JP2007108344A - Polarization-independent type optical isolator - Google Patents

Polarization-independent type optical isolator Download PDF

Info

Publication number
JP2007108344A
JP2007108344A JP2005298014A JP2005298014A JP2007108344A JP 2007108344 A JP2007108344 A JP 2007108344A JP 2005298014 A JP2005298014 A JP 2005298014A JP 2005298014 A JP2005298014 A JP 2005298014A JP 2007108344 A JP2007108344 A JP 2007108344A
Authority
JP
Japan
Prior art keywords
crystal plate
single crystal
wedge
axis
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005298014A
Other languages
Japanese (ja)
Other versions
JP4696830B2 (en
Inventor
Yoichi Onozato
洋一 小野里
Toshiki Kishimoto
俊樹 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005298014A priority Critical patent/JP4696830B2/en
Publication of JP2007108344A publication Critical patent/JP2007108344A/en
Application granted granted Critical
Publication of JP4696830B2 publication Critical patent/JP4696830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization-independent type optical isolator capable of suppressing the temperature rise of a Faraday rotator, even if a light of high output is made incident on the Faraday rotator, and capable of preventing deterioration in isolation. <P>SOLUTION: Regarding the polarization-independent type isolator, wherein a sapphire single-crystal plate is brought in contact with the light transmissive surface of a magnetic garnet single-crystal arranged between two wedge-type birefringence crystal plates, the direction of the axis C of the incident-side wedge-type birefringence crystal plate is made to coincide with the direction of the axis C of the sapphire single-crystal plate brought in contact with the incident side of the magnetic garnet single crystal, and also, the direction of the axis C of the exit-side wedge-type birefringence crystal plate is made to coincide with the direction of the axis C of the sapphire single-crystal plate, brought in contact with the exit side of the magnetic garnet single crystal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、楔型楔型複屈折結晶板を用いた偏波無依存型光アイソレータに関するものであり、さらに詳述すれば磁性ガーネット単結晶をファラデー回転子とし、ファラデー回転子の光吸収に起因する温度上昇により特性劣化や破損の防止を考慮した偏波無依存型光アイソレータに関するものである。   The present invention relates to a polarization-independent optical isolator using a wedge-type wedge-shaped birefringent crystal plate. More specifically, the present invention relates to a magnetic garnet single crystal as a Faraday rotator, resulting from light absorption by the Faraday rotator. The present invention relates to a polarization-independent optical isolator that takes into account the prevention of characteristic deterioration and breakage due to temperature rise.

光アイソレータは、順方向への光信号を通過させ、逆方向からの光信号の通過を防ぐ機能を持つ非可逆光デバイスであり、例えば半導体レーザを光源とする光通信システムにおいて光信号が反射によって光源側に戻り、半導体レーザの発振が不安定となることを防止するために用いられている。   An optical isolator is an irreversible optical device that has a function of passing an optical signal in the forward direction and preventing the optical signal from passing in the reverse direction. For example, in an optical communication system using a semiconductor laser as a light source, the optical signal is reflected. Returning to the light source side, it is used to prevent the oscillation of the semiconductor laser from becoming unstable.

光アイソレータは、半導体レーザモジュールに使用されるような偏波依存型光アイソレータ(以下、「PDOI」と略記する)と、光ファイバアンプの前後で用いられるような偏波無依存型光アイソレータ(以下、「PIOI」と略記する)に大きく分けられる。偏波無依存型光アイソレータでは、通常は偏光子にルチル、YVO、LiNbOなどの楔形の複屈折結晶板を使用し、2枚の楔形複屈折結晶板の間に、ファラデー回転子として磁性ガーネット単結晶からなる平板を配置している。ここで、ファラデー回転子は偏光を45度回転させるように調整されており、2枚の楔形複屈折結晶板は、それらの光学軸の方位が互いに45度ずらして配置されている。なお、偏光子およびファラデー回転子から構成される光学素子部分を非相反部と呼ぶ。 The optical isolator includes a polarization-dependent optical isolator (hereinafter abbreviated as “PDOI”) used for a semiconductor laser module and a polarization-independent optical isolator (hereinafter referred to as “PDOI”) used before and after an optical fiber amplifier. And abbreviated as “PIOI”). In a polarization-independent optical isolator, a wedge-shaped birefringent crystal plate such as rutile, YVO 4 , or LiNbO 3 is usually used as a polarizer, and a magnetic garnet single unit is used as a Faraday rotator between two wedge-shaped birefringent crystal plates. A flat plate made of crystals is arranged. Here, the Faraday rotator is adjusted to rotate the polarized light by 45 degrees, and the two wedge-shaped birefringent crystal plates are arranged so that their optic axis directions are shifted from each other by 45 degrees. Note that an optical element portion composed of a polarizer and a Faraday rotator is called a nonreciprocal portion.

