JP2000329937A - Method of polarizing uv ray by using lithium tetraborate as polarizer - Google Patents

Method of polarizing uv ray by using lithium tetraborate as polarizer

Info

Publication number
JP2000329937A
JP2000329937A JP11136598A JP13659899A JP2000329937A JP 2000329937 A JP2000329937 A JP 2000329937A JP 11136598 A JP11136598 A JP 11136598A JP 13659899 A JP13659899 A JP 13659899A JP 2000329937 A JP2000329937 A JP 2000329937A
Authority
JP
Japan
Prior art keywords
polarizer
single crystal
lithium tetraborate
tetraborate single
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11136598A
Other languages
Japanese (ja)
Other versions
JP4103243B2 (en
Inventor
Ryuichi Komatsu
隆一 小松
Tamotsu Sugawara
保 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP13659899A priority Critical patent/JP4103243B2/en
Publication of JP2000329937A publication Critical patent/JP2000329937A/en
Application granted granted Critical
Publication of JP4103243B2 publication Critical patent/JP4103243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a polarizer with excellent characteristics which has large double refraction, no optical rotatory power and little crystal defect and which is chemically stable by using a lithium tetraborate single crystal as a polarizer to polarize UV rays. SOLUTION: A lithium tetraborate single crystal is used as a polarizer to polarize UV rays. The polarizer of the purpose is a precise polarizer with good reproducibility in which optical inhomogeneity such as deformed interference fringes in a conoscope image can not be observed. Further, the polarizer is excellent with a high extinction ratio. In the production of the polarizer from a lithium tetraborate single crystal by a Czochralski method, the temp, gradient in the atmosphere between the surface of the fused liquid and 1-cm height above the liquid is specified to 30 deg.C/cm to 200 deg.C/cm, and the temp. gradient in the upper atmosphere is specified to 10 deg.C/cm to 50 deg.C/cm. The drawing speed is specified to 0.1 mm/hour to 2 mm/hour. By this method, the polarizer with little crystal defect can be easily mass-produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、四ほう酸リチウム
単結晶を偏光子として用いて紫外線を偏光させる方法に
関するものである。
The present invention relates to a method for polarizing ultraviolet light using a lithium tetraborate single crystal as a polarizer.

【0002】[0002]

【従来の技術】情報および通信の発展に伴い、光アイソ
レ−タ、スイッチ等の受動部品が必要になり、これら部
品を構成する素子として偏光子が必要となる。更に、最
近短波長の紫外線領域で使用される偏光子の必要性が注
目されて来ており、その特性には、厳しい要求がされて
いる。現在、紫外線用偏光子として用いられ、また用い
ようとしている材料としては、高温型BaB24結晶
(BBO)、LiB35結晶、MgF2結晶がある。
2. Description of the Related Art With the development of information and communication, passive components such as optical isolators and switches are required, and polarizers are required as elements constituting these components. Further, the necessity of a polarizer used in a short-wavelength ultraviolet region has recently attracted attention, and strict requirements have been placed on its characteristics. At present, high-temperature BaB 2 O 4 crystals (BBO), LiB 3 O 5 crystals, and MgF 2 crystals are used as and intended to be used as an ultraviolet polarizer.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の材料で
ある高温型BaB24結晶(BBO)は、190nmか
ら透明で、複屈折率は約0.12と高いが、しかし、結
晶品質が悪く、大きな結晶が育成出来ないし、紫外線の
吸収があり結晶温度が上昇し、特性に影響し、更に寿命
も短く成る問題があった。LiB35結晶は、160n
mから透明であるが、複屈折率は約0.045と小さ
い。また育成法が溶液成長なので、大きな結晶が育成で
きず、複屈折率の小ささを結晶の大きさで保証すること
が出来ない問題を抱えている。MgF2結晶は、130
nmから透明であり、現在の紫外線用偏光子の主力であ
る。しかし、複屈折率が0.013程度であり、また大
きな高品質結晶も育成出来ない。更に、長時間の紫外線
の照射により、透過率の低下をもたらすとの問題があっ
た。
However, the high-temperature type BaB 2 O 4 crystal (BBO), which is the above-mentioned material, is transparent from 190 nm and has a high birefringence of about 0.12. However, there is a problem that a large crystal cannot be grown, the ultraviolet light is absorbed, the crystal temperature rises, the characteristics are affected, and the life is shortened. LiB 3 O 5 crystal is 160n
m, but the birefringence is as small as about 0.045. In addition, since the growing method is solution growth, there is a problem that a large crystal cannot be grown and a small birefringence cannot be guaranteed by the size of the crystal. MgF 2 crystal is 130
It is transparent from nm and is the mainstay of the current ultraviolet polarizer. However, the birefringence is about 0.013, and large high-quality crystals cannot be grown. Further, there is a problem that a long-time ultraviolet irradiation causes a decrease in transmittance.

