JP2001091738A - Birefringent plate and optical isolator using the same - Google Patents

Birefringent plate and optical isolator using the same

Info

Publication number
JP2001091738A
JP2001091738A JP26740799A JP26740799A JP2001091738A JP 2001091738 A JP2001091738 A JP 2001091738A JP 26740799 A JP26740799 A JP 26740799A JP 26740799 A JP26740799 A JP 26740799A JP 2001091738 A JP2001091738 A JP 2001091738A
Authority
JP
Japan
Prior art keywords
birefringent plate
optical isolator
light
faraday rotator
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26740799A
Other languages
Japanese (ja)
Inventor
Noboru Suda
昇 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26740799A priority Critical patent/JP2001091738A/en
Publication of JP2001091738A publication Critical patent/JP2001091738A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a birefringent plate and an optical isolator using a crystal which is completely different from a crystal conventionally used as a birefringent plate and which is extremely large in birefringent and can be easily produced. SOLUTION: The birefringent plate 1, 2 consists of a single crystal of PbMoO4 (lead molybdate), K5(BixNd1-x)(MoO4)4 (wherein 0<x<1) or BaLiNb5O15. The optical isolator S is obtained by disposing the birefringent plates 1, 2 on the entrance side and exit side of light of a Faraday rotator 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏光板,偏光ビー
ムスプリッタなどに使用されるプリズム等の複屈折板、
及びそれを用いた光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringent plate such as a prism used for a polarizing plate or a polarizing beam splitter, etc.
And an optical isolator using the same.

【0002】[0002]

【従来技術とその課題】従来より、方解石,水晶,ルチ
ル(TiO2 )等の非等方晶系の結晶体に、偏光してい
ない光を入射させると、二本の屈折光線が観測されるこ
とがよく知られている。この現象は一般に複屈折と呼ば
れ、この二本の屈折光線は、スネルの法則に従う常光線
と、スネルの法則に従わない異常光線と呼ばれる。
2. Description of the Related Art Conventionally, when unpolarized light is incident on an anisotropic crystal such as calcite, quartz, rutile (TiO 2 ), two refracted light rays are observed. It is well known. This phenomenon is generally called birefringence, and the two refracted rays are called an ordinary ray that obeys Snell's law and an extraordinary ray that does not obey Snell's law.

【0003】ここで、常光線の屈折率(常光屈折率)と
異常光線の屈折率(異常光屈折率)との差である複屈折
が大きければ大きいほど、結晶体の光軸に平行でない方
向に入射した光は、より大きな複屈折が生じることにな
るので、常光線と異常光線との分離角はより大きくな
る。
Here, the larger the birefringence, which is the difference between the refractive index of ordinary light (ordinary refractive index) and the refractive index of extraordinary light (extraordinary refractive index), the more the direction that is not parallel to the optical axis of the crystal. Since the light incident on the lens has larger birefringence, the separation angle between the ordinary ray and the extraordinary ray becomes larger.

【0004】したがって、常光線と異常光線との分離間
隔を一定とするならば、複屈折の大きな結晶を用いるほ
ど素子長をより小型にすることができ、このような複屈
折板(偏光子を含む)を使用する装置、例えば光記録装
置の光読み取り部や光アイソレータ等において大幅な小
型化が期待される。
Therefore, if the separation interval between the ordinary ray and the extraordinary ray is constant, the element length can be made smaller by using a crystal having a large birefringence. ) Are expected to be significantly reduced in size, for example, in an optical reading unit or an optical isolator of an optical recording apparatus.

【0005】しかしながら、例えば方解石の場合、複屈
折が約0.172であり、他の結晶材料と比較すると非
常に大きいが、天然にのみ産出する材料であるため、安
価で高品質な結晶体を安定的に供給しにくいという問題
を有している。
However, in the case of, for example, calcite, the birefringence is about 0.172, which is very large as compared with other crystal materials. However, since it is a material produced only naturally, inexpensive and high quality crystals can be obtained. There is a problem that it is difficult to supply it stably.

【0006】また水晶の場合、天然に産出するもの以外
に、水熱合成法による結晶合成が可能である反面、その
複屈折は0.009程度で非常に小さいので、素子が非
常に大きくなり、ひいてはこの素子を用いた光アイソレ
ータ等の装置全体が大型化するといった問題を有する。
In the case of quartz, a crystal can be synthesized by a hydrothermal synthesis method in addition to those naturally produced, but the birefringence is very small at about 0.009, so that the element becomes very large. As a result, there is a problem that the entire device such as an optical isolator using this element becomes large.

【0007】また、ルチル単結晶の場合、その複屈折は
約0.282と非常に大きく、光アイソレータ用の偏光
子として用いられているが、ベルヌーイ法やフローティ
ングゾーン法といった方法でしか育成できず、しかも良
好な結晶性を有するものができにくいので、粒界や内部
歪みの存在により歩留まりが低下したり、大型の結晶が
得にくいという問題を有する。
In the case of rutile single crystal, the birefringence is as large as about 0.282, and it is used as a polarizer for an optical isolator. However, it can be grown only by a method such as Bernoulli method or floating zone method. In addition, since it is difficult to produce a material having good crystallinity, there is a problem that the yield is reduced due to the presence of grain boundaries and internal strain, and it is difficult to obtain a large crystal.

【0008】以上のことから、従来は小型の複屈折板が
容易に得られなかったため、これを使用する装置(すな
わち、光記録装置の光読取部や光アイソレータ)の小型
化を図ることができなかったのである。
[0008] From the above, since a small birefringent plate has not been easily obtained in the past, it is possible to reduce the size of a device using the plate (ie, an optical reading unit or an optical isolator of an optical recording apparatus). There was no.

【0009】そこで本発明は、上述の従来の諸問題を解
消するために提案されたものであって、従来より複屈折
板として用いられてきた結晶体とは全く異なり、複屈折
が非常に大きく、しかも簡便に製造が可能な結晶体を用
いた複屈折板及び光アイソレータを提供することを目的
とする。
Accordingly, the present invention has been proposed to solve the above-mentioned conventional problems, and is completely different from a crystal which has been conventionally used as a birefringent plate, and has a very large birefringence. It is another object of the present invention to provide a birefringent plate and an optical isolator using a crystal that can be easily manufactured.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の複屈折板は、PbMoO4 (モリブデン酸
鉛)、K5 (Bix Nd1-x )(MoO4 4 (ただ
し、0<x<1)、又はBaLiNb5 15の単結晶体
から成るものとする。
To achieve the above object, according to the Invention The birefringent plate of the present invention, PbMoO 4 (lead molybdate), K 5 (Bi x Nd 1-x) (MoO 4) 4 ( provided that , 0 <x <1) or a single crystal of BaLiNb 5 O 15 .

【0011】また、本発明の光アイソレータは、ファラ
デー回転子の光入射側及び光出射側のそれぞれに上記複
屈折板を配設して成り、特に、ファラデー回転子の光入
射側に配設された複屈折板の光出射面、及び前記ファラ
デー回転子の光出射側に配設された複屈折板の光入射面
を、それぞれc軸に平行な面とする。さらに、ファラデ
ー回転子の光入射側に配設された複屈折板の光出射面、
及びファラデー回転子の光出射側に配設された複屈折板
の光入射面を、それぞれa軸に平行な面とするとよい。
Further, the optical isolator of the present invention comprises the birefringent plates provided on each of the light incident side and the light emitting side of the Faraday rotator, and is particularly provided on the light incident side of the Faraday rotator. The light exit surface of the birefringent plate and the light incident surface of the birefringent plate disposed on the light exit side of the Faraday rotator are surfaces parallel to the c-axis. Further, a light exit surface of a birefringent plate disposed on the light incident side of the Faraday rotator,
The light incident surface of the birefringent plate disposed on the light exit side of the Faraday rotator may be a surface parallel to the a-axis.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る複屈折板及び
光アイソレータの実施形態を図面に基づいて詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a birefringent plate and an optical isolator according to the present invention will be described below in detail with reference to the drawings.