順方向において入射側からの平行入力光は、非相反部の第1の楔形複屈折結晶板によって常光と異常光に分離するが、ファラデー回転子により偏光が45度回転させられ、且つ第2の楔形複屈折結晶板の光学軸が第1の楔形複屈折結晶板と45度ずれているため、常光は常光として、異常光は異常光として入射され、それぞれ平行光として第2の楔形複屈折結晶板から出射され光結合される。   Parallel input light from the incident side in the forward direction is separated into ordinary light and extraordinary light by the first wedge-shaped birefringent crystal plate of the nonreciprocal part, but the polarization is rotated 45 degrees by the Faraday rotator, and the second Since the optical axis of the wedge-shaped birefringent crystal plate is deviated by 45 degrees from the first wedge-shaped birefringent crystal plate, ordinary light is incident as ordinary light, and extraordinary light is incident as extraordinary light. The light is emitted from the plate and optically coupled.

逆方向からの光は、第2の楔型複屈折結晶板にて常光と異常光に分離され、ファラデー回転子にて45度回転された後は、第1の楔形複屈折結晶板には常光は異常光として、異常光は常光として入射されるため第1の楔形複屈折結晶板を出た光は平行光にはならず、光結合されない。このようにして光アイソレータとして機能する。   The light from the opposite direction is separated into ordinary light and extraordinary light by the second wedge-shaped birefringent crystal plate, and after being rotated 45 degrees by the Faraday rotator, the first wedge-shaped birefringent crystal plate is ordinary light. Is incident as extraordinary light, and extraordinary light is incident as ordinary light, so the light exiting the first wedge-shaped birefringent crystal plate does not become parallel light and is not optically coupled. Thus, it functions as an optical isolator.

前記磁性ガーネット単結晶は、近赤外波長域、特に光通信で用いられる波長域(1.3μm〜1.6μm)においては優れた光学的透明性を示し、数10mW程度であれば光の吸収に起因する温度上昇も少なく問題は殆ど無い。   The magnetic garnet single crystal exhibits excellent optical transparency in the near-infrared wavelength region, particularly in the wavelength region (1.3 μm to 1.6 μm) used in optical communication, and absorbs light if it is about several tens of mW. There is little problem of temperature rise due to, and there is almost no problem.

しかしながら、上記波長域よりも短波長域、特にYAGレーザの波長(1.06μm)や光ファイバ増幅器の励起光の波長(1μm前後)では、光の吸収が大きくなり数mWのレーザパワーにおいても無視できない温度上昇となる。   However, in the shorter wavelength range, especially in the YAG laser wavelength (1.06 μm) and the pumping light wavelength (around 1 μm) of the optical fiber amplifier, light absorption increases and is ignored even at laser power of several mW. The temperature rise is impossible.

上記波長域(1μm前後)の光アイソレータに用いられるファラデー回転子としては、常磁性単結晶あるいは常磁性ガラスがあるが、それらを用いるとファラデー回転子の大きさ自体が大きくなるばかりか、前記ファラデー回転子を磁気飽和させるためには大きなマグネットが必要となり、光アイソレータが巨大化してしまう。また、1μm帯での光アイソレータには、高出力に耐えられることが要求され始めている。   As the Faraday rotator used for the optical isolator in the above wavelength range (around 1 μm), there are a paramagnetic single crystal and a paramagnetic glass. However, when these are used, not only the size of the Faraday rotator itself increases but also the Faraday rotator. In order to magnetically saturate the rotor, a large magnet is required, and the optical isolator becomes huge. In addition, optical isolators in the 1 μm band are beginning to be required to withstand high output.

耐高出力性の光アイソレータとしては、特許文献1においてガーネット単結晶を引き上げる際に使用する非磁性ガーネット基板を残し、他方にも非磁性ガーネット基板を接触、又は接着させて熱伝導性を良くすることによって対処することが開示されている。また、特許文献2によれば、ファラデー回転子の少なくとも1面上に光透過性のサファイア単結晶板のC軸を前記ファラデー回転子の光学面に対し垂直となるように接触・接合させ、ファラデー回転子の温度上昇を抑える方法が開示されている。
特開平7−281129号公報 特開2005−43853号公報
As a high-power-resistant optical isolator, the nonmagnetic garnet substrate used when pulling up the garnet single crystal in Patent Document 1 is left, and the nonmagnetic garnet substrate is contacted or adhered to the other to improve thermal conductivity. It is disclosed to deal with this. According to Patent Document 2, the C-axis of a light-transmitting sapphire single crystal plate is brought into contact with and joined to at least one surface of a Faraday rotator so as to be perpendicular to the optical surface of the Faraday rotator. A method for suppressing the temperature rise of the rotor is disclosed.
JP 7-281129 A JP 2005-43853 A