【0004】四ほう酸リチウム単結晶(Li247単結
晶)は、従来SAW(弾性表面デバイス用の基板材料に
用いられており、また可視、赤外線領域での偏光子とし
ての使用が可能とされている(特願平08−16551
6号公報)。
[0004] Lithium tetraborate single crystal (Li 2 B 4 O 7 single crystal) is conventionally used as a substrate material for a SAW (elastic surface device) and can be used as a polarizer in the visible and infrared regions. (Japanese Patent Application No. 08-16551)
No. 6).

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記事情
に鑑み、紫外線領域下でも偏光子として使用可能な材料
を、鋭意開発すべく研究を進めたところ、上述の高品質
の四ほう酸リチウム単結晶が、紫外線用の偏光子として
も優れた特性を有し、短波長の紫外線領域でも十分に使
用に耐え得る材料であるとの知見を得たのである。
Means for Solving the Problems In view of the above circumstances, the present inventors have intensively studied to develop a material that can be used as a polarizer even in the ultraviolet region. It has been found that lithium single crystal has excellent properties as a polarizer for ultraviolet light and is a material that can sufficiently withstand use even in a short wavelength ultraviolet light region.

【0006】本発明は、上述の知見に基づいて得られた
ものであって、(1)四ほう酸リチウム単結晶を偏光子
として用いて紫外線を偏光させる方法、(2)結晶内の
格子変動が5×10-5以下で、かつエッチピット密度
(EPD)が100/cm2以下である(1)記載の四
ほう酸リチウム単結晶を偏光子として用いて紫外線を偏
光させる方法、(3)チョコラルスキ−法により四ほう
酸リチウム単結晶から成る偏光子を製造する方法におい
て、融液表面と融液直上1cmの間の雰囲気の温度勾配
を30℃/cm〜200℃/cmとし、それより上部の
雰囲気の温度勾配を10℃/cm〜50℃/cmとし、
引き上げ速度を0.1mm/時間〜2mm/時間として
得られる(1)または(2)記載の四ほう酸リチウム単
結晶を偏光子として用いて紫外線を偏光させる方法、に
特徴を有するものである。
The present invention has been obtained based on the above-mentioned findings, and (1) a method of polarizing ultraviolet rays using a lithium tetraborate single crystal as a polarizer; and (2) a method of controlling lattice fluctuation in the crystal. the method for polarizing UV used in 5 × 10 -5 or less, and the etch pit density (EPD) is 100 / cm 2 or less (1) lithium tetraborate single crystal according as a polarizer, (3) Czochralski - In the method for producing a polarizer made of a lithium tetraborate single crystal by the method, the temperature gradient of the atmosphere between the surface of the melt and 1 cm immediately above the melt is 30 ° C./cm to 200 ° C./cm, and A temperature gradient of 10 ° C./cm to 50 ° C./cm,
(1) The method of (1) or (2), wherein the lithium tetraborate single crystal is used as a polarizer to polarize ultraviolet light, wherein the pulling speed is 0.1 mm / hour to 2 mm / hour.

【0007】結晶内の格子変動は、例えばボンド法によ
り測定される。EPDは、例えばエッチング法により測
定される。結晶内の格子変動が5×10-5より大きい場
合には、屈折率変動が10-5より大きくなる傾向にあり
あまり好ましくない。また、EPDが100/cm2
り大きい場合は、上と同様の傾向にありあまり好ましく
ない。
[0007] Lattice variation in a crystal is measured, for example, by the bond method. EPD is measured by, for example, an etching method. When the lattice fluctuation in the crystal is larger than 5 × 10 −5 , the refractive index fluctuation tends to be larger than 10 −5 , which is not preferable. If the EPD is larger than 100 / cm 2 , the tendency is the same as above, which is not so preferable.