【0013】PbMoO4 、K5 (Bix Nd1-x
(MoO4 4 (ただし、0<x<1)、またはBaL
iNb5 15から成る単結晶体は、チョクラルスキー法
により大型で良質な結晶体を容易に得ることが可能であ
る。すなわち、抵抗加熱炉や高周波加熱炉内に白金製等
の坩堝内に原料を入れ溶融した後、種結晶を先端に取付
けた育成棒を坩堝内融液に浸し、坩堝に対して所定の回
転数で育成棒を回転させながら育成結晶を引き上げるこ
とによって、外径が80mm以上で且つ長さ100mm
以上の均質で結晶性に優れた単結晶体を容易に得ること
ができる。
[0013] PbMoO 4, K 5 (Bi x Nd 1-x)
(MoO 4 ) 4 (where 0 <x <1) or BaL
iNb single crystal body consisting of 5 O 15 is capable of obtaining a high-quality crystal easily large by the Czochralski method. That is, after the raw material is put into a crucible made of platinum or the like in a resistance heating furnace or a high-frequency heating furnace and melted, a growing rod having a seed crystal attached to the tip is immersed in the melt in the crucible, and a predetermined number of rotations with respect to the crucible is performed. By pulling up the growing crystal while rotating the growing rod, the outer diameter is 80 mm or more and the length is 100 mm
It is possible to easily obtain a single crystal having the above-mentioned uniformity and excellent crystallinity.

【0014】そして、育成した単結晶体をダイシングを
行い、所定の大きさのウエハに切り出し、図1(a),
(b)に示すような略直方体で正面が楔形状を成す板体
を得る。さらに、この板体において光を通過させる面
を、メカノケミカル用の研磨装置により精密に研磨して
複屈折板とする。
Then, the grown single crystal is diced and cut into wafers of a predetermined size.
A plate having a substantially rectangular parallelepiped shape as shown in FIG. Further, the surface of this plate body through which light passes is precisely polished by a polishing device for mechanochemical to form a birefringent plate.

【0015】ここで、図1(a)において鉛直方向をE
とすれば、光を通過させる傾斜面Kの鉛直方向Eに対す
る角度θ1を3〜5°にしている。この角度に設定した
のは、特に戻り光の出射角を充分大きくし、かつ充分な
透過率を実現させるためである。また、一方の面Mは鉛
直方向Eに平行、すなわち下面Uに対して略垂直な面
(光の入射方向,出射方向に対して略垂直)であり、c
軸又はa軸に平行な面としている。特に、図1(b)に
示すように、複屈折板の一辺に対するc軸(又はa軸)
の角度θ2は好適には約22.5°とする。
Here, the vertical direction in FIG.
Then, the angle θ1 with respect to the vertical direction E of the inclined surface K through which light passes is set to 3 to 5 °. The reason for setting this angle is to make the emission angle of the return light sufficiently large and to realize a sufficient transmittance. One surface M is parallel to the vertical direction E, that is, a surface substantially perpendicular to the lower surface U (substantially perpendicular to the light incident direction and the light emitting direction), and c
The plane is parallel to the axis or the a-axis. In particular, as shown in FIG. 1B, the c-axis (or a-axis) with respect to one side of the birefringent plate
Is preferably about 22.5 °.

【0016】次に、プリズムカプラ等を備えた屈折率測
定装置により、この複屈折板の常光屈折率と異常光屈折
率とを測定したところ、非常に大きな屈折率を有し複屈
折が0.1〜0.2であった。このように、水晶に比べ
非常に大きな複屈折を示すことが判明した。
Next, when the ordinary refractive index and the extraordinary refractive index of the birefringent plate were measured by a refractive index measuring device equipped with a prism coupler and the like, the birefringent plate had a very large refractive index and a birefringence of 0.1. 1 to 0.2. As described above, it was found that birefringence was much larger than that of quartz.

【0017】したがって、例えば図2(a)(b)に示
すように、YIG(イットリウム鉄ガーネット)結晶等
から成るファラデー回転子3の光入射側及び光出射側の
それぞれに、図1に示す複屈折板1,2を垂直面Mがフ
ァラデー回転子3側に向くように、且つ常光線と異常光
線ともに45°ずれるように配設した光アイソレータS
によれば、その構成部品の大きな領域を占める複屈折板
1,2を小型にすることができるので、光アイソレータ
Sも従来より大幅な小型化が可能となる。
Therefore, as shown in FIGS. 2A and 2B, for example, the light incident side and the light emitting side of the Faraday rotator 3 made of a YIG (yttrium iron garnet) crystal or the like are respectively provided on the light incident side and the light emitting side as shown in FIG. An optical isolator S in which the refraction plates 1 and 2 are disposed so that the vertical plane M faces the Faraday rotator 3 and both the ordinary ray and the extraordinary ray are shifted by 45 °.
According to the method, the size of the birefringent plates 1 and 2 occupying a large area of the component parts can be reduced, so that the optical isolator S can be significantly reduced in size compared to the related art.

【0018】特に、ファラデー回転子の光入射側に配設
された複屈折板の光出射面、及びファラデー回転子の光
出射側に配設された複屈折板の光入射面を、それぞれc
軸に平行な面とすると、屈折率差(複屈折)を最も大き
くとることができる。これにより、同一特性を得る素子
を最も小さくすることができる。
In particular, the light exit surface of the birefringent plate disposed on the light incident side of the Faraday rotator and the light incident surface of the birefringent plate disposed on the light exit side of the Faraday rotator are respectively denoted by c.
When the plane is parallel to the axis, the refractive index difference (birefringence) can be maximized. As a result, it is possible to minimize the elements that obtain the same characteristics.

【0019】また、通常用いられるファラデー回転子は
45°偏波面を回転させるが、複屈折板を略直方体状に
する場合、図1(b)に示すように、その一辺に対する
c軸の角度θ2が約22.5°であれば、同一の複屈折
板を図2に示すように配置するだけで光アイソレータS
を構成することが可能である。なお、光アイソレータS
はファラデー回転子3の光入出射面の各々に、上記複屈
折板の2枚を紫外線硬化樹脂等の接着材で貼着したり、
所定間隔位置に配設する等して構成される。
A commonly used Faraday rotator rotates the plane of polarization by 45 °. However, when the birefringent plate is formed in a substantially rectangular parallelepiped shape, as shown in FIG. Is about 22.5 °, the same birefringent plate is simply arranged as shown in FIG.
Can be configured. The optical isolator S
Affixes two of the birefringent plates to each of the light entrance and exit surfaces of the Faraday rotator 3 with an adhesive such as an ultraviolet curing resin,
It is configured by being arranged at a predetermined interval position.

【0020】また、ファラデー回転子の光入射側に配設
された複屈折板の光出射面、及びファラデー回転子の光
出射側に配設された複屈折板の光入射面を、それぞれa
軸に平行な面とすると、特にPbMoO4 単結晶の結晶
の構造上、a軸引き上げの場合は結晶性の良好な単結晶
の育成が容易である。このため、複屈折板の光入射面を
a面にすれば、a軸引き上げ結晶のインゴットから容易
に得られるa面ウエハを用いたウエハプロセスにより結
晶性の優れた複屈折板を作製することができる。また、
この場合、上記と同様にして複屈折板を略直方体状にす
る場合、図1(a),(b)に示すように、その一辺に
対するa軸の角度θ2が約22.5°であれば、同一の
複屈折板を図2に示すように配置するだけで光アイソレ
ータを構成することが可能である。
The light exit surface of the birefringent plate disposed on the light incident side of the Faraday rotator and the light incident surface of the birefringent plate disposed on the light exit side of the Faraday rotator are respectively denoted by a
If the plane is parallel to the axis, it is easy to grow a single crystal having good crystallinity in the case of pulling up the a-axis, particularly in the structure of the PbMoO 4 single crystal. For this reason, if the light incidence surface of the birefringent plate is set to the a-plane, it is possible to produce a birefringent plate having excellent crystallinity by a wafer process using an a-plane wafer easily obtained from an ingot of an a-axis pulled crystal. it can. Also,
In this case, when the birefringent plate is formed into a substantially rectangular parallelepiped shape in the same manner as described above, as shown in FIGS. 1A and 1B, if the angle θ2 of the a axis with respect to one side is about 22.5 °. An optical isolator can be configured by simply arranging the same birefringent plate as shown in FIG.

【0021】さらに、PbMoO4 単結晶は(001)
あるいは(010)脈理(屈折率の分布)が発生するこ
とが多く、入射面をa面としない場合には、脈理が光の
進行方向に対して斜交するため、その影響を大きく受
け、挿入損失が増大することになる。これらのことから
入射面をa面とすると、製造コスト、特性、歩留りの点
で最も利点が大きいといえる。
Furthermore, the PbMoO 4 single crystal is (001)
Alternatively, (010) striae (distribution of the refractive index) often occurs, and when the incident surface is not the a-plane, the striae obliquely intersect with the traveling direction of the light. , The insertion loss increases. From these facts, it can be said that the advantage is greatest in terms of manufacturing cost, characteristics, and yield when the incident surface is the a-plane.

【0022】次に、本発明に係る光アイソレータについ
て説明する。図2(a)に示すように、複屈折現象を利
用する光アイソレータSは、2つの楔形状の複屈折板
1,2をファラデー回転子3の光入射側及び光出射側の
それぞれに配置したものである。なお、ファラデー回転
子3が自発磁化を有しない場合には、ファラデー回転子
3の周囲に磁界発生用の磁石が配設されることがある。
なお、簡単のため磁界発生手段は図示を省略している。
Next, an optical isolator according to the present invention will be described. As shown in FIG. 2A, in the optical isolator S utilizing the birefringence phenomenon, two wedge-shaped birefringent plates 1 and 2 are arranged on the light incidence side and the light emission side of the Faraday rotator 3, respectively. Things. When the Faraday rotator 3 does not have spontaneous magnetization, a magnet for generating a magnetic field may be provided around the Faraday rotator 3.
The magnetic field generating means is not shown for simplicity.

【0023】光ファイバ4から発せられた光L0はレン
ズ5で集束され、光アイソレータSに入射された後、複
屈折板1により分かれた常光線L1及び異常光線L2が
ファラデー回転子3により所定角度に回転させられる。
そして、複屈折板2から常光線L1及び異常光線L2を
平行光線としてレンズ6へ出射させ、レンズ6から光フ
ァイバ7に集束させるようにしている。
The light L0 emitted from the optical fiber 4 is converged by the lens 5 and is incident on the optical isolator S. After that, the ordinary ray L1 and the extraordinary ray L2 separated by the birefringent plate 1 are separated by a Faraday rotator 3 at a predetermined angle. Rotated.
Then, the ordinary ray L1 and the extraordinary ray L2 are emitted from the birefringent plate 2 to the lens 6 as parallel rays, and are focused on the optical fiber 7 from the lens 6.

【0024】一方、図2(b)に示すように、逆方向の
光L3は、光ファイバ7からレンズ6を経て出射され、
複屈折板2により常光線L5及び異常光線L4に分かれ
た後、ファラデー回転子3により所定角度に回転させら
れ、複屈折板1により互いに広がった常光線L5及び異
常光線L4が出射され、光ファイバ4に集束されること
はない。
On the other hand, as shown in FIG. 2B, the light L3 in the opposite direction is emitted from the optical fiber 7 through the lens 6, and
After being split into an ordinary ray L5 and an extraordinary ray L4 by the birefringent plate 2, the ordinary ray L5 and the extraordinary ray L4 which are rotated by the Faraday rotator 3 at a predetermined angle and spread by the birefringent plate 1 are emitted. 4 is not focused.

【0025】かくして、小型で且つ高性能な複屈折板及
び光アイソレータを実現することができる。なお、本実
施形態では複屈折板を用いた装置として光アイソレータ
を例にとり説明したが、このような複屈折板を使用する
ものであれば適用可能であり、例えば偏光ビームスプリ
ッタなどに使用される各種周知のプリズム等の偏光子や
光記録装置の光読取部等に適用できる。
Thus, a compact and high-performance birefringent plate and optical isolator can be realized. In the present embodiment, an optical isolator has been described as an example of a device using a birefringent plate, but any device using such a birefringent plate can be applied, and is used for, for example, a polarizing beam splitter. The invention can be applied to various known polarizers such as a prism and an optical reading unit of an optical recording apparatus.

【0026】[0026]

【実施例】単結晶育成炉内に配設された支持台上に載置
された白金製坩堝内にPbMoO4 (モリブデン酸
鉛)、K5 (BiNd)(MoO4 4 、BaLiNb
5 15の原材料を入れ、この原材料を溶融して融液と
し、この融液に先端に種結晶を設けた育成棒を浸して、
この育成棒を5〜10rpmで回転させながら所定の引
上げ速度(1mm/h)でもって、外径約80mm、長
さ約100mmの単結晶24を育成させた。
EXAMPLE PbMoO 4 (lead molybdate), K 5 (BiNd) (MoO 4 ) 4 , and BaLiNb were placed in a platinum crucible placed on a support placed in a single crystal growing furnace.
The raw material of 5 O 15 is put, and the raw material is melted to form a melt, and a growing rod provided with a seed crystal at the tip is immersed in the melt,
A single crystal 24 having an outer diameter of about 80 mm and a length of about 100 mm was grown at a predetermined pulling speed (1 mm / h) while rotating the growth rod at 5 to 10 rpm.

【0027】次いで、ダイシングにより外径約75m
m、厚さ約1mmのウエハーを切り出してプリズムを構
成する板体を用意した。
Next, the outer diameter is about 75 m by dicing.
A wafer having a thickness of about 1 mm and a thickness of about 1 mm was cut out to prepare a plate constituting a prism.

【0028】このような板体の切断面をメカノケミカル
用の研磨装置により研磨し、その屈折率の測定を行った
ところ、測定波長632.8nmにおいて、平均の常光
屈折率(no)及び異常光屈折率(ne)が、それぞ
れ、モリブデン酸鉛ではno=1.79、ne=1.6
2、K5 (Bi,Nd)(MoO4 4 ではno=2.
41、ne=2.28、BaLiNb5 15ではno=
2.32、ne=2.22であった。ここで、屈折率の
測定は以下のようにして行った。
The cut surface of such a plate was polished by a polishing device for mechanochemical and the refractive index was measured. As a result, the average ordinary refractive index (no) and extraordinary light were measured at a measurement wavelength of 632.8 nm. The refractive index (ne) of lead molybdate is no = 1.79 and ne = 1.6, respectively.
2, no = 2 in K 5 (Bi, Nd) (MoO 4 ) 4 .
41, ne = 2.28, no in BaLiNb 5 O 15
2.32, ne = 2.22. Here, the measurement of the refractive index was performed as follows.

【0029】すなわち、プリズムカプラ等を備えた屈折
率測定装置(Metrionモデル2010)により常
光屈折率と異常光屈折率とを測定したが、ここで、常光
屈折率と異常光屈折率とは、図3に示すように、育成し
た単結晶の上部と下部のそれぞれから切り出したウエハ
ーWの測定点である14箇所(×印Pの箇所:中心部か
ら外周部にいたるライン上)に光を入射させて測定し、
その測定値の平均を算出して求めた。
That is, the ordinary light refractive index and the extraordinary light refractive index were measured by a refractive index measuring device (Metrion model 2010) equipped with a prism coupler and the like. As shown in FIG. 3, light is made incident on 14 points (points indicated by the crosses P: on a line extending from the center to the outer periphery) which are measurement points of the wafer W cut out from the upper and lower portions of the grown single crystal. Measure
The average of the measured values was calculated and determined.

【0030】このようにして得られた常光屈折率(n
o)と異常光屈折率(ne)より、複屈折=no−ne
は、モリブデン酸鉛で0.13、K5 (Bi,Nd)
(MoO4 4 で0.17、BaLiNb5 15で0.
1であり、非常に大きな値を有することが判明した。
The thus obtained ordinary light refractive index (n
o) and extraordinary refractive index (ne), birefringence = no-ne
Is 0.13 lead molybdate, K 5 (Bi, Nd)
0.17 for (MoO 4 ) 4 and 0.1 for BaLiNb 5 O 15 .
1, which was found to have a very large value.

【0031】さらに、X線トポグラフィ及びクロスニコ
ルにより粒界や歪等の有無を調べたところ、それらの異
常は全く観測されず、非常に良品質で均質な結晶である
ことも判明した。
Further, when the presence or absence of grain boundaries and strains was examined by X-ray topography and crossed nicols, no abnormalities were observed at all, and it was found that the crystals were very good and homogeneous.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
従来使用されてきた水晶より複屈折を大きくすることが
でき、さらに方解石やルチル等より非常に簡便な方法で
育成が可能であるので、小型で且つ高性能な複屈折板を
容易に提供でき、ひいてはこのような複屈折板を使用す
る装置、特に光記録装置の光読取部や光アイソレータの
小型化,高性能化が実現される。
As described above, according to the present invention,
Birefringence can be made larger than conventionally used quartz, and it is possible to grow by a very simple method than calcite or rutile, so that a small and high-performance birefringent plate can be easily provided, As a result, miniaturization and high performance of an apparatus using such a birefringent plate, in particular, an optical reading section and an optical isolator of an optical recording apparatus are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る複屈折板を説明する図であり、
(a)は正面図、(b)は側面図である。
FIG. 1 is a diagram illustrating a birefringent plate according to the present invention,
(A) is a front view, (b) is a side view.

【図2】(a),(b)はそれぞれ、光アイソレータの
概略構成及び作用を説明する模式図である。
FIGS. 2A and 2B are schematic diagrams illustrating a schematic configuration and operation of an optical isolator, respectively.

【図3】ウエハにおける屈折率の測定位置を示す平面図
である。
FIG. 3 is a plan view showing a measurement position of a refractive index on a wafer.

【符号の説明】[Explanation of symbols]