しかしながら、特許文献1に記載された磁性ガーネット単結晶からなるファラデー回転子の両側面に非磁性ガーネット基板を接触、又は接着させる方法においては、入射できる光のパワーに限界があり、高出力のレーザを入射した場合には、吸収による温度上昇を抑えきることができない。   However, in the method of contacting or adhering a non-magnetic garnet substrate to both side surfaces of a Faraday rotator made of a magnetic garnet single crystal described in Patent Document 1, there is a limit to the power of incident light, and a high-power laser When the light is incident, the temperature rise due to absorption cannot be suppressed.

また、特許文献2に記載されたサファイア単結晶板のC軸をファラデー回転子の光学面に対し垂直に接触・接合させた方法は、サファイア単結晶が複屈折性結晶であるが故に、特許文献2に記載されているPDOIに使用する場合はさほど大きな問題とはならないが、PIOIに使用する場合はサファイア単結晶板において消光比の劣化という問題が生じてくる。   The method of contacting and joining the C axis of the sapphire single crystal plate described in Patent Document 2 perpendicularly to the optical surface of the Faraday rotator is because the sapphire single crystal is a birefringent crystal. When used for the PDOI described in No. 2, the problem is not so great, but when used for the PIOI, there arises a problem of deterioration of the extinction ratio in the sapphire single crystal plate.

C軸に沿って光が入射した場合には、サファイア単結晶板面内の屈折率は等価であり、消光比は−55dB以上得られるはずであるが、入射角が8度以上になれば、入射偏光の状態によっては−20dB程度まで落ちてしまう場合がある。偏光子に楔形複屈折結晶板を用いたPIOIにおいては、2枚の楔型複屈折結晶板間の光は、楔角によっても異なるが、楔型複屈折結晶板に楔角が8度のルチル結晶を用いると約10度程度傾くため、消光比が−20dB以下に劣化し、光アイソレータとしての性能、特にアイソレーションを劣化させてしまう。   When light is incident along the C-axis, the refractive index in the sapphire single crystal plate surface is equivalent and the extinction ratio should be -55 dB or more, but if the incident angle is 8 degrees or more, Depending on the state of incident polarized light, it may fall to about -20 dB. In PIOI using a wedge-shaped birefringent crystal plate as a polarizer, the light between two wedge-shaped birefringent crystal plates varies depending on the wedge angle, but the wedge-shaped birefringent crystal plate has a rutile with a wedge angle of 8 degrees. Since crystals are tilted by about 10 degrees, the extinction ratio is degraded to -20 dB or less, and the performance as an optical isolator, particularly the isolation, is degraded.

なお、サファイア単結晶板の向きを回転させて、傾斜した光をサファイア単結晶板へ垂直に入射させれば、C軸に沿って光が入射することになるため消光比の劣化は無くなるが、垂直な入射面で反射した光は入射経路を辿り光源側へ戻っていくことになる。光学結晶の表面には反射防止膜が施されるが、透過率を100%にすることはできないため、上記のようなサファイア単結晶板を回転させる手法により消光比の劣化を防止することは、そもそも反射戻り光を遮断するという光アイソレータの機能を損なうため採用することはできない。   In addition, if the direction of the sapphire single crystal plate is rotated and the inclined light is vertically incident on the sapphire single crystal plate, the light is incident along the C axis, so that the extinction ratio is not deteriorated. The light reflected by the vertical incident surface follows the incident path and returns to the light source side. Although the antireflection film is applied to the surface of the optical crystal, the transmittance cannot be made 100%. Therefore, preventing the deterioration of the extinction ratio by the method of rotating the sapphire single crystal plate as described above, In the first place, it cannot be adopted because it impairs the function of the optical isolator that blocks the reflected return light.

本発明は、上記課題に鑑みてなされてものであり、その目的は高出力の光が入射されても、ファラデー回転子の温度上昇を抑えることが可能であり、アイソレーションの低下を起こさない非相反部を有する偏波無依存型光アイソレータを提供することである。   The present invention has been made in view of the above problems, and the object thereof is to prevent an increase in temperature of the Faraday rotator even when high-power light is incident, and to prevent a decrease in isolation. It is to provide a polarization-independent optical isolator having a reciprocal part.

上記課題を解決するため本発明に係る偏波無依存型光アイソレータは、2枚の楔形複屈折結晶板の間に配置した磁性ガーネット単結晶の光透過面にサファイア単結晶板を接触させた偏波無依存型光アイソレータにおいて、入射側の楔型複屈折結晶板のC軸と磁性ガーネット単結晶の入射側に接触させたサファイア単結晶板のC軸の向きを一致させるとともに、出射側の楔型楔型複屈折結晶板のC軸と磁性ガーネット単結晶の出射側に接触させたサファイア単結晶板のC軸の向きを一致させることを特徴とするものである。   In order to solve the above problems, a polarization-independent optical isolator according to the present invention is a polarization-free optical isolator in which a sapphire single crystal plate is brought into contact with a light transmission surface of a magnetic garnet single crystal disposed between two wedge-shaped birefringent crystal plates. In the dependency type optical isolator, the direction of the C axis of the wedge-type birefringent crystal plate on the incident side and the direction of the C axis of the sapphire single crystal plate brought into contact with the incident side of the magnetic garnet single crystal are matched, and the wedge-shaped wedge on the output side The direction of the C axis of the sapphire single crystal plate brought into contact with the exit side of the magnetic garnet single crystal is made to coincide with that of the type birefringent crystal plate.

また、本発明においては、入射側の楔型複屈折結晶板のC軸と磁性ガーネット単結晶の入射側に接触させたサファイア単結晶板のC軸の向き、および出射側の楔型楔型複屈折結晶板のC軸と磁性ガーネット単結晶の出射側に接触させたサファイア単結晶板のC軸の向きのずれが1度以内であることを特徴とし、さらに、本発明では磁性ガーネット単結晶とサファイア単結晶板が接着剤にて接合されていることを特徴とする。   In the present invention, the direction of the C-axis of the wedge-type birefringent crystal plate on the incident side and the direction of the C-axis of the sapphire single crystal plate brought into contact with the incident side of the magnetic garnet single crystal, and the wedge-type wedge-shaped compound on the exit side The sapphire single crystal plate brought into contact with the exit side of the refracting crystal plate and the magnetic garnet single crystal is not more than 1 degree away from the orientation of the sapphire single crystal plate. A sapphire single crystal plate is bonded with an adhesive.

本発明により、高出力の光が入射されても、ファラデー回転子の温度上昇を抑えることが可能であり、消光比劣化を起こさない非相反部を有する偏波無依存型光アイソレータを提供することが可能となる。   According to the present invention, it is possible to provide a polarization-independent optical isolator having a nonreciprocal portion that can suppress a temperature rise of a Faraday rotator even when high-power light is incident and does not cause extinction ratio deterioration. Is possible.

本発明の実施の形態に係る偏波無依存型光アイソレータにおける非相反部の構成の概略を図1に示す。光の透過方向順に、第1の楔形複屈折結晶板1、第1のサファイア単結晶板2、磁性ガーネット単結晶3、第2のサファイア単結晶板4、第2の楔型複屈折結晶板5の順に配置している。図2は、本発明の実施の形態における光の進行状態を示している。光ファイバ6から出射した順方向の光はレンズ7を介して非相反部に入射する。非相反部への入射光は、第1の楔形複屈折結晶板1によって常光と異常光に分離され、第1のサファイア単結晶板2に入射する。第1のサファイア単結晶板2を通過した光は、磁性ガーネット単結晶3によって偏光面が45度回転させられた後、第2のサファイア単結晶板4を通過し、第2の楔型複屈折結晶板5に入射する。   FIG. 1 shows a schematic configuration of a nonreciprocal portion in the polarization-independent optical isolator according to the embodiment of the present invention. In order of light transmission direction, the first wedge-shaped birefringent crystal plate 1, the first sapphire single crystal plate 2, the magnetic garnet single crystal 3, the second sapphire single crystal plate 4, and the second wedge-shaped birefringent crystal plate 5 Arranged in the order of. FIG. 2 shows the progress of light in the embodiment of the present invention. The forward light emitted from the optical fiber 6 enters the nonreciprocal part via the lens 7. Incident light to the nonreciprocal part is separated into ordinary light and extraordinary light by the first wedge-shaped birefringent crystal plate 1 and enters the first sapphire single crystal plate 2. The light passing through the first sapphire single crystal plate 2 passes through the second sapphire single crystal plate 4 after the polarization plane is rotated by 45 degrees by the magnetic garnet single crystal 3, and the second wedge-shaped birefringence. Incident on the crystal plate 5.

ここで、本発明では、第1の楔型複屈折結晶板1のC軸と第1のサファイア単結晶板2のC軸の向き、および第2の楔型複屈折結晶板5のC軸と第2のサファイア単結晶板4のC軸の向きがそれぞれ一致しているため、第1の楔型複屈折結晶板1によって分離された常光は第2の楔型複屈折結晶板5においても常光として、第1の楔型複屈折結晶板1によって分離された異常光は第2の楔型複屈折結晶板5においても異常光として入射することになる。そのため、第2の楔型複屈折結晶板5から出射される常光と異常光は平行光となり、レンズ7’により出射側の光ファイバ6’へ結合させることができる。   Here, in the present invention, the C-axis direction of the first wedge-type birefringent crystal plate 1 and the C-axis direction of the first sapphire single crystal plate 2 and the C-axis of the second wedge-type birefringent crystal plate 5 Since the directions of the C-axis of the second sapphire single crystal plate 4 coincide with each other, the ordinary light separated by the first wedge-shaped birefringent crystal plate 1 is also ordinary light in the second wedge-shaped birefringent crystal plate 5. As described above, the extraordinary light separated by the first wedge-type birefringent crystal plate 1 also enters the second wedge-type birefringent crystal plate 5 as extraordinary light. Therefore, ordinary light and extraordinary light emitted from the second wedge-shaped birefringent crystal plate 5 become parallel light, and can be coupled to the optical fiber 6 'on the emission side by the lens 7'.

出射側の光ファイバ6’から戻ってきた逆方向の光は、レンズを通り、第2の楔型複屈折結晶板5において常光と異常光に分離し、磁性ガーネット単結晶の非可逆性により45度回転される。そして、順方向の場合と同様に、第1の楔型楔型複屈折結晶板1のC軸と第1のサファイア単結晶板2のC軸の向き、および第2の楔型複屈折結晶板5のC軸と第2のサファイア単結晶板4のC軸の向きがそれぞれ一致しているため、第2の楔型複屈折結晶板5における常光は第1の楔型複屈折結晶板1では異常光として、第2の楔型複屈折結晶板5における異常光は第1の楔型複屈折結晶板1では常光として入射することになる。そのため、第1の楔型複屈折結晶板1から出射された光は平行光とはならず、入射側の光ファイバ6へ光結合されることはなく、高いアイソレーションが維持される。   The light in the reverse direction returned from the optical fiber 6 ′ on the emission side passes through the lens and is separated into ordinary light and extraordinary light in the second wedge-shaped birefringent crystal plate 5, and 45 due to the irreversibility of the magnetic garnet single crystal. Rotated degrees. As in the forward direction, the orientation of the C-axis of the first wedge-shaped wedge-type birefringent crystal plate 1 and the C-axis of the first sapphire single-crystal plate 2 and the second wedge-shaped birefringent crystal plate 5 and the C-axis direction of the second sapphire single crystal plate 4 coincide with each other, so that the ordinary light in the second wedge-type birefringent crystal plate 5 is normal in the first wedge-type birefringent crystal plate 1. As extraordinary light, extraordinary light in the second wedge-shaped birefringent crystal plate 5 enters the first wedge-type birefringent crystal plate 1 as ordinary light. Therefore, the light emitted from the first wedge-shaped birefringent crystal plate 1 does not become parallel light, and is not optically coupled to the optical fiber 6 on the incident side, so that high isolation is maintained.

また、楔型複屈折結晶板のC軸とサファイア単結晶板のC軸のずれについては、1度以下が望ましい。サファイア単結晶板自体も楔型複屈折結晶板であるため、楔型複屈折結晶板から出射される光がサファイア単結晶板の結晶軸に沿って入射されなければ、消光比が悪くなり、アイソレーションの劣化につながる。図3は楔型複屈折結晶板のC軸とサファイア単結晶板のC軸がずれたことによる消光比の変化の表したものであるが、1度を超えてずれると消光比は30数dBまで落ち、2度ずれると30dBを割り込んでしまう。さらに、サファイア単結晶板とファラデー回転子は、好ましくは低粘度の接着剤にて接合し、接合部の厚みを10μm未満に抑えて接合することにより、ファラデー回転子で発生した熱をサファイア単結晶板により伝えやすくなるため、密着配置と比べ、より高出力の光に耐えられることが可能となり、好ましい。   Further, the deviation between the C-axis of the wedge-shaped birefringent crystal plate and the C-axis of the sapphire single crystal plate is preferably 1 degree or less. Since the sapphire single crystal plate itself is also a wedge-type birefringent crystal plate, if the light emitted from the wedge-type birefringent crystal plate is not incident along the crystal axis of the sapphire single crystal plate, the extinction ratio will deteriorate and Lead to deterioration of the FIG. 3 shows the change in the extinction ratio due to the deviation of the C-axis of the wedge-shaped birefringent crystal plate and the C-axis of the sapphire single crystal plate. If it falls to 2 degrees, it will break 30 dB. Furthermore, the sapphire single crystal plate and the Faraday rotator are preferably bonded with a low-viscosity adhesive, and the thickness of the bonded portion is suppressed to less than 10 μm to bond the heat generated by the Faraday rotator to the sapphire single crystal. Since it becomes easier to convey by the plate, it is possible to withstand higher output light than the close contact arrangement, which is preferable.

磁性ガーネット単結晶は、液相エピタキシャル法で育成したもので、ファラデー回転角が45度となるように研磨により厚みが調整されている。楔型複屈折結晶板としては、楔角が8度のルチル単結晶を用いた。ルチル単結晶はYAGレーザの波長(1.06μm)の光に対し、常光の屈折率n=2.480と異常光の屈折率n=2.742を有する。そのため、第1および第2の楔型複屈折結晶板の間の光の経路は、約13度程度傾いている。また、サファイア単結晶板は厚みが0.5mmの平行平板とし、光透過面内にC軸がある。 The magnetic garnet single crystal is grown by a liquid phase epitaxial method, and the thickness is adjusted by polishing so that the Faraday rotation angle is 45 degrees. As the wedge-type birefringent crystal plate, a rutile single crystal having a wedge angle of 8 degrees was used. Rutile single crystal with respect to light of a wavelength of a YAG laser (1.06 .mu.m), having a refractive index n e = 2.742 for abnormal light refractive index n o = 2.480 the ordinary. Therefore, the light path between the first and second wedge-shaped birefringent crystal plates is inclined by about 13 degrees. The sapphire single crystal plate is a parallel plate having a thickness of 0.5 mm, and has a C axis in the light transmission surface.

上記の各単結晶板を、図1に示すように第1の楔型複屈折結晶板、第1のサファイア単結晶板、磁性ガーネット単結晶、第2のサファイア単結晶板、第2の楔型複屈折結晶板の順に配置し、PIOIを構成した。第1および第2の楔型複屈折結晶板の傾斜面は、それぞれ磁性ガーネット単結晶とは反対側を向いており、傾斜面同士が平行になるように配置した。なお、図1には記されていないが、磁性ガーネット単結晶の外側には、それぞれの結晶を保持するためのホルダ、及び、磁性ガーネット単結晶を磁気的に飽和させるための磁石が配置されている。また、これらの各単結晶板の光透過面には、使用波長に対する反射防止膜を施してある。   As shown in FIG. 1, each of the single crystal plates is a first wedge-type birefringent crystal plate, a first sapphire single crystal plate, a magnetic garnet single crystal, a second sapphire single crystal plate, and a second wedge type. The birefringent crystal plates were arranged in this order to constitute the PIOI. The inclined surfaces of the first and second wedge-shaped birefringent crystal plates face the opposite side of the magnetic garnet single crystal, and are arranged so that the inclined surfaces are parallel to each other. Although not shown in FIG. 1, a holder for holding each crystal and a magnet for magnetically saturating the magnetic garnet single crystal are arranged outside the magnetic garnet single crystal. Yes. In addition, an antireflection film for the wavelength used is applied to the light transmission surface of each single crystal plate.

楔型複屈折結晶板のC軸の位置は、入射方向から見て、第1の楔型複屈折結晶板はY方向から反時計回りに22.5度、第2の楔型複屈折結晶板はY方向から時計回りに22.5度傾いている。そのため互いのC軸の位置は45度ずれた状態である。また、2枚のサファイア単結晶板のC軸は、第1のサファイア単結晶板のC軸は第1の楔型複屈折結晶板のC軸に合わせ、第2のサファイア単結晶板のC軸は第2の楔型複屈折結晶板のC軸に合わせてあり、接着剤にて磁性ガーネット単結晶を挟むように接着した。   The position of the C-axis of the wedge-shaped birefringent crystal plate is 22.5 degrees counterclockwise from the Y direction when the first wedge-shaped birefringent crystal plate is viewed from the incident direction. Is inclined 22.5 degrees clockwise from the Y direction. For this reason, the positions of the C axes are shifted by 45 degrees. The C axis of the two sapphire single crystal plates is aligned with the C axis of the first wedge-type birefringent crystal plate so that the C axis of the first sapphire single crystal plate matches the C axis of the second sapphire single crystal plate. Is aligned with the C-axis of the second wedge-shaped birefringent crystal plate, and is bonded so as to sandwich the magnetic garnet single crystal with an adhesive.

このように製作した偏波無依存型の光アイソレータに300mWのYAGレーザ光を入射し、特性を評価したところ、温度に関しては楔形複屈折結晶板には、光の吸収がほとんどないため温度上昇がほとんど無かった。また、磁性ガーネット単結晶についても、密着されたサファイア単結晶板の熱伝導率が高いため、放熱され、温度上昇を特性に影響のない範囲に抑えることができた。そして、相対する楔型複屈折結晶板とサファイア単結晶板のC軸が一致しているため、40dBのアイソレーションを得ることができた。   When a 300 mW YAG laser beam was incident on the polarization-independent optical isolator thus manufactured and the characteristics were evaluated, the wedge-shaped birefringent crystal plate hardly absorbs light and the temperature rises. There was almost no. In addition, for the magnetic garnet single crystal, since the thermal conductivity of the closely adhered sapphire single crystal plate is high, the heat is radiated and the temperature rise can be suppressed to a range that does not affect the characteristics. Since the C-axis of the opposing wedge-shaped birefringent crystal plate and the sapphire single crystal plate coincide, 40 dB isolation can be obtained.

本発明によれば、高出力の光が入射されても、ファラデー回転子の温度上昇を抑えることができ、光アイソレーション機能の低下の少ない偏波無依存型光アイソレータを提供することができるので、光通信システムなどに大いに利用することができる。   According to the present invention, it is possible to provide a polarization-independent optical isolator that can suppress the temperature rise of the Faraday rotator even when high-output light is incident, and that is less likely to degrade the optical isolation function. It can be used for optical communication systems.

本発明における非相反部の構成の概略斜視図である。It is a schematic perspective view of the structure of the non-reciprocal part in this invention. 本発明における光の進行状況を表す図である。It is a figure showing the advancing condition of the light in this invention. 楔型複屈折結晶板のC軸とサファイア単結晶板のC軸がずれたことによる消光比変化を示す図である。It is a figure which shows the extinction ratio change by C-axis of a wedge type birefringent crystal plate and C-axis of a sapphire single crystal plate having shifted | deviated.

符号の説明Explanation of symbols

1 第1の楔型複屈折結晶板
2 第1のサファイア単結晶板
3 磁性ガーネット単結晶
4 第2のサファイア単結晶板
5 第2の楔型複屈折結晶板
6、6’ 光ファイバ
7、7’ レンズ

DESCRIPTION OF SYMBOLS 1 1st wedge type birefringent crystal plate 2 1st sapphire single crystal plate 3 Magnetic garnet single crystal 4 2nd sapphire single crystal plate 5 2nd wedge type birefringent crystal plate 6, 6 'Optical fiber 7, 7 'Lens

Claims (3)

2枚の楔形複屈折結晶板の間に配置した磁性ガーネット単結晶の光透過面にサファイア単結晶板を接触させた偏波無依存型光アイソレータにおいて、入射側の楔型複屈折結晶板のC軸と磁性ガーネット単結晶の入射側に接触させたサファイア単結晶板のC軸の向きを一致させるとともに、出射側の楔型複屈折結晶板のC軸と磁性ガーネット単結晶の出射側に接触させたサファイア単結晶板のC軸の向きを一致させたことを特徴とする偏波無依存型光アイソレータ。   In a polarization-independent optical isolator in which a sapphire single crystal plate is brought into contact with a light transmission surface of a magnetic garnet single crystal disposed between two wedge-shaped birefringent crystal plates, the C axis of the wedge-type birefringent crystal plate on the incident side The direction of the C axis of the sapphire single crystal plate brought into contact with the incident side of the magnetic garnet single crystal is matched, and the C axis of the wedge-shaped birefringent crystal plate on the outgoing side is brought into contact with the outgoing side of the magnetic garnet single crystal. A polarization-independent optical isolator characterized in that the directions of the C-axis of a single crystal plate are matched. 入射側の楔型複屈折結晶板のC軸と磁性ガーネット単結晶の入射側に接触させたサファイア単結晶板のC軸の向き、および出射側の楔型複屈折結晶のC軸と磁性ガーネット単結晶の出射側に接触させたサファイア単結晶板のC軸の向きのずれが1度以内であることを特徴とする請求項1に記載の偏波無依存型光アイソレータ。   The direction of the C axis of the wedge-type birefringent crystal plate on the incident side and the direction of the C axis of the sapphire single crystal plate in contact with the incident side of the magnetic garnet single crystal, and the C axis of the wedge-type birefringent crystal on the output side and the magnetic garnet single unit The polarization-independent optical isolator according to claim 1, wherein a deviation of the C-axis direction of the sapphire single crystal plate brought into contact with the crystal emission side is within 1 degree. 磁性ガーネット単結晶とサファイア単結晶板が接着剤にて接合されていることを特徴とする請求項1又は2に記載の偏波無依存型光アイソレータ。

The polarization-independent optical isolator according to claim 1 or 2, wherein the magnetic garnet single crystal and the sapphire single crystal plate are bonded with an adhesive.

JP2005298014A 2005-10-12 2005-10-12 Polarization-independent optical isolator Expired - Fee Related JP4696830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298014A JP4696830B2 (en) 2005-10-12 2005-10-12 Polarization-independent optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298014A JP4696830B2 (en) 2005-10-12 2005-10-12 Polarization-independent optical isolator

Publications (2)

Publication Number Publication Date
JP2007108344A true JP2007108344A (en) 2007-04-26
JP4696830B2 JP4696830B2 (en) 2011-06-08

Family

ID=38034260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298014A Expired - Fee Related JP4696830B2 (en) 2005-10-12 2005-10-12 Polarization-independent optical isolator

Country Status (1)

Country Link
JP (1) JP4696830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048872A (en) * 2008-08-19 2010-03-04 Sumitomo Metal Mining Co Ltd Polarization-independent type optical isolator
JP2011090291A (en) * 2009-09-24 2011-05-06 Smm Precision Co Ltd In-line optical isolator
JP2012242591A (en) * 2011-05-19 2012-12-10 Smm Precision Co Ltd Polarization-independent optical isolator
JP2013003490A (en) * 2011-06-21 2013-01-07 Smm Precision Co Ltd Polarization-independent optical isolator
JP2013045000A (en) * 2011-08-25 2013-03-04 Smm Precision Co Ltd Polarization-independent optical isolator
CN113193466A (en) * 2021-04-29 2021-07-30 深圳市镭神智能系统有限公司 High-power collimation output isolator and fiber laser system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281129A (en) * 1994-04-06 1995-10-27 Fuji Elelctrochem Co Ltd Optical isolator for high power
JPH11337919A (en) * 1998-03-27 1999-12-10 Kyocera Corp Liquid crystal projector
JP2001091738A (en) * 1999-09-21 2001-04-06 Kyocera Corp Birefringent plate and optical isolator using the same
JP2005043853A (en) * 2003-07-07 2005-02-17 Namiki Precision Jewel Co Ltd Optical part and optical isolator provided with it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07281129A (en) * 1994-04-06 1995-10-27 Fuji Elelctrochem Co Ltd Optical isolator for high power
JPH11337919A (en) * 1998-03-27 1999-12-10 Kyocera Corp Liquid crystal projector
JP2001091738A (en) * 1999-09-21 2001-04-06 Kyocera Corp Birefringent plate and optical isolator using the same
JP2005043853A (en) * 2003-07-07 2005-02-17 Namiki Precision Jewel Co Ltd Optical part and optical isolator provided with it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048872A (en) * 2008-08-19 2010-03-04 Sumitomo Metal Mining Co Ltd Polarization-independent type optical isolator
JP2011090291A (en) * 2009-09-24 2011-05-06 Smm Precision Co Ltd In-line optical isolator
US8115998B2 (en) 2009-09-24 2012-02-14 Smm Precision Co., Ltd. In-line optical isolator
JP2012242591A (en) * 2011-05-19 2012-12-10 Smm Precision Co Ltd Polarization-independent optical isolator
JP2013003490A (en) * 2011-06-21 2013-01-07 Smm Precision Co Ltd Polarization-independent optical isolator
JP2013045000A (en) * 2011-08-25 2013-03-04 Smm Precision Co Ltd Polarization-independent optical isolator
CN113193466A (en) * 2021-04-29 2021-07-30 深圳市镭神智能系统有限公司 High-power collimation output isolator and fiber laser system

Also Published As

Publication number Publication date
JP4696830B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5439669B2 (en) Polarization-independent optical isolator
JP5205602B2 (en) Inline optical isolator
JP4696830B2 (en) Polarization-independent optical isolator
JP5535150B2 (en) Polarization-independent optical isolator
JPWO2009016703A1 (en) Planar waveguide laser device
US10557992B2 (en) Polarization independent optical isolator
JP4797733B2 (en) Polarization-independent optical isolator for high-power lasers
JP4968210B2 (en) Polarization-independent optical isolator
JP2004037812A (en) Embedded type optical irreversible circuit device
JP5439670B2 (en) Polarization-independent optical isolator
JP2007101652A (en) Optical isolator and optical device with same
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
US20030184861A1 (en) Optical isolator
JP5343222B2 (en) Polarization-dependent inline optical isolator
JP2009168894A (en) Optical isolator
JP6713949B2 (en) Polarizing member and optical isolator
JP2004361757A (en) Optical isolator
JP4956004B2 (en) Optical isolator
JP2004281478A (en) Semiconductor optical amplifier module
US20030030905A1 (en) Polarized wave coupling optical isolator
JP2006126582A (en) Optical isolator
JP2002250897A (en) Optical device
JPH04264515A (en) Optical isolator
JPH05188324A (en) Polarized wave-no dependence type optical isolator array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees