JP4103243B2 - UV polarization method - Google Patents

UV polarization method Download PDF

Info

Publication number
JP4103243B2
JP4103243B2 JP13659899A JP13659899A JP4103243B2 JP 4103243 B2 JP4103243 B2 JP 4103243B2 JP 13659899 A JP13659899 A JP 13659899A JP 13659899 A JP13659899 A JP 13659899A JP 4103243 B2 JP4103243 B2 JP 4103243B2
Authority
JP
Japan
Prior art keywords
single crystal
lithium tetraborate
crystal
ultraviolet
lotion prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13659899A
Other languages
Japanese (ja)
Other versions
JP2000329937A (en
Inventor
隆一 小松
保 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP13659899A priority Critical patent/JP4103243B2/en
Publication of JP2000329937A publication Critical patent/JP2000329937A/en
Application granted granted Critical
Publication of JP4103243B2 publication Critical patent/JP4103243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線を四ほう酸リチウム単結晶からなるローションプリズムを用いて偏光させる紫外線の偏光方法に関するものである。
【0002】
【従来の技術】
情報および通信の発展に伴い、光アイソレ−タ、スイッチ等の受動部品が必要になり、これら部品を構成する素子として偏光子が必要となる。更に、最近短波長の紫外線領域で使用される偏光子の必要性が注目されて来ており、その特性には、厳しい要求がされている。
現在、紫外線用偏光子として用いられ、また用いようとしている材料としては、高温型BaB24結晶(BBO)、LiB35結晶、MgF2結晶がある。
【0003】
【発明が解決しようとする課題】
しかし、上述の材料である高温型BaB24結晶(BBO)は、190nmから透明で、複屈折率は約0.12と高いが、しかし、結晶品質が悪く、大きな結晶が育成出来ないし、紫外線の吸収があり結晶温度が上昇し、特性に影響し、更に寿命も短く成る問題があった。LiB35結晶は、160nmから透明であるが、複屈折率は約0.045と小さい。また育成法が溶液成長なので、大きな結晶が育成できず、複屈折率の小ささを結晶の大きさで保証することが出来ない問題を抱えている。MgF2結晶は、130nmから透明であり、現在の紫外線用偏光子の主力である。しかし、複屈折率が0.013程度であり、また大きな高品質結晶も育成出来ない。更に、長時間の紫外線の照射により、透過率の低下をもたらすとの問題があった。
【0004】
四ほう酸リチウム単結晶(Li247単結晶)は、従来SAW(弾性表面波)デバイス用の基板材料に用いられており、また可視、赤外線領域での偏光子としての使用が可能とされている(特願平08−165516号公報)。
【0005】
【課題を解決するための手段】
本発明者等は、上記事情に鑑み、紫外線領域下でも偏光子として使用可能な材料を、鋭意開発すべく研究を進めたところ、上述の高品質の四ほう酸リチウム単結晶が、紫外線用の偏光子としても優れた特性を有し、短波長の紫外線領域でも十分に使用に耐え得る材料であるとの知見を得たのである。
【0006】
本発明は、上述の知見に基づいて得られたものであって、請求項1に記載の発明は、紫外線を、紫外線ローションプリズムを用いて偏光させる紫外線の偏光方法であって、上記ローションプリズムとして、波長193nm〜266nmの範囲内の紫外線を12.4〜14.7degの範囲内の分離角を有するように偏光させる四ほう酸リチウム単結晶を用いたことを特徴とするものである。
また、請求項2に記載の発明は、請求項1に記載の紫外線の偏光方法において、結晶内の格子変動が5×10-5以下で、かつエッチピット密度(EPD)が100/cm2以下であることを特徴とするものである。
さらに、請求項3に記載の発明は、請求項1または2に記載の紫外線の偏光方法において、上記ローションプリズムとしての四ほう酸リチウム単結晶は、チョコラルスキ−法により、四ほう酸リチウム多結晶体を坩堝内に充填して、ヒータで融解した後に、引き上げる際に、融液表面と融液直上1cmの間の雰囲気の温度勾配を30℃/cm〜200℃/cmとし、それより上部の雰囲気の温度勾配を10℃/cm〜50℃/cmとし、引き上げ速度を0.1mm/時間〜2mm/時間として得られることを特徴とするものである。
【0007】
結晶内の格子変動は、例えばボンド法により測定される。EPDは、例えばエッチング法により測定される。結晶内の格子変動が5×10-5より大きい場合には、屈折率変動が10-5より大きくなる傾向にありあまり好ましくない。また、EPDが100/cm2より大きい場合は、上と同様の傾向にありあまり好ましくない。
【0008】
本発明に係わる偏光子としての四ほう酸リチウム単結晶からなるローションプリズムは、コノスコ−プ像干渉縞の変形のような光学的不均一性が見られない再現性に富む精密なものである。また、本発明に係わるローションプリズムは、消光比も高く、優秀な偏光子である。さらに、本発明に係わる四ほう酸リチウム単結晶を、請求項3に記載の発明のように、チョコラルスキ−法によって製造することにより、結晶欠陥の少ないローションプリズムを容易に量産的に製造することが出来る。
【0009】
【本発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は、本発明で用いる偏光子材料である四ほう酸リチウム単結晶を作製する単結晶の引き上げ装置10である。この引き上げ装置10は、四ほう酸リチウム材料が融解される白金坩堝1を有している。この白金坩堝1の周囲には、断熱材2、3を介して、坩堝内の四ほう酸リチウムを融解させるためのヒ−タ4(例えば、抵抗加熱ヒ−タ)が設けられている。一方、白金坩堝1の上部には、断熱壁5、6が二重に設けられており、種結晶が取り付けられる引き上げ軸7が、この断熱壁5、6を貫通するようになっている。
【0010】
このような引き上げ装置10を用いて、四ほう酸リチウム単結晶を育成する。すなわち、所定モル比の四ほう酸リチウム多結晶体を白金坩堝内に充填し、ヒ−タで融解した後、引き上げ方位<110>で単結晶を引き上げる。
このとき、融液表面と融液直上1cmの間の温度勾配を50〜150℃/cm、それより上部の温度勾配を5〜10℃/cmとし、単結晶の直胴部を引き上げる際の引き上げ速度を0.3〜1mm/時間とすることが好ましい。
【0011】
この様にして引き上げられた四ほう酸リチウム単結晶から成るウェ−ハを切断し、図2に示す形状の偏光子としてのローションプリズムを作製する。入射面と出射面と両側面は、ラッピング、ポリッシングなどの研磨手段で研磨される。
【0012】
本実施形態に係わるローションプリズムは、コノスコ−プ像干渉縞の変形のような光学的不均一が見られない再現性に富む精密な偏光子である。また、本実施形態に係わるローションプリズムは、屈折率が高く、優秀な偏光子である。なお、本発明は、上述した実施形態に限定されるものでなく、本発明の範囲内で種々に改変することが出来る。
【0013】
【実施例】
次に、本発明にかかる波長193nm〜266nmの範囲内の紫外線を12.4〜14.7degの範囲内の分離角を有するように偏光させる四ほう酸リチウム単結晶を用いたローションプリズムについて、詳細な実施例を具体的に説明するが、本発明は、この実施例に限定されるものではない。図1に示す引き上げ装置10を用いて、四ほう酸リチウム単結晶を作製した。白金坩堝1としては、直径90mm、高さ100mmのものを用いた。
【0014】
まず、所定モル比の純度99.99%の四ほう酸リチウム多結晶体1300gを白金坩堝内に充填し、ヒ−タで融解した後、引き上げ方位<110>で直径2インチの単結晶を引き上げた。
この時、融液表面と融液直上10mmの間の温度勾配を80℃/cm、それより上部の温度勾配を8℃/cmとし、単結晶の直胴部を引き上げる際の補記上げ速度を0.5mm/時間とした。
【0015】
この単結晶の結晶内の格子変動をボンド法により調べたところ、1×10-6であった。また、エッチピット密度(EPD)をエッチング法により調べたところ、10/cm2程度であった。
この単結晶を図2に示す形状に切断して偏光子としてのロ−ションプリズムを得た。プリズムの光入射面は、四ほう酸リチウム単結晶の(010)面に対して、0の角度で傾いており、プリズムの光出射面は、入射面に垂直な底面に対して、θ=70±0.3°傾いていた。入射面と出射面と両側面は、ラッピングにより光学研磨した。
【0016】
作製したロ−ションプリズムの分離角を測定した(測定方法は図3を参照)。結果を表1に示した。
表1からわかるように、このローションプリズムは、波長193nm〜266nmの範囲内の紫外線を12.4〜14.7degの範囲内の分離角を有するよう偏光させる特性を有することが確認された。
【0017】
[比較例]
図2に示すロ−ションプリズムとして、MgF2を用いた以外は、前記実施例と同様にして、分離角を求め、これらの結果を同様に表1に示した。
【0018】
【表1】

Figure 0004103243
【0019】
また、上記実施例のロ−ションプリズムを用いて、常光および異常光の消光比を求め(測定方法は図4を参照のこと)、これらの結果を表2に示した。その値はすべて35dB以上であり、十分にプリズムとして用いられることが判った。
【0020】
【表2】
Figure 0004103243
に示すように、本発明に用いた四ほう酸リチウム単結晶が、紫外線偏光子として優れた特性を持っていることが確認された。また、直線偏光を四ほう酸リチウム単結晶に通した時の出力光の形の観察から、旋光能がないかどうかを調べたところ、旋光能はないことが確認された。
【0021】
さらに、本実施例に使用されたプリズムは、四ほう酸リチウム単結晶から成るので、化学的に安定であると共に、結晶欠陥が少ない。なお、結晶欠陥の測定は、前述したように、格子変動とEPDとを測定することにより行った。
【0022】
【発明の効果】
以上、説明してきた様に、本発明によれば、紫外線を偏光させることができる複屈折率が大きく、旋光能がなく、結晶欠陥が少なく、化学的に安定した優れた特性のローションプリズムができる
【図面の簡単な説明】
【図1】本発明の実施形態に使用される四ほう酸リチウム単結晶の製造装置の一例を示す概略断面図。
【図2】本発明の実施形態に使用されるプリズムの正面図および側面図。
【図3】本発明の実施形態における分離角測定方法の概略図。
【図4】本発明の実施形態における消光比測定方法の概略図。
【符号の説明】
7 単結晶引き上げ装置
10 引き上げ軸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of polarizing ultraviolet light that polarizes ultraviolet light using a lotion prism made of a lithium tetraborate single crystal .
[0002]
[Prior art]
With the development of information and communication, passive components such as optical isolators and switches are required, and polarizers are required as elements constituting these components. Furthermore, recently, the necessity of a polarizer used in the ultraviolet region of a short wavelength has been attracting attention, and there are strict requirements for its characteristics.
At present, materials used and intended for use as ultraviolet polarizers include high-temperature BaB 2 O 4 crystals (BBO), LiB 3 O 5 crystals, and MgF 2 crystals.
[0003]
[Problems to be solved by the invention]
However, the high-temperature type BaB 2 O 4 crystal (BBO), which is the above-mentioned material, is transparent from 190 nm and has a high birefringence of about 0.12, but the crystal quality is poor and large crystals cannot be grown. There is a problem that ultraviolet rays are absorbed, the crystal temperature rises, the characteristics are affected, and the life is shortened. The LiB 3 O 5 crystal is transparent from 160 nm, but its birefringence is as small as about 0.045. Further, since the growth method is solution growth, there is a problem that a large crystal cannot be grown and the small birefringence cannot be guaranteed by the crystal size. MgF 2 crystal is transparent from 130 nm, and is the mainstay of current polarizers for ultraviolet rays. However, the birefringence is about 0.013, and large high quality crystals cannot be grown. Furthermore, there has been a problem that the transmittance is lowered by irradiation with ultraviolet rays for a long time.
[0004]
Lithium tetraborate single crystal (Li 2 B 4 O 7 single crystal) is conventionally used as a substrate material for SAW (surface acoustic wave) devices, and can be used as a polarizer in the visible and infrared regions. (Japanese Patent Application No. 08-165516).
[0005]
[Means for Solving the Problems]
In view of the above circumstances, the present inventors have conducted extensive research to develop a material that can be used as a polarizer even in the ultraviolet region. As a result, the above-described high-quality lithium tetraborate single crystal is polarized for ultraviolet light. It has been found that the material has excellent characteristics as a child and can sufficiently be used even in a short wavelength ultraviolet region.
[0006]
The present invention has been obtained based on the above knowledge, and the invention according to claim 1 is an ultraviolet polarization method for polarizing ultraviolet rays using an ultraviolet lotion prism, A lithium tetraborate single crystal that polarizes ultraviolet rays within a wavelength range of 193 nm to 266 nm so as to have a separation angle within a range of 12.4 to 14.7 deg is used.
The invention described in claim 2 is the ultraviolet polarization method according to claim 1, wherein the lattice fluctuation in the crystal is 5 × 10 −5 or less and the etch pit density (EPD) is 100 / cm 2 or less. It is characterized by being.
Furthermore, the invention described in claim 3 is the ultraviolet light polarizing method according to claim 1 or 2, wherein the lithium tetraborate single crystal as the lotion prism is a crucible made of a lithium tetraborate polycrystal by a chocolate ski method. The temperature gradient of the atmosphere between the melt surface and 1 cm immediately above the melt is 30 ° C./cm to 200 ° C./cm when the inside is filled and melted with a heater and then pulled up, and the temperature of the atmosphere above it The gradient is 10 ° C./cm to 50 ° C./cm, and the pulling speed is 0.1 mm / hour to 2 mm / hour .
[0007]
The lattice fluctuation in the crystal is measured by, for example, the bond method. EPD is measured by, for example, an etching method. When the lattice fluctuation in the crystal is larger than 5 × 10 −5 , the refractive index fluctuation tends to be larger than 10 −5 , which is not preferable. Moreover, when EPD is larger than 100 / cm 2 , it tends to be the same as above, which is not preferable.
[0008]
The lotion prism made of a lithium tetraborate single crystal as a polarizer according to the present invention is a precise one that is rich in reproducibility without optical non-uniformity such as deformation of conoscopic image interference fringes. Moreover, the lotion prism according to the present invention has a high extinction ratio and is an excellent polarizer. Further, the lithium tetraborate single crystal according to the present invention, as in the invention of claim 3, Czochralski - by manufacturing by law, can be easily mass-produced to produce a less lotion prism crystal defects .
[0009]
[Embodiments of the Invention]
Embodiments of the present invention will be described below.
FIG. 1 shows a single crystal pulling apparatus 10 for producing a lithium tetraborate single crystal which is a polarizer material used in the present invention. The pulling device 10 has a platinum crucible 1 in which a lithium tetraborate material is melted. Around the platinum crucible 1, a heater 4 (for example, a resistance heating heater) for melting lithium tetraborate in the crucible is provided via heat insulating materials 2 and 3. On the other hand, the heat insulating walls 5 and 6 are provided in the upper part of the platinum crucible 1, and the pulling shaft 7 to which the seed crystal is attached passes through the heat insulating walls 5 and 6.
[0010]
Using such a pulling apparatus 10, a lithium tetraborate single crystal is grown. That is, a lithium tetraborate polycrystal having a predetermined molar ratio is filled in a platinum crucible, melted with a heater, and then a single crystal is pulled in a pulling direction <110>.
At this time, the temperature gradient between the melt surface and 1 cm immediately above the melt is 50 to 150 ° C./cm, the temperature gradient above it is 5 to 10 ° C./cm, and the single crystal is pulled up when the straight body is pulled up. The speed is preferably 0.3 to 1 mm / hour.
[0011]
The wafer made of the lithium tetraborate single crystal pulled up in this way is cut to produce a lotion prism as a polarizer having the shape shown in FIG. The entrance surface, the exit surface, and both side surfaces are polished by polishing means such as lapping and polishing.
[0012]
The lotion prism according to the present embodiment is a precise polarizer with high reproducibility in which optical nonuniformity such as deformation of conoscopic image interference fringes is not observed. Further, the lotion prism according to the present embodiment has a high refractive index and is an excellent polarizer. The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
[0013]
【Example】
Next, a lotion prism using a lithium tetraborate single crystal that polarizes ultraviolet rays within a wavelength range of 193 nm to 266 nm according to the present invention so as to have a separation angle within a range of 12.4 to 14.7 deg. Examples will be specifically described, but the present invention is not limited to these examples. A lithium tetraborate single crystal was produced using the pulling apparatus 10 shown in FIG. A platinum crucible 1 having a diameter of 90 mm and a height of 100 mm was used.
[0014]
First, 1300 g of a lithium tetraborate polycrystal having a purity of 99.99% in a predetermined molar ratio was filled in a platinum crucible, melted with a heater, and then a single crystal having a diameter of 2 inches was pulled at a pulling orientation <110>. .
At this time, the temperature gradient between the melt surface and 10 mm immediately above the melt is 80 ° C./cm, the temperature gradient above it is 8 ° C./cm, and the supplementary speed when pulling up the straight body of the single crystal is 0 0.5 mm / hour.
[0015]
When the lattice fluctuation in the crystal of this single crystal was examined by the bond method, it was 1 × 10 −6 . Further, when the etch pit density (EPD) was examined by an etching method, it was about 10 / cm 2 .
This single crystal was cut into the shape shown in FIG. 2 to obtain a lotion prism as a polarizer. The light incident surface of the prism is tilted at an angle of 0 with respect to the (010) plane of the lithium tetraborate single crystal, and the light exit surface of the prism is θ = 70 ± with respect to the bottom surface perpendicular to the incident surface. It was tilted 0.3 °. The incident surface, the output surface, and both side surfaces were optically polished by lapping.
[0016]
The separation angle of the produced lotion prism was measured (refer to FIG. 3 for the measurement method). The results are shown in Table 1.
As can be seen from Table 1, it was confirmed that this lotion prism has the property of polarizing ultraviolet rays within a wavelength range of 193 nm to 266 nm so as to have a separation angle within a range of 12.4 to 14.7 deg.
[0017]
[Comparative example]
The separation angle was determined in the same manner as in the above example except that MgF 2 was used as the lotion prism shown in FIG. 2, and these results are also shown in Table 1.
[0018]
[Table 1]
Figure 0004103243
[0019]
Further, using the lotion prism of the above example, the extinction ratio of ordinary light and extraordinary light was obtained (refer to FIG. 4 for the measurement method), and these results are shown in Table 2. All of the values were 35 dB or more, and it was found that they were sufficiently used as prisms.
[0020]
[Table 2]
Figure 0004103243
As shown in Table 2 , it was confirmed that the lithium tetraborate single crystal used in the present invention has excellent characteristics as an ultraviolet polarizer. In addition, when observing the shape of the output light when linearly polarized light was passed through a lithium tetraborate single crystal, it was confirmed that there was no optical activity, and it was confirmed that there was no optical activity.
[0021]
Furthermore, since the prism used in this example is made of a lithium tetraborate single crystal, it is chemically stable and has few crystal defects. The crystal defects were measured by measuring lattice fluctuation and EPD as described above.
[0022]
【The invention's effect】
As described above, according to the present invention, a lotion prism having excellent characteristics which is capable of polarizing ultraviolet rays, has a large birefringence index, has no optical rotatory power, has few crystal defects, and is chemically stable. .
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for producing a lithium tetraborate single crystal used in an embodiment of the present invention.
FIG. 2 is a front view and a side view of a prism used in an embodiment of the present invention.
FIG. 3 is a schematic diagram of a separation angle measurement method according to an embodiment of the present invention.
FIG. 4 is a schematic diagram of an extinction ratio measurement method in an embodiment of the present invention.
[Explanation of symbols]
7 Single crystal pulling device 10 Pulling shaft

Claims (3)

紫外線を、ローションプリズムを用いて偏光させる紫外線の偏光方法であって、A method of polarizing ultraviolet light that polarizes ultraviolet light using a lotion prism,
上記ローションプリズムとして、波長193nm〜266nmの範囲内の紫外線を12.4〜14.7degの範囲内の分離角を有するように偏光させる四ほう酸リチウム単結晶を用いたことを特徴とする紫外線の偏光方法。The above-mentioned lotion prism uses a lithium tetraborate single crystal that polarizes ultraviolet rays within a wavelength range of 193 nm to 266 nm so as to have a separation angle within a range of 12.4 to 14.7 deg. Method.
結晶内の格子変動が5×10-5以下で、かつエッチピット密度(EPD)が100/cm2以下であることを特徴とする請求項1記載の紫外線の偏光方法Lattice fluctuations in the crystal 5 × 10 -5 or less, and the polarization method of ultraviolet according to claim 1, wherein the etch pit density (EPD) is 100 / cm 2 or less. 上記ローションプリズムとしての四ほう酸リチウム単結晶は、チョコラルスキ−法により、四ほう酸リチウム多結晶体を坩堝内に充填して、ヒータで融解した後に、引き上げる際に、融液表面と融液直上1cmの間の雰囲気の温度勾配を30℃/cm〜200℃/cmとし、それより上部の雰囲気の温度勾配を10℃/cm〜50℃/cmとし、引き上げ速度を0.1mm/時間〜2mm/時間として得られることを特徴する請求項1または2記載の紫外線の偏光方法 Lithium tetraborate single crystal as the lotion prism Czochralski - by law, is filled with a lithium tetraborate polycrystal in the crucible, after melted by the heater, when the pulling, the melt surface and the melt just above 1cm The temperature gradient of the atmosphere is 30 ° C./cm to 200 ° C./cm, the temperature gradient of the upper atmosphere is 10 ° C./cm to 50 ° C./cm, and the pulling rate is 0.1 mm / hour to 2 mm / hour polarization method of the ultraviolet according to claim 1 or 2 obtained can be characterized as a.
JP13659899A 1999-05-18 1999-05-18 UV polarization method Expired - Fee Related JP4103243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13659899A JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13659899A JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Publications (2)

Publication Number Publication Date
JP2000329937A JP2000329937A (en) 2000-11-30
JP4103243B2 true JP4103243B2 (en) 2008-06-18

Family

ID=15179053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13659899A Expired - Fee Related JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Country Status (1)

Country Link
JP (1) JP4103243B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968016B (en) * 2017-03-10 2020-07-31 河南理工大学 Preparation, performance and application of green luminescent material terbium lead polyborate
CN109471214A (en) * 2018-12-18 2019-03-15 福建福晶科技股份有限公司 A kind of deep ultraviolet coupling devating prism

Also Published As

Publication number Publication date
JP2000329937A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
CN108301045B (en) Calcium metaborate birefringent crystal, preparation method and application thereof
EP0515682A1 (en) Thin film of lithium niobate single crystal
WO1991004360A1 (en) Thin film of lithium niobate single crystal and production thereof
JP4103243B2 (en) UV polarization method
JP3335184B2 (en) Single crystal material having composition including KTiOPO4 and electro-optical device including the same
Yamamoto et al. Noncritical phase matching and photorefractive damage in Sc2O3: LiNbO3
WO1993014439A1 (en) Waveguide type light directional coupler
CN115504480B (en) Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof
JP3858776B2 (en) Polarizer and prism using it
Shinozaki et al. Self-organized homo-epitaxial growth in nonlinear optical BaAlBO3F2 crystal crossing lines patterned by laser in glass
JP3346176B2 (en) Manufacturing method of polarizer
JP4211811B2 (en) prism
JP2001287999A (en) Lithium tantalate single crystal, optical element thereof and method for producing the same
JP3649207B2 (en) Method for producing single crystal lithium tetraborate
CN115198343B (en) Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof
US6608205B1 (en) Organic crystalline films for optical applications and related methods of fabrication
JP2862840B2 (en) Optical waveguide polarizer and method of manufacturing the same
JPH06174908A (en) Production of waveguide type diffraction grating
Gottlieb et al. Noncollinear acousto-optic tunable filter: thallium phosphorus selenide system
JPH11352348A (en) Optical waveguide type polarizer
JP3261649B2 (en) Growth method of lithium tetraborate single crystal for optics
JPH1048679A (en) Nonlinear optical crystal fiber and its production as well as optical device formed by using the same
JP2001091738A (en) Birefringent plate and optical isolator using the same
WO1991016658A1 (en) Laminated organic nonlinear optical crystal and production thereof
JPH05310499A (en) Lithium niobate single crystal, its production and optics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees