heating time at 0 ° C. was about 5 minutes.

【0056】この結果、基板表面及び配設穴には<10
0>方位で径10nm〜200nm,最大長0.2mm
程度の針状結晶が生成した。次いで、基板をフッ酸で表
面清浄化処理した後、真空炉で約1000,約2時間熱
処理を行った。
As a result, <10
0> azimuth diameter 10nm ~ 200nm, maximum length 0.2mm
Some degree of acicular crystals formed. Next, after the surface of the substrate was cleaned with hydrofluoric acid, heat treatment was performed in a vacuum furnace for about 1000 hours and about 2 hours.

【0057】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その偏光特性を
測定したところ、消光比56dB,挿入損失0.05d
Bの優れた特性を示した。
A polarizer having the same size as in Example 1 was prepared from the polarizer substrate thus obtained, and its polarization characteristics were measured. The extinction ratio was 56 dB and the insertion loss was 0.05 d.
B exhibited excellent properties.

【0058】(例9)例7と同じ基板で、金属源として
CoBr2 を用い、窒素−水素混合気流中(85%N2
+15%H2 )でCo針状結晶の生成を行った。生成条
件は温度650℃〜735℃で、加熱時間は約15分と
した。
Example 9 On the same substrate as in Example 7, CoBr 2 was used as a metal source, and in a nitrogen-hydrogen mixed gas stream (85% N 2).
+ 15% H 2 ) to form Co needle crystals. The generation conditions were a temperature of 650 ° C. to 735 ° C. and a heating time of about 15 minutes.

【0059】この結果、基板表面及び配設穴には<10
0>方位で径10nm〜150nm,最大長0.1mm
程度の針状結晶が生成した。次いで、基板を塩化第二鉄
飽和水溶液の沸騰水中で表面清浄化処理した後、真空炉
で約1100℃,約1時間熱処理を行った。
As a result, <10
0> azimuth diameter 10nm ~ 150nm, maximum length 0.1mm
Some degree of acicular crystals formed. Next, the surface of the substrate was cleaned in boiling water of a saturated aqueous solution of ferric chloride, and then heat-treated in a vacuum furnace at about 1100 ° C. for about 1 hour.

【0060】このようにして得られた偏光子用基板から
例1と同様なサイズの偏光子を作製し、その偏光特性を
測定したところ、消光比57dB、挿入損失0.05d
Bの優れた特性を示した。
A polarizer having the same size as in Example 1 was prepared from the polarizer substrate thus obtained, and its polarization characteristics were measured. The extinction ratio was 57 dB and the insertion loss was 0.05 d.
B exhibited excellent properties.

【0061】(例10)例7と同じ基板を用意し、金属
源としてTiCl4 を用い、キャリアガスをH2 として
熱CVD装置で、常圧下,反応温度800〜1200
℃,反応時間約10分で蒸着を行った。
(Example 10) The same substrate as in Example 7 was prepared, TiCl 4 was used as a metal source, H 2 was used as a carrier gas, and a thermal CVD apparatus was used under normal pressure at a reaction temperature of 800 to 1200.
The deposition was performed at a reaction temperature of about 10 minutes.

【0062】この結果、基板表面及び配設穴はTiの多
結晶膜で完全に被覆された。次いで、基板を40%フッ
酸1容+水9容(30℃〜32℃)で表面清浄化処理を
行い、配設穴以外のTi薄層を溶解除去した後、真空炉
で約1150℃,約5時間熱処理を行った。
As a result, the substrate surface and the arrangement holes were completely covered with the Ti polycrystalline film. Next, the substrate is subjected to a surface cleaning treatment with 1 volume of 40% hydrofluoric acid and 9 volumes of water (30 ° C. to 32 ° C.) to dissolve and remove the Ti thin layer other than the disposition holes. Heat treatment was performed for about 5 hours.

【0063】その結果、配設穴中のTi薄層は<101
0>方位の選択成長を行い、単結晶化していることが透
過電子顕微鏡による観察で明らかになった。このように
して得られた偏光子用基板から例1と同様なサイズの偏
光子を作製し、その偏光特性を測定したところ、消光比
58dB, 挿入損失0.03dBの優れた特性を示し
た。
As a result, the Ti thin layer in the arrangement hole was <101
It was clarified by observation with a transmission electron microscope that selective growth was performed in the 0> direction and single crystallization was performed. A polarizer having the same size as that of Example 1 was produced from the polarizer substrate thus obtained, and its polarization characteristics were measured. As a result, it was found that the extinction ratio was 58 dB and the insertion loss was 0.03 dB.

【0064】[0064]

【発明の効果】以上詳述したように、本発明による偏光
子によれば、透明単結晶から成る基板の少なくとも一主
面に形成した凹部に、光吸収異方性を有する粒状体を配
設したので、偏光部の粒状体の配列を所望の形状にする
ことが容易である。
As described above in detail, according to the polarizer of the present invention, a granular material having light absorption anisotropy is disposed in a concave portion formed on at least one principal surface of a substrate made of a transparent single crystal. Therefore, it is easy to make the arrangement of the granular bodies of the polarizing section into a desired shape.

【0065】特に、粒状体が特定の結晶学的方位に母相
である単結晶の結晶格子と一体化し、緊密に結合させる
ことにより、バラツキのない高い均質性を有する偏光子
とすることができ、従来のような延伸工程や積層工程な
ど後工程での偏光特性に大きな影響を与える工程を無く
すことができ、非常に安定した品質と高い歩留まりが得
られるだでなく、特性の優れた画期的な偏光子を提供で
きる。
In particular, when the granular material is integrated with a crystal lattice of a single crystal as a matrix in a specific crystallographic orientation and tightly bonded, a polarizer having high uniformity without variation can be obtained. This eliminates the steps that greatly affect the polarization characteristics in the post-process, such as the conventional stretching and laminating processes, which not only results in extremely stable quality and high yield, but also provides a breakthrough with excellent characteristics. Polarizer can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る偏光子の概略斜視図である。FIG. 1 is a schematic perspective view of a polarizer according to the present invention.

【図2】(a),(b)はそれぞれ本発明に係る偏光子
の製造工程を示す断面図である。
FIGS. 2 (a) and 2 (b) are cross-sectional views showing steps of manufacturing a polarizer according to the present invention.

【図3】本発明の係る他の偏光子の概略斜視図である。FIG. 3 is a schematic perspective view of another polarizer according to the present invention.

【図4】本発明の係る他の偏光子の概略斜視図である。FIG. 4 is a schematic perspective view of another polarizer according to the present invention.

【符号の説明】 1,31,41:偏光子 2,32,42:基板 3:偏光部 4,34:配設穴(凹部) 44:配設溝(凹部) 5,35,45:粒状体[Description of Signs] 1, 31, 41: Polarizers 2, 32, 42: Substrate 3: Polarizer 4, 34: Arrangement hole (recess) 44: Arrangement groove (recess) 5, 35, 45: Granular body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明単結晶から成る基板の少なくとも一
主面に形成させた複数の凹部に、光吸収異方性を有する
粒状体を配設して成る偏光子。
1. A polarizer comprising a plurality of concave portions formed on at least one main surface of a substrate made of a transparent single crystal, and particles having light absorption anisotropy disposed in the plurality of concave portions.
【請求項2】 前記粒状体が単結晶体から成ることを特
徴とする請求項1に記載の偏光子。
2. The polarizer according to claim 1, wherein the granular material is made of a single crystal.
【請求項3】 前記基板がSiO2 、LiNbO3 、L
iTaO3 、Gd3 Ga5 12、Al2 3 のうち一種
以上から成り、前記粒状体がAl、Cu、Fe、Sn、
Ti、Zn、Cd、Ag、Ni、Mn、Coのうち一種
以上から成ることを特徴とする請求項2に記載の偏光
子。
3. The method according to claim 1, wherein the substrate is SiO 2 , LiNbO 3 , L
It is composed of at least one of iTaO 3 , Gd 3 Ga 5 O 12 , and Al 2 O 3 , wherein the granular material is Al, Cu, Fe, Sn,
The polarizer according to claim 2, comprising at least one of Ti, Zn, Cd, Ag, Ni, Mn, and Co.
【請求項4】 前記光吸収異方性を有する粒状体の平均
短軸長さが10nm〜100nmであることを特徴とす
る請求項2に記載の偏光子。
4. The polarizer according to claim 2, wherein the average length of the short axis of the granular material having light absorption anisotropy is 10 nm to 100 nm.
JP21585298A 1998-07-30 1998-07-30 Polarizer Pending JP2000047031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21585298A JP2000047031A (en) 1998-07-30 1998-07-30 Polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21585298A JP2000047031A (en) 1998-07-30 1998-07-30 Polarizer

Publications (1)

Publication Number Publication Date
JP2000047031A true JP2000047031A (en) 2000-02-18

Family

ID=16679352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21585298A Pending JP2000047031A (en) 1998-07-30 1998-07-30 Polarizer

Country Status (1)

Country Link
JP (1) JP2000047031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180054139A (en) * 2016-11-15 2018-05-24 (주)도 은 Transparent substrate with pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180054139A (en) * 2016-11-15 2018-05-24 (주)도 은 Transparent substrate with pattern
KR101910903B1 (en) 2016-11-15 2018-10-24 (주)도은 Transparent substrate with pattern

Similar Documents

Publication Publication Date Title
KR20010071722A (en) Methood for producing UV polarizers
US5315432A (en) Thin film of lithium niobate single crystal
EP0444209B1 (en) Thin film of lithium niobate single crystal and production thereof
JP2000047031A (en) Polarizer
JP2786078B2 (en) Faraday rotator and optical isolator
JPH0756018A (en) Production of polarizer
JP3722603B2 (en) Manufacturing method of polarizer
JP2003066499A (en) Optical device and method of manufacturing the same
US8130447B2 (en) Polarization element
JPH0618949A (en) Cerium-doped optical device
JPH0542400B2 (en)
JPH11248935A (en) Polarizer and its manufacture
JP2000193823A (en) Polarizer, and optical isolator using it
US5693138A (en) Magnetooptical element
EP0686711B1 (en) Method for manufacturing a magneto-optical device
JP4103243B2 (en) UV polarization method
Dogheche et al. Growth and optical waveguiding properties of rf sputtered lithium niobate thin films on sapphire substrates
JPH0915664A (en) Nonlinear optical material
JPH0354454B2 (en)
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film
JPH11344617A (en) Polarizer
JP2985022B2 (en) Magneto-optical element and optical isolator
JPH11248936A (en) High extinction ratio polarizer
CN116679370A (en) Novel polaroid and preparation method thereof
JP3413892B2 (en) Manufacturing method of ultrafine particle dispersion material