【0008】本発明に係わる偏光子は、コノスコ−プ像
干渉縞の変形のような光学的不均一性が見られない再現
性に富む精密な偏光子である。また、本発明に係わる偏
光子は、消光比も高く、優秀な偏光子である。本発明に
係わる偏光子の製造方法は、チョコラルスキ−法により
四ほう酸リチウム単結晶から成る偏光子を製造する方法
において、融液表面と融液直上1cmの間の雰囲気の温
度勾配を30℃/cm〜200℃/cmとし、それより
上部の雰囲気の温度勾配を10℃/cm〜50℃/cm
とし、引き上げ速度を0.1mm/時間〜2mm/時間
とすることを特徴とする。本発明に係わる偏光子の製造
方法によれば、結晶欠陥の少ない偏光子を容易に量産的
に製造することが出来る。
The polarizer according to the present invention is a precise polarizer with high reproducibility without any optical non-uniformity such as deformation of a conoscopic image interference fringe. Further, the polarizer according to the present invention has a high extinction ratio and is an excellent polarizer. The method for producing a polarizer according to the present invention is a method for producing a polarizer composed of a single crystal of lithium tetraborate by the Czochralski method, wherein the temperature gradient of the atmosphere between the melt surface and 1 cm immediately above the melt is 30 ° C./cm. To 200 ° C./cm, and the temperature gradient of the atmosphere above it is 10 ° C./cm to 50 ° C./cm.
And a lifting speed of 0.1 mm / hour to 2 mm / hour. According to the method for manufacturing a polarizer according to the present invention, a polarizer having few crystal defects can be easily mass-produced.

【0009】[0009]

【本発明の実施の形態】以下、本発明の実施の形態につ
いて説明する。図1は、本発明で用いる偏光子材料であ
る四ほう酸リチウム単結晶を作製する単結晶の引き上げ
装置10である。この引き上げ装置10は、四ほう酸リ
チウム材料が融解される白金坩堝1を有している。この
白金坩堝1の周囲には、断熱材2、3を介して、坩堝内
の四ほう酸リチウムを融解させるためのヒ−タ4(例え
ば、抵抗加熱ヒ−タ)が設けられている。一方、白金坩
堝1の上部には、断熱壁5、6が二重に設けられてお
り、種結晶が取り付けられる引き上げ軸7が、この断熱
壁5、6を貫通するようになっている。
Embodiments of the present invention will be described below. FIG. 1 shows a single crystal pulling apparatus 10 for producing a lithium tetraborate single crystal as a polarizer material used in the present invention. The lifting device 10 has a platinum crucible 1 in which a lithium tetraborate material is melted. Around the platinum crucible 1, a heater 4 (for example, a resistance heating heater) for melting lithium tetraborate in the crucible is provided via heat insulating materials 2 and 3. On the other hand, on the upper part of the platinum crucible 1, heat insulating walls 5 and 6 are provided in a double manner, and a pull-up shaft 7 to which a seed crystal is attached passes through the heat insulating walls 5 and 6.

【0010】このような引き上げ装置10を用いて、四
ほう酸リチウム単結晶を育成する。すなわち、所定モル
比の四ほう酸リチウム多結晶体を白金坩堝内に充填し、
ヒ−タで融解した後、引き上げ方位<110>で単結晶を
引き上げる。このとき、融液表面と融液直上1cmの間
の温度勾配を50〜150℃/cm、それより上部の温
度勾配を5〜10℃/cmとし、単結晶の直胴部を引き
上げる際の引き上げ速度を0.3〜1mm/時間とする
ことが好ましい。
Using such a pulling apparatus 10, a lithium tetraborate single crystal is grown. That is, a predetermined molar ratio of lithium tetraborate polycrystal is filled in a platinum crucible,
After melting with a heater, the single crystal is pulled in the pulling direction <110>. At this time, the temperature gradient between the surface of the melt and 1 cm immediately above the melt is 50 to 150 ° C./cm, and the temperature gradient above it is 5 to 10 ° C./cm, and the pulling up when pulling the straight body of the single crystal is performed. Preferably, the speed is 0.3-1 mm / hour.

【0011】この様にして引き上げられた四ほう酸リチ
ウム単結晶から成るウェ−ハを切断し、図2に示す形状
の偏光子としてのプリズムをを作製する。入射面と出射
面と両側面は、ラッピング、ポリッシングなどの研磨手
段で研磨される。
The wafer made of the lithium tetraborate single crystal thus pulled is cut to produce a prism as a polarizer having a shape shown in FIG. The entrance surface, the exit surface, and both side surfaces are polished by a polishing means such as lapping or polishing.

【0012】本実施形態に係わるプリズムは、コノスコ
−プ像干渉縞の変形のような光学的不均一が見られない
再現性に富む精密な偏光子である。また、本実施形態に
係わるプリズムは、屈折率が高く、優秀な偏光子であ
る。なお、本発明は、上述した実施形態に限定されるも
のでなく、本発明の範囲内で種々に改変することが出来
る。
The prism according to the present embodiment is a precise polarizer having high reproducibility without optical nonuniformity such as deformation of a conoscopic image interference fringe. The prism according to the present embodiment has a high refractive index and is an excellent polarizer. Note that the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the present invention.

【0013】[0013]

【実施例】次に、本発明の詳細な実施例を具体的に説明
するが、本発明は、この実施例に限定されるものではな
い。図1に示す引き上げ装置10を用いて、四ほう酸リ
チウム単結晶を作製した。白金坩堝1としては、直径9
0mm、高さ100mmのものを用いた。
Next, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to these examples. Using the pulling apparatus 10 shown in FIG. 1, a lithium tetraborate single crystal was produced. The platinum crucible 1 has a diameter of 9
One having a height of 0 mm and a height of 100 mm was used.

【0014】まず、所定モル比の純度99.99%の四
ほう酸リチウム多結晶体1300gを白金坩堝内に充填
し、ヒ−タで融解した後、引き上げ方位<110>で直
径2インチの単結晶を引き上げた。この時、融液表面と
融液直上10mmの間の温度勾配を80℃/cm、それ
より上部の温度勾配を8℃/cmとし、単結晶の直胴部
を引き上げる際の補記上げ速度を0.5mm/時間とし
た。
First, a platinum crucible was filled with 1300 g of a polycrystalline lithium tetraborate having a predetermined molar ratio of 99.99% purity and melted by a heater. Then, a single crystal having a pulling orientation <110> and a diameter of 2 inches was obtained. Was raised. At this time, the temperature gradient between the surface of the melt and 10 mm immediately above the melt was 80 ° C./cm, the temperature gradient above it was 8 ° C./cm, and the supplementary lifting speed when pulling the straight body of the single crystal was 0. 0.5 mm / hour.

【0015】この単結晶の結晶内の格子変動をボンド法
により調べたところ、1×10-6であった。また、エッ
チピット密度(EPD)をエッチング法により調べたと
ころ、10/cm2程度であった。この単結晶を図2に
示す形状に切断して偏光子としてのロ−ションプリズム
を得た。プリズムの光入射面は、四ほう酸リチウム単結
晶の(010)面に対して、0の角度で傾いており、プ
リズムの光出射面は、入射面に垂直な底面に対して、θ
=70±0.3°傾いていた。入射面と出射面と両側面
は、ラッピングにより光学研磨した。
The lattice variation in the single crystal was examined by the bond method and found to be 1 × 10 −6 . Further, when the etch pit density (EPD) was examined by an etching method, it was about 10 / cm 2 . This single crystal was cut into the shape shown in FIG. 2 to obtain a lotion prism as a polarizer. The light incident surface of the prism is inclined at an angle of 0 with respect to the (010) plane of the lithium tetraborate single crystal, and the light exit surface of the prism is θ with respect to the bottom surface perpendicular to the incident surface.
= 70 ± 0.3 °. The entrance surface, the exit surface, and both side surfaces were optically polished by lapping.

【0016】作製したロ−ションプリズムの分離角を測
定した(測定方法は図3を参照)。結果を表1に示し
た。
The separation angle of the manufactured lotion prism was measured (see FIG. 3 for the measuring method). The results are shown in Table 1.

【0017】[比較例]図2に示すロ−ションプリズム
として、MgF2を用いた以外は、前記実施例と同様に
して、分離角を求め、これらの結果を同様に表1に示し
た。
Comparative Example Separation angles were determined in the same manner as in the above example except that MgF 2 was used as the lotion prism shown in FIG. 2, and the results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】また、上記実施例のロ−ションプリズムを
用いて、常光および異常光の消光比を求め(測定方法は
図4を参照のこと)、これらの結果を表2に示した。そ
の値はすべて35dB以上であり、十分にプリズムとし
て用いられることが判った。
Further, the extinction ratios of the ordinary light and the extraordinary light were obtained by using the rotation prism of the above embodiment (see FIG. 4 for the measuring method), and the results are shown in Table 2. The values were all 35 dB or more, which proved to be sufficiently used as a prism.

【0020】[0020]

【表2】 表1、2に示すように、本発明に用いた四ほう酸リチウ
ム単結晶が、紫外線偏光子として優れた特性を持ってい
ることが確認された。また、直線偏光を四ほう酸リチウ
ム単結晶に通した時の出力光の形の観察から、旋光能が
ないかどうかを調べたところ、旋光能はないことが確認
された。
[Table 2] As shown in Tables 1 and 2, it was confirmed that the lithium tetraborate single crystal used in the present invention had excellent characteristics as an ultraviolet polarizer. In addition, observation of the shape of the output light when linearly polarized light was passed through the lithium tetraborate single crystal was examined to determine whether or not there was optical rotation. As a result, it was confirmed that there was no optical rotation.

【0021】さらに、本実施例に使用されたプリズム
は、四ほう酸リチウム単結晶から成るので、化学的に安
定であると共に、結晶欠陥が少ない。なお、結晶欠陥の
測定は、前述したように、格子変動とEPDとを測定す
ることにより行った。
Further, since the prism used in this embodiment is made of lithium tetraborate single crystal, it is chemically stable and has few crystal defects. Note that the measurement of crystal defects was performed by measuring lattice fluctuation and EPD as described above.

【0022】[0022]

【発明の効果】以上、説明してきた様に、本発明によれ
ば、複屈折率が大きく、旋光能がなく、結晶欠陥が少な
く、化学的に安定した優れた特性の偏光子を実現するこ
とが出来る。
As described above, according to the present invention, it is possible to realize a polarizer having a large birefringence, no optical rotation, few crystal defects, and chemically stable and excellent characteristics. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に使用される四ほう酸リチウ
ム単結晶の製造装置の一例を示す概略断面図。
FIG. 1 is a schematic sectional view showing an example of an apparatus for producing a lithium tetraborate single crystal used in an embodiment of the present invention.

【図2】本発明の実施形態に使用されるプリズムの正面
図および側面図。
FIG. 2 is a front view and a side view of a prism used in the embodiment of the present invention.

【図3】本発明の実施形態における分離角測定方法の概
略図。
FIG. 3 is a schematic diagram of a separation angle measuring method according to the embodiment of the present invention.

【図4】本発明の実施形態における消光比測定方法の概
略図。
FIG. 4 is a schematic diagram of an extinction ratio measuring method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