1,2:複屈折板 3:ファラデー回転子 S:光アイソレータ 1: 2: birefringent plate 3: Faraday rotator S: optical isolator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 PbMoO4 、K5 (Bix Nd1-x
(MoO4 4 (ただし、0<x<1)、又はBaLi
Nb5 15の単結晶体から成る複屈折板。
1. A PbMoO 4, K 5 (Bi x Nd 1-x)
(MoO 4 ) 4 (where 0 <x <1) or BaLi
Birefringent plate made of a single crystal of Nb 5 O 15.
【請求項2】 ファラデー回転子の光入射側及び光出射
側のそれぞれに、請求項1に記載の複屈折板を配設して
成る光アイソレータ。
2. An optical isolator comprising the birefringent plate according to claim 1 disposed on each of a light incident side and a light emitting side of a Faraday rotator.
【請求項3】 前記ファラデー回転子の光入射側に配設
された前記複屈折板の光出射面、及び前記ファラデー回
転子の光出射側に配設された前記複屈折板の光入射面
を、それぞれc軸に平行な面としたことを特徴とする請
求項2に記載の光アイソレータ。
3. A light emitting surface of the birefringent plate disposed on a light incident side of the Faraday rotator and a light incident surface of the birefringent plate disposed on a light emitting side of the Faraday rotator. 3. The optical isolator according to claim 2, wherein each of the surfaces is a plane parallel to the c-axis.
【請求項4】 前記ファラデー回転子の光入射側に配設
された前記複屈折板の光出射面、及び前記ファラデー回
転子の光出射側に配設された前記複屈折板の光入射面
を、それぞれa軸に平行な面としたことを特徴とする請
求項2に記載の光アイソレータ。
4. A light emitting surface of the birefringent plate provided on a light incident side of the Faraday rotator and a light emitting surface of the birefringent plate provided on a light emitting side of the Faraday rotator. 3. The optical isolator according to claim 2, wherein each of the surfaces is parallel to the a-axis.
JP26740799A 1999-09-21 1999-09-21 Birefringent plate and optical isolator using the same Pending JP2001091738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26740799A JP2001091738A (en) 1999-09-21 1999-09-21 Birefringent plate and optical isolator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26740799A JP2001091738A (en) 1999-09-21 1999-09-21 Birefringent plate and optical isolator using the same

Publications (1)

Publication Number Publication Date
JP2001091738A true JP2001091738A (en) 2001-04-06

Family

ID=17444425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26740799A Pending JP2001091738A (en) 1999-09-21 1999-09-21 Birefringent plate and optical isolator using the same

Country Status (1)

Country Link
JP (1) JP2001091738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108344A (en) * 2005-10-12 2007-04-26 Sumitomo Metal Mining Co Ltd Polarization-independent type optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108344A (en) * 2005-10-12 2007-04-26 Sumitomo Metal Mining Co Ltd Polarization-independent type optical isolator
JP4696830B2 (en) * 2005-10-12 2011-06-08 住友金属鉱山株式会社 Polarization-independent optical isolator

Similar Documents

Publication Publication Date Title
US9360610B2 (en) Borate birefringent crystal applicable to ultraviolet (UV) or deep ultraviolet (DUV) range, and growth method and use thereof
JPH0727127B2 (en) Optical system with reciprocal polarization rotator
JP3719374B2 (en) Manufacturing method of polarizing element
CN110618476A (en) Application of tin boron oxygen chlorine birefringent crystal
JP3720616B2 (en) Faraday rotation angle variable device
WO2015067039A1 (en) Preparation method and application of sodium barium fluoroborate birefringent crystal
JP2001091738A (en) Birefringent plate and optical isolator using the same
JP2786078B2 (en) Faraday rotator and optical isolator
JP3858776B2 (en) Polarizer and prism using it
US5000546A (en) Optical device with optical polarizer/analyzer formed of yttrium vanadate
JP2001264694A (en) Polarized wave independent optical isolator
JP3346176B2 (en) Manufacturing method of polarizer
JP4211811B2 (en) prism
US5132100A (en) Optically active single crystal and fabrication process thereof
WO2015060372A1 (en) Crystal body, optical device having same and crystal body production method
JP4103243B2 (en) UV polarization method
JPH09178940A (en) Polarizing element
JP2985022B2 (en) Magneto-optical element and optical isolator
JPH09178942A (en) Polarizing element and optical isolator
JP3472524B2 (en) Optical attenuator
JPH04299302A (en) Optical isolator
JPH11231274A (en) Faraday rotation angle varying device
JP2933082B1 (en) α-BBO single crystal, manufacturing method thereof, optical isolator and prism
JPH02103506A (en) Polarizing device and polarizing prism
JPS61126504A (en) Polarizing element