7 単結晶引き上げ装置 10 引き上げ軸 7 Single crystal pulling device 10 Pulling shaft

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】四ほう酸リチウム単結晶を偏光子として用
いて紫外線を偏光させる方法。
1. A method of polarizing ultraviolet light using a lithium tetraborate single crystal as a polarizer.
【請求項2】結晶内の格子変動が5×10-5以下で、か
つエッチピット密度(EPD)が100/cm2以下で
あることを特徴とする請求項1記載の四ほう酸リチウム
単結晶を偏光子として用いて紫外線を偏光させる方法。
2. The lithium tetraborate single crystal according to claim 1, wherein a lattice variation in the crystal is 5 × 10 −5 or less and an etch pit density (EPD) is 100 / cm 2 or less. A method of polarizing ultraviolet light by using it as a polarizer.
【請求項3】チョコラルスキ−法により四ほう酸リチウ
ム単結晶から成る偏光子を製造する方法において、融液
表面と融液直上1cmの間の雰囲気の温度勾配を30℃
/cm〜200℃/cmとし、それより上部の雰囲気の
温度勾配を10℃/cm〜50℃/cmとし、引き上げ
速度を0.1mm/時間〜2mm/時間として得られる
ことを特徴する請求項1または2記載の四ほう酸リチウ
ム単結晶を偏光子として用いて紫外線を偏光させる方
法。
3. A method for producing a polarizer composed of a single crystal of lithium tetraborate by the Czochralski method, wherein the temperature gradient of the atmosphere between the surface of the melt and 1 cm immediately above the melt is 30 ° C.
/ Cm to 200 [deg.] C / cm, the temperature gradient of the atmosphere above it is 10 [deg.] C / cm to 50 [deg.] C / cm, and the lifting speed is 0.1 mm / hour to 2 mm / hour. 3. A method for polarizing ultraviolet light using the lithium tetraborate single crystal according to 1 or 2 as a polarizer.
JP13659899A 1999-05-18 1999-05-18 UV polarization method Expired - Fee Related JP4103243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13659899A JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13659899A JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Publications (2)

Publication Number Publication Date
JP2000329937A true JP2000329937A (en) 2000-11-30
JP4103243B2 JP4103243B2 (en) 2008-06-18

Family

ID=15179053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13659899A Expired - Fee Related JP4103243B2 (en) 1999-05-18 1999-05-18 UV polarization method

Country Status (1)

Country Link
JP (1) JP4103243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968016A (en) * 2017-03-10 2017-07-21 河南理工大学 A kind of preparation of many boric acid terbium lead of novel green luminescent material and performance and purposes
CN109471214A (en) * 2018-12-18 2019-03-15 福建福晶科技股份有限公司 A kind of deep ultraviolet coupling devating prism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106968016A (en) * 2017-03-10 2017-07-21 河南理工大学 A kind of preparation of many boric acid terbium lead of novel green luminescent material and performance and purposes
CN106968016B (en) * 2017-03-10 2020-07-31 河南理工大学 Preparation, performance and application of green luminescent material terbium lead polyborate
CN109471214A (en) * 2018-12-18 2019-03-15 福建福晶科技股份有限公司 A kind of deep ultraviolet coupling devating prism

Also Published As

Publication number Publication date
JP4103243B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
WO2012174846A1 (en) Borate birefringent crystal applicable to ultraviolet and deep ultraviolet, and growth method and application
CN108301045B (en) Calcium metaborate birefringent crystal, preparation method and application thereof
US5209917A (en) Lithium niobate single crystal thin film and production method thereof
JPH04204525A (en) Lithium niobate single crystal thin film
Imai et al. Homogeneity and SHG properties of K3Li2− xNb5+ xO15+ 2x single crystals grown by micro-pulling-down technique
JP4553081B2 (en) Lithium niobate single crystal, optical element thereof, and manufacturing method thereof
JP4103243B2 (en) UV polarization method
CN115504480B (en) Compound zinc barium borate and zinc barium borate birefringent crystal, and preparation method and application thereof
Kumaragurubaran et al. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals
Shinozaki et al. Self-organized homo-epitaxial growth in nonlinear optical BaAlBO3F2 crystal crossing lines patterned by laser in glass
JP3858776B2 (en) Polarizer and prism using it
JP3346176B2 (en) Manufacturing method of polarizer
JP4211811B2 (en) prism
JP2001287999A (en) Lithium tantalate single crystal, optical element thereof and method for producing the same
JP4590531B2 (en) Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer
JP3649207B2 (en) Method for producing single crystal lithium tetraborate
US6608205B1 (en) Organic crystalline films for optical applications and related methods of fabrication
CN115198343B (en) Scandium rubidium lithium fluosilicate nonlinear optical crystal and preparation method and application thereof
JPH09258283A (en) Optical wavelength conversion method and optical wavelength conversion device
JP2001091738A (en) Birefringent plate and optical isolator using the same
JPH05270992A (en) Lithium niobate single crystal free from optical damage
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JPH05310499A (en) Lithium niobate single crystal, its production and optics
JPH1048679A (en) Nonlinear optical crystal fiber and its production as well as optical device formed by using the same
KR100414519B1 (en) method of growing rutile single crystal under high oxygen pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees