JP4590531B2 - Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer - Google Patents

Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer Download PDF

Info

Publication number
JP4590531B2
JP4590531B2 JP2007100442A JP2007100442A JP4590531B2 JP 4590531 B2 JP4590531 B2 JP 4590531B2 JP 2007100442 A JP2007100442 A JP 2007100442A JP 2007100442 A JP2007100442 A JP 2007100442A JP 4590531 B2 JP4590531 B2 JP 4590531B2
Authority
JP
Japan
Prior art keywords
single crystal
melt
lithium niobate
crystal
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007100442A
Other languages
Japanese (ja)
Other versions
JP2007269626A (en
Inventor
保典 古川
健二 北村
俊二 竹川
晃男 宮本
雅樹 寺尾
昇 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Oxide Corp
Original Assignee
National Institute for Materials Science
Oxide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Oxide Corp filed Critical National Institute for Materials Science
Priority to JP2007100442A priority Critical patent/JP4590531B2/en
Publication of JP2007269626A publication Critical patent/JP2007269626A/en
Application granted granted Critical
Publication of JP4590531B2 publication Critical patent/JP4590531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、分極制御特性や非線形光学特性および電気光学特性に優れた光学用途のニオブ
酸リチウム単結晶ウエハーを用いた波長変換素子や光変調器、スイッチ、偏向器光素子な
どの光素子、および該ウエハー用のニオブ酸リチウム単結晶を安定に成長させる製造方
法に関する。
The present invention relates to an optical element such as a wavelength conversion element, an optical modulator, a switch, and a deflector optical element using a lithium niobate single crystal wafer for optical applications excellent in polarization control characteristics, nonlinear optical characteristics, and electro-optical characteristics, and the method of manufacturing of stably growing a lithium niobate single crystal for the wafer.

電気や光、応力などの外部からの情報信号によって光学的性質を制御できるいわゆる機能
性光学単結晶は、光通信、表示記録、計測、光-光制御など様々な光エレクトロニクス分
野で必要不可欠な素材となっている。特に、ある種の酸化物単結晶は光学的性質と外部要
因との相互作用が特に大きいため、非線形光学効果を使用した波長変換素子や、電気光学
効果を使用した、光変調器、スイッチ、偏向器などの光素子として使用されている。
Functional optical single crystals that can control optical properties by external information signals such as electricity, light, and stress are indispensable materials in various optoelectronic fields such as optical communication, display recording, measurement, and light-light control. It has become. In particular, certain oxide single crystals have a particularly large interaction between optical properties and external factors. Therefore, wavelength converters using nonlinear optical effects, optical modulators, switches, and deflections using electro-optical effects are used. It is used as an optical element such as a container.

こういった結晶は、多くの場合、成長させたままの状態で、素子として使用されるが、一
部の強誘電体結晶は、電圧印加により結晶の破壊なしに誘電分極の方向を反転させること
ができるため、周期的に分極を反転させることで、その機能性を高めることもなされてい
る。
These crystals are often used as devices in their grown state, but some ferroelectric crystals can reverse the direction of dielectric polarization without breaking the crystal when a voltage is applied. Therefore, the functionality is also improved by periodically inverting the polarization.

例えば、波長変換素子においては、強誘電体分極の分域構造を周期的に反転させることで
擬似位相整合法(Quasi-Phase-Matching:QPM)による波長変換が可能となる。この方
法は、広い波長域で高効率の変換が可能であるという点で有効な手段であるため、光通信
、表示記録、計測、医療などの分野で強く求められている、紫外、可視から赤外に至る広
い波長範囲における様々な波長のレーザ光源を実現するための波長変換素子として期待さ
れている。
For example, in a wavelength conversion element, wavelength conversion by a quasi phase matching method (Quasi-Phase-Matching: QPM) can be performed by periodically inverting the domain structure of ferroelectric polarization. This method is an effective means in that high-efficiency conversion is possible in a wide wavelength range. Therefore, this method is strongly required in the fields of optical communication, display recording, measurement, medical care, etc., from ultraviolet, visible to red. It is expected as a wavelength conversion element for realizing laser light sources having various wavelengths in a wide wavelength range extending to the outside.

また、電気光学素子においては、例えば、公知文献(非特許文献1)によると、強誘電体
結晶中にレンズやプリズム状の分極反転構造を形成し、これを通過したレーザ光を電気光
学効果を利用して偏向する光素子やシリンドリカルレンズ、ビームスキャナー、スイッチ
などが新しい光素子として注目されている。
Further, in the electro-optic element, for example, according to a known document (Non-Patent Document 1), a lens or prism-like domain-inverted structure is formed in a ferroelectric crystal, and the laser light passing through this has an electro-optic effect. Optical elements that deflect using light, cylindrical lenses, beam scanners, switches, etc. are attracting attention as new optical elements.

LiNbO3単結晶(以下LN単結晶と略記する)は、主に表面弾性波素子や光変調器の
基板として使用されている強誘電体であるが、可視から赤外の広い波長域で透明であり、
電圧を印加することで周期的な分極構造を作成でき、ある程度実用的な光学的非線形性と
電気光学特性を有し、さらに、大口径で組成均質性の高い単結晶が比較的安価で供給可能
なことから、近年、上述したようなQPMによる波長変換素子(以下QPM素子と略記する
)や電気光学素子の基板としても注目されている。
LiNbO 3 single crystal (hereinafter abbreviated as LN single crystal) is a ferroelectric material mainly used as a substrate for surface acoustic wave devices and optical modulators, but is transparent in a wide wavelength range from visible to infrared. Yes,
A periodic polarization structure can be created by applying a voltage, which has practical optical nonlinearity and electro-optical characteristics to some extent, and can supply a single crystal with a large diameter and high composition uniformity at a relatively low cost. Therefore, in recent years, it has been attracting attention as a substrate for wavelength conversion elements (hereinafter abbreviated as QPM elements) by QPM and electro-optical elements as described above.

これまで、入手できるLN単結晶は、表面弾性波素子の基板も含めて、数%程度の不定比
欠陥を含み、Li2O/(Nb25+Li2O)のモル分率が0.485の一致溶融組成に
限られていた。この理由は、LN単結晶の相図は古くから知られており、従来、組成の均
質性の高いLN単結晶を製造するためには、結晶と融液が同じ組成で平衡共存する一致
溶融組成であるLi2O/(Nb25+Li2O)のモル分率が0.485の融液から回転
引き上げ法で育成するのが良いと考えられていたからである。また、公知例(非特許文献
2)で示されているように、耐光損傷性を高めることを目的として、一致溶融組成のLN
結晶に4.5mol%以上のMgを添加することも行われている。
The LN single crystals that have been available so far, including the substrate of the surface acoustic wave device, contain about several percent of non-stoichiometric defects, and the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.00. It was limited to 485 matched melt composition. The reason for this is that the phase diagram of LN single crystals has been known for a long time. Conventionally, in order to produce LN single crystals with high compositional homogeneity, the crystals and the melt are in equilibrium and coexist in the same composition. It is because it was thought that it was good to grow from a melt with a molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O), which is a composition, by a rotary pulling method. In addition, as shown in a known example (Non-patent Document 2), for the purpose of improving the light damage resistance, LN having a coincident melt composition is used.
Adding 4.5 mol% or more of Mg to a single crystal is also performed.

QPM素子を実現する上で重要なことは、小型で高効率の素子を作製することである。素
子の小型化や高効率化は素子構造にも大きく依存するが、用いる材料特性、すなわち、そ
の結晶が本質的に持つ物質的な特性に制限される要素が非常に大きい。例えば、QPM素
子の変換効率は非線形光学定数と相互作用長の2乗に比例し、基本波パワー密度に比例す
る。相互作用長や基本波パワー密度は素子設計や作製プロセスの精度で決定されるもので
あり、技術の改善などにより向上させる可能性が大きいのに対して、非線形光学定数は材
料が本質的に持っている材料特性である。
What is important in realizing a QPM element is to produce a small and highly efficient element. Although miniaturization and high efficiency of an element greatly depend on the element structure, there are very large elements that are limited to the material characteristics used, that is, the material characteristics inherent in the crystal. For example, the conversion efficiency of a QPM element is proportional to the nonlinear optical constant and the square of the interaction length, and is proportional to the fundamental wave power density. The interaction length and fundamental power density are determined by the accuracy of the device design and fabrication process, and are likely to be improved by technological improvements, while nonlinear optical constants are inherently possessed by materials. Material properties.

LN単結晶は最もポピュラーな非線形光学材料のひとつであることから、非線形光学定数
の測定も古くから数多く行われてきた。これまで報告されてきた一致溶融組成のLN
晶は非線形光学定数d33が波長1.064ミクロンにおいて、一般には、約27〜34p
m/Vとされているが、報告値ごとのばらつきが驚くほど大きく、最大で2倍にも達する
。これらの値は参照物質との間で非線形光学定数の比を求める相対測定によって得られた
ものである。ところが、参照物質の絶対値自体が確定しておらず、人によって用いる値が
まちまちであったため、これほどまでにばらつきが大きくなっていた。
Since the LN single crystal is one of the most popular nonlinear optical materials, many measurements of nonlinear optical constants have been performed for a long time. In previous reported wavelength 1.064 nonlinear optical constant d 33 is LN single binding <br/> crystals congruent has microns, typically from about 27~34p
Although it is m / V, the variation for each reported value is surprisingly large, reaching up to twice as much. These values are obtained by relative measurement for determining the ratio of the nonlinear optical constant with the reference substance. However, since the absolute value of the reference substance itself has not been established and the values used by people vary, the variation has become so large.

従来の測定方法では、参照物質の絶対値は、非線形光学定数の絶対値を直接測定する絶対
測定によって得られた値がもとになっている。ところが、その代表的な測定法である第2
高調波発生(SHG)法とパラメトリック蛍光(PF)法とでは、得られる値に大きな差異があっ
た。例えば、quartzのd11は、基本波波長1.064ミクロンで、SHG法をもとにした絶対
値スケールでは0.3pm/Vであるのに対し、PF法では0.5pm/Vとなる。
In the conventional measurement method, the absolute value of the reference substance is based on a value obtained by absolute measurement in which the absolute value of the nonlinear optical constant is directly measured. However, the second is the typical measurement method.
There was a large difference in the values obtained between the harmonic generation (SHG) method and the parametric fluorescence (PF) method. For example, quartz d 11 has a fundamental wavelength of 1.064 microns and is 0.3 pm / V in the absolute value scale based on the SHG method, whereas it is 0.5 pm / V in the PF method.

非線形光学定数は絶対値が不正確であったが、例えば、公知文献(非特許文献3)による
と、SHG法、PF法両方の絶対測定を注意深く行った結果、過去のPF法の報告値は、測定時
の迷光の影響などを排除しきれなかったために過大評価されており、本質的にはどちらの
測定法でも一致した値が得られることを明らかにされた。最近、ようやく精度の高い絶対
値測定が可能となり、一致溶融組成のLN結晶は、Mgを添加したものも含めて、非線
形光学定数33が24.9〜25.2pm/Vであると訂正され報告されている。
Although the absolute value of the nonlinear optical constant was inaccurate, for example, according to known literature (Non-patent Document 3), as a result of careful measurement of both the SHG method and the PF method, the reported value of the past PF method is It was overestimated because the influence of stray light at the time of measurement could not be excluded, and it was clarified that a consistent value was obtained by both methods. Recently, it has finally been possible to measure absolute values with high accuracy, and LN single crystals with coincidence melting compositions, including those with added Mg, have been corrected to have a nonlinear optical constant 33 of 24.9 to 25.2 pm / V. It has been reported.

また、LN単結晶を電気光学素子に用いる場合には、大きな電気光学定数が望まれる。L
N単結晶の電気光学定数自体は強誘電体単結晶の中では必ずしも大きくないものの、高品
質で大口径の単結晶が安価で安定に製造できることから各種の電気光学効果を利用する
光素子の基板材料として用いられてきている。LN単結晶の電気光学定数は一般にマッハ
ツェンダー干渉法を用いて測定されてきた。従来から用いられてきた一致溶融組成のLN
単結晶では、電気光学定数r13、r33はそれぞれ、約8.0pm/V、約32.2pm/V
であると報告されている。このため、大きな電気光学定数r33定を用いる素子構造が素子
の小型化や高効率化において大きなメリットを持つ。
In addition, when an LN single crystal is used for an electro-optic element, a large electro-optic constant is desired. L
Although N electrooptical constant itself of the single crystal is not necessarily large in ferroelectric single crystal, since the single crystal of large diameter with high quality can be produced stably at low cost an optical element utilizing various electro-optical effect It has been used as a substrate material. The electro-optic constant of LN single crystals has generally been measured using Mach-Zehnder interferometry. Conventionally used LN with a consistent melt composition
In the single crystal, the electro-optic constants r 13 and r 33 are about 8.0 pm / V and about 32.2 pm / V, respectively.
It is reported that. For this reason, an element structure using a large electro-optic constant r 33 constant has a great merit in reducing the size and efficiency of the element.

近年、一致溶融組成のLN単結晶の不定比欠陥の存在を低減する研究、すなわち、結晶組
成比を定比に近付ける研究により、この不定比欠陥の存在が、LN結晶が本来有する非
線形光学定数を低下させ、さらに、周期的な分極構造を作成するのに必要な印加電圧を高
くしていることが明らかにされてきた。例えば、公知文献(非特許文献4)によると、定
比組成に近くすることで、分極反転電圧が5kV/mm以下になるとされている。
In recent years, the study of reducing the existence of non-stoichiometric defects in LN single crystals having a congruent composition, that is, the study of bringing the crystal composition ratio close to the constant ratio, indicates that the existence of these non-stoichiometric defects is the nonlinear optical constant inherent in the LN single crystal. It has been clarified that the applied voltage required to create a periodic polarization structure is increased. For example, according to a known document (Non-patent Document 4), the polarization inversion voltage is set to 5 kV / mm or less by being close to the stoichiometric composition.

また、近年、材料性能の大幅な向上を目指して、一致溶融組成のLN単結晶の不定比欠陥
の存在を低減する研究がされてきた。定比組成のLN結晶を実用的なものとするべく、
N単結晶体の育成法に関する研究も盛んに行われている。例えば、公知文献(非特許文献
5)によると、一致溶融組成あるいは定比組成に6mol%以上のK2Oを添加した融液
から結晶を育成することで、この欠陥密度を小さくし、定比に近い組成のものが得られる
とされている。また、公知文献(非特許文献6)には、一致溶融組成にMg,Zn,In
およびScのいずれかの元素を添加した場合の耐光損傷の比較結果が報告されている。公
知文献(特許文献1)には、CZ法によりLi2O濃度53〜61モル%のニオブ酸リチ
ウム融液より析出させた単結晶に、酸化マグネシウム0.1〜3モル%を添加してなる光
損傷のないLN結晶を製造する方法が開示されている。
In recent years, studies have been carried out to reduce the existence of non-stoichiometric defects in LN single crystals having a congruent melting composition with the aim of greatly improving material performance. In order to make a LN crystal having a stoichiometric composition practical, L
Research on the growth method of N single crystal has been actively conducted. For example, according to known literature (Non-Patent Document 5), by growing crystals from a melt obtained by adding 6 mol% or more of K 2 O to a coincident melt composition or a stoichiometric composition, this defect density is reduced, It is said that the thing of a composition close | similar to is obtained. In addition, in the known literature (Non-patent literature 6), Mg, Zn, In
A comparison result of light damage when either element of Sc and Sc is added has been reported. The known document (Patent Document 1), a single crystal precipitated from Li 2 O concentration from 53 to 61 mol% of lithium niobate melt by the CZ method, comprising the addition of 0.1 to 3 mol% magnesium oxide method for producing no optical damage LN single crystal is disclosed.

図2に示すように、Li2OとNb25の相図から、育成融液のLi2O/(Nb25+L
2O)のモル分率を0.58〜0.60とすることで、Li2O/(Nb25+Li2O)
のモル分率が0.500に近い結晶を育成できることが分かる。しかし、相図から分かる
ように、この融液組成比は共晶点に極めて近く、Li濃度が定比よりも高い組成の融液か
ら定比に近い組成の結晶を育成した場合には、結晶の析出に伴ってLi成分の過剰分がる
つぼ内に残されることになり、融液のLiとNbの組成比が徐々に変化するため、育成開
始後すぐに融液組成比は共晶点に至ってしまう。そのため、従来から大口径のLN結晶
を工業的に大量生産する手段として使用されているチョクラルスキー法(以下CZ法と略
記する)を用いた場合には、定比に近い組成の結晶の固化率がわずか10%程度しか得ら
れない。
As shown in FIG. 2, from the phase diagram of Li 2 O and Nb 2 O 5 , Li 2 O / (Nb 2 O 5 + L
By setting the molar fraction of i 2 O) to 0.58 to 0.60, Li 2 O / (Nb 2 O 5 + Li 2 O)
It can be seen that crystals having a mole fraction of about 0.500 can be grown. However, as can be seen from the phase diagram, this melt composition ratio is very close to the eutectic point, and when a crystal having a composition close to the constant ratio is grown from a melt having a composition in which the Li concentration is higher than the constant ratio, As a result of precipitation, excess Li component remains in the crucible, and the composition ratio of Li and Nb in the melt gradually changes, so that the melt composition ratio reaches the eutectic point immediately after the start of growth. It will come. Therefore, when the Czochralski method (hereinafter abbreviated as CZ method), which has been used as a means for industrially mass-producing large-diameter LN single crystals, is used, A solidification rate of only about 10% can be obtained.

本発明者らは、公知文献(非特許文献7、特許文献2)で、この低い固化率を高めるため
の手段として、原料を連続的に供給しながら育成する方法(以後連続供給法と略記する)
を提案している。具体的には、育成融液のLi2O/(Nb25+Li2O)のモル分率を
0.585〜0.595とし、るつぼを二重構造にして内側のるつぼから結晶を引き上げ
、引き上げている結晶の重量を随時測定することで成長レートを求め、そのレートで結晶
と同じ成分の粉末を外るつぼと内るつぼの間に連続的に供給するという方法である。この
方法を用いることで、長尺の結晶育成が可能となり、原料供給量に対して100%の結晶
固化率を実現することができる。本発明者らは、公知文献(特許文献3)に、定比組成L
結晶および準定比組成LN結晶にセリウムを18ppm以上添加すると優れたフォ
トリフラクティブ感度が得られること、このセリウム添加LN結晶の製造に上記連続
供給法が適することを開示している。
In the publicly known literature (Non-patent Document 7 and Patent Document 2), the present inventors have used a method of growing while continuously supplying raw materials as means for increasing this low solidification rate (hereinafter abbreviated as a continuous supply method). )
Has proposed. Specifically, the mole fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) in the growth melt is 0.585 to 0.595, the crucible is doubled, and the crystal is pulled up from the inner crucible. The growth rate is obtained by measuring the weight of the crystal being pulled up as needed, and the powder having the same component as the crystal is continuously supplied at the rate between the outer crucible and the inner crucible. By using this method, a long crystal can be grown, and a crystal solidification rate of 100% can be realized with respect to the raw material supply amount. The inventors have disclosed a specific composition L in the known literature (Patent Document 3).
The excellent photorefractive sensitivity and cerium is added over 18ppm in N single crystal and semidefinite ratio composition LN single crystal is obtained, discloses that the continuous feed process is suitable for the manufacture of the cerium-doped LN single crystal .

また、上記LN単結晶はQPM素子としてよく使用される。高効率を実現する上で重要な
プロセス技術として、周期的分極反転ドメインを精度よく生成する技術がある。すなわち
、非線形光学特性を最大限に発揮させるために、分極反転の幅(以下分極反転幅と略記す
る)の比率を1:1に作成するものである。分極反転幅は目的とする波長変換素子の位相
整合波長によって異なる。例えば、赤外域といった長波長の位相整合では分極反転幅は十
数ミクロンである。一致溶融組成のLN単結晶の分極反転電圧は21kV/mm以上とさ
れている。
M. Yamada et al., Appl.Phys.Lett., 69,p3659,1996 D.A.Bryan et al. Appl. Phys. Lett.44,847,1984 I.Shoji et al., J. Opt.Soc. Am. B, 14, p2268,1997 V. Gopalan et al. Appl. Phys.Lett.72,p1981,1998 G.I.Molovichiko et al. Appl.Phys.A,56,p103,1993 T.Volk etal.,Ferrelectr.Lett.,Vol.20,pp.97-103,1995 応用物理,65,931,1996 特開平5−270992号公報 特願平10-274047号(特開2000−103697号公報) 特開平11−199391号公報
The LN single crystal is often used as a QPM element. As an important process technology for realizing high efficiency, there is a technology for generating a periodic domain-inverted domain with high accuracy. That is, in order to maximize nonlinear optical characteristics, the ratio of the width of polarization inversion (hereinafter abbreviated as polarization inversion width) is set to 1: 1. The polarization inversion width varies depending on the phase matching wavelength of the target wavelength conversion element. For example, in the long wavelength phase matching such as the infrared region, the polarization inversion width is several tens of microns. The polarization inversion voltage of the LN single crystal having the coincidence melting composition is set to 21 kV / mm or more.
M. Yamada et al., Appl.Phys.Lett., 69, p3659,1996 DABryan et al. Appl. Phys. Lett. 44,847,1984 I. Shoji et al., J. Opt. Soc. Am. B, 14, p2268, 1997 V. Gopalan et al. Appl. Phys. Lett. 72, p1981, 1998 GIMolovichiko et al. Appl.Phys.A, 56, p103,1993 T. Volk etal., Ferrelectr. Lett., Vol. 20, pp. 97-103, 1995 Applied physics, 65,931,1996 Japanese Patent Laid-Open No. 5-270992 Japanese Patent Application No. 10-274047 (Japanese Patent Laid-Open No. 2000-103697) Japanese Patent Application Laid-Open No. 11-199391

一致溶融組成のLN単結晶は、現存する非線形光学結晶の中では大きな非線形性を示す結
晶の部類に属してはいるが、実際に素子作成を行った場合にはまだ不十分な値である。近
年のように、素子設計の完成度や作製プロセスの精度が向上するにしたがい、プロセスの
改善だけでは素子特性の大幅な向上には限界が見えてきているため、d定数自身をさらに
大きな値とすることが望まれている。
The LN single crystal having a coincidence melting composition belongs to a class of crystals that exhibit large nonlinearity among existing nonlinear optical crystals, but is still insufficient when an element is actually fabricated. In recent years, as the degree of completeness of device design and the accuracy of the manufacturing process have improved, there is a limit to the drastic improvement in device characteristics only by improving the process, so the d constant itself is set to a larger value. It is hoped to do.

しかしながら、連続供給法を用いて一致溶融組成よりも高いLi濃度の融液から引き上げ
る結晶育成法は、工業的観点から見た場合には、歩留まりの点で大きな問題を抱えている
ことが次第に明らかとなってきた。すなわち、高いLi濃度の融液を使用した場合には、
一致溶融組成比で結晶を成長させる場合と異なり、成長する結晶の組成が融液の組成比に
強く依存することが我々の調査によりわかったのである。
However, it is gradually clear that the crystal growth method that pulls up from a melt having a higher Li concentration than the coincidence melt composition using the continuous supply method has a serious problem in terms of yield from an industrial viewpoint. It has become. That is, when a high Li concentration melt is used,
Our study showed that the composition of the growing crystal strongly depends on the composition ratio of the melt, unlike the case where the crystal is grown at the coincident melt composition ratio.

このことは、光学特性が均一で光学的均質性の良い結晶を高い再現性で育成するには、常
に同じ組成比に保った融液からの結晶育成が必要となることを意味しており、LN結晶
の場合、非線形光学定数や周期反転構造の形成に必要な電圧、および電気光学定数は結晶
組成比に敏感であるため、その最大の特性を引き出すには、結晶のLi2O/(Nb25
+Li2O)のモル分率を極めて0.500に近い状態に固定しなければならないことに
なる。
This means that in order to grow crystals with uniform optical properties and good optical homogeneity with high reproducibility, it is necessary to grow crystals from a melt always kept at the same composition ratio. In the case of the LN single crystal, the voltage necessary for forming the nonlinear optical constant and the periodic inversion structure, and the electro-optic constant are sensitive to the crystal composition ratio. Therefore, in order to extract the maximum characteristics, the Li 2 O / ( Nb 2 O 5
The molar fraction of + Li 2 O) must be fixed very close to 0.500.

例えば、連続供給法は、育成開始から終了までの組成制御性が優れているという特徴を持
つが、育成開始時の融液組成比の決定が大変重要であり、最初の設定が所望の融液組成か
ら仮にずれていると、育成した結晶全体が必要とする非線形光学定数d33や反転電圧を満
足しない。これを防ぐために、育成前に小さな結晶を引き上げて、その結晶の組成比から
融液の組成比を確認し、不足している成分を追加してずれを補正することも可能であるが
、この小さな結晶の育成と成分比確認を行うには最低でも数日は必要となり、生産性が大
幅に低減することとなる。
For example, the continuous supply method is characterized by excellent composition controllability from the start to the end of growth, but it is very important to determine the melt composition ratio at the start of growth, and the initial setting is the desired melt If the composition is deviated from the composition, the entire grown crystal does not satisfy the nonlinear optical constant d 33 or the inversion voltage required. In order to prevent this, it is possible to pull up a small crystal before growth, check the composition ratio of the melt from the composition ratio of the crystal, and add the missing component to correct the deviation. A minimum of several days is required to grow small crystals and confirm the component ratio, which greatly reduces productivity.

また、連続供給法は、組成制御に対して極めて有効な方法であるが、育成時間も数日から
1週間程度と長い場合には、高温度に保たれた融液表面からわずかの量の原料の蒸発が起
こり得る。これによる結晶組成の経時変動も、組成を完全に均一に制御した定比組成の結
晶育成が必要な場合には無視できない。この結晶組成のばらつきのために、同じ特性の結
晶を高い歩留まりで育成することは非常に困難となっており、Li濃度の高い融液からの
欠陥のない完全な定比組成LN単結晶の育成技術は、工業的に実用化されていない状態
にある。
In addition, the continuous supply method is an extremely effective method for controlling the composition. However, if the growth time is as long as several days to about one week, a small amount of raw material from the melt surface maintained at a high temperature is used. Evaporation can occur. The variation over time of the crystal composition due to this cannot be ignored when it is necessary to grow a crystal with a stoichiometric composition in which the composition is completely uniformly controlled. For variation of the crystal composition, to foster the crystals of the same characteristics with a high yield has become very difficult, the defect-free perfect stoichiometric LN single crystal of a high Li concentration melt The breeding technique has not been put into practical use industrially.

また、一致溶融組成のLN結晶では、高い再現性で分極反転幅比を完全な1:1に形成
するのは非常に困難であった。すなわち、電圧印加法ではzカットの一致溶融組成のLN
単結晶体から切り出したウエハーの片面に周期電極を反対面に一様電極を設けてこの電極
を通じてパルス電圧を印加することで周期電極直下の部分をz軸方位に向けて分極反転さ
せるが、反転分極幅と電極幅は必ずしも一致するとは限らず、その作製誤差も大きい。ま
た、反対面のz軸方向に分極反転が形成される途中で、反転が途切れたり分極反転幅がz
カット結晶の両面で異なったりするなどの問題があるため、理想的な分極反転幅比は実現
されなかった。
In addition, with the LN single crystal having the coincidence melting composition, it is very difficult to form a complete reversal width ratio of 1: 1 with high reproducibility. In other words, in the voltage application method, the LN of the z-cut coincident melt composition
A periodic electrode is provided on one side of a wafer cut out from a single crystal , and a uniform electrode is provided on the opposite side. By applying a pulse voltage through this electrode, the portion directly under the periodic electrode is inverted in polarization toward the z-axis direction. The polarization width and the electrode width do not always coincide with each other, and the manufacturing error is large. In addition, in the middle of forming the polarization inversion in the z-axis direction of the opposite surface, the inversion is interrupted or the polarization inversion width is z
Because there are problems such as differences between both sides of the cut crystal, the ideal polarization inversion width ratio was not realized.

可視域から紫外域といった短波長用途の場合には位相整合に必要な分極反転幅は3ミクロ
ン程度となり、長波長用に比べてより作成が困難となる。しかしながら、比較的容易であ
る長波長用のQPM素子でさえ理想的な素子実現に至っていない。その原因の一つに、一
致溶融組成のLN単結晶の分極反転に必要な印加電圧(以下分極反転電圧と略記する)の
高さがある。分極反転電圧が21kV/mm以上と高く、この高い反転電圧のために、基
板厚みが0.5mmより薄い場合には基板全体に分極反転格子を形成することが可能であ
るが、厚さが0.5mm以上になると完全な分極反転形成は困難になり、厚さが1.0m
m以上では素子実現が可能な精度良い分極形成は達成されていない。
In the case of short wavelength applications such as the visible range to the ultraviolet range, the polarization inversion width necessary for phase matching is about 3 microns, which makes it more difficult to create compared to the long wavelength range. However, even a long wavelength QPM element that is relatively easy has not achieved an ideal element. One of the causes is the height of the applied voltage (hereinafter abbreviated as polarization inversion voltage) necessary for polarization inversion of the LN single crystal having the coincidence melt composition. When the polarization inversion voltage is as high as 21 kV / mm or higher and the substrate thickness is less than 0.5 mm, a polarization inversion grating can be formed on the entire substrate. When the thickness is 5 mm or more, complete polarization inversion formation becomes difficult, and the thickness is 1.0 m.
Above m, the formation of an accurate polarization capable of realizing an element has not been achieved.

また、たとえ、基板厚みが0.5mmより薄くても、短波長用のような、数ミクロンの分
極反転周期は実現されていない。特に、MgOを5mol%以上添加した一致溶融組成L
単結晶の場合には内部電場が大きいため強誘電体のヒステリシス曲線(P-E曲線)の対
称性が悪く、かつ、抗電場近傍でのP-E曲線の立ち上がりがなだらかで急峻でないため外
部から自発分極と反対方向の電場を加えた時の自発分極の反転の制御が悪いという問題が
ある。
Moreover, even if the substrate thickness is less than 0.5 mm, a polarization inversion period of several microns as for short wavelengths is not realized. In particular, a coincident melt composition L to which 5 mol% or more of MgO is added
In the case of N single crystal , the symmetry of the ferroelectric hysteresis curve (PE curve) is poor due to the large internal electric field, and the rise of the PE curve in the vicinity of the coercive electric field is gentle and steep, so that There is a problem that control of the reversal of spontaneous polarization when an electric field in the opposite direction is applied is poor.

さらに、MgOを5mol%以上添加した一致溶融組成LN単結晶の場合には電気抵抗が
無添加の場合に比べて約3〜4桁程度以上も低下してしまうので、印加電圧の微妙な制御
が難しく、分極反転幅比を1:1に作成することがより困難である。分極反転にコロナ放
電法を用いることによりこの問題は解決できるといわれているが、この場合でも、依然と
して分極反転試料の厚みの問題は解決されていない。
Furthermore, in the case of the coincidence melt composition LN single crystal to which 5 mol% or more of MgO is added, the electrical resistance is reduced by about 3 to 4 orders of magnitude or more compared to the case of no addition, so that the applied voltage can be delicately controlled. It is difficult, and it is more difficult to create a polarization inversion width ratio of 1: 1. Although it is said that this problem can be solved by using the corona discharge method for polarization reversal, even in this case, the problem of the thickness of the polarization reversal sample has not been solved.

LN単結晶の非線形光学効果を利用した波長変換素子や、電気光学効果を利用した光変調
素子、およびLN単結晶に形成されたレンズやプリズム状の分極反転構造を作製しこれを
通過したレーザ光を電気光学効果を利用して偏向する光素子やシリンドリカルレンズ、ビ
ームスキャナー、スイッチなども新しい光素子などを実現する上で、重要なことは小型で
高効率の素子を安定に作製することである。
Laser light that passes through a wavelength conversion element that utilizes the nonlinear optical effect of an LN single crystal, a light modulation element that utilizes an electro-optic effect, and a lens or prism-like domain-inverted structure formed on the LN single crystal. In order to realize new optical elements such as optical elements, cylindrical lenses, beam scanners, switches, etc. that deflect the light using the electro-optic effect, it is important to stably produce small and highly efficient elements .

これらの電気光学効果を利用する素子においても、素子の小型化や高効率化は素子構造の
作製精度に依存するが、これらも用いる材料特性に制限される要素も大きい。例えば、分
極反転構造による屈折率の反転を形成したLN単結晶の電気光学効果を利用した光素子の
性能は、レンズやプリズム状の分極反転構造の設計や分極反転構造の作製プロセスの精度
、および材料の持つ電気光学定数の大きさで決定される。
Even in elements using these electro-optic effects, the miniaturization and high efficiency of the elements depend on the fabrication accuracy of the element structure, but there are also many factors that are limited by the material characteristics used. For example, the performance of an optical element using the electro-optic effect of an LN single crystal in which the reversal of the refractive index is formed by the polarization reversal structure, the design of the lens or prism-shaped polarization reversal structure, the accuracy of the fabrication process of the polarization reversal structure, and It is determined by the size of the electro-optic constant of the material.

従来の一致溶融組成のLN結晶では分極反転に大きな印加電圧が必要なために分極反転
構造の制御が困難であった。さらに、電気光学定数は材料が本質的に持っている特性であ
り、これを同一結晶で向上させるのは困難であると考えられていた。また、使用する光の
波長や強度によっては光損傷の発生が大きな難点とされる場合もあり、このような場合に
は、一致溶融組成LN結晶に5mol%以上のMgOを添加した結晶が耐光損傷性に優
れることから期待されたが、QPM素子を作製するのと同じような自発分極の反転の制御
が悪いという材料特性の問題から精度の良いレンズやプリズム状の分極反転構造の作製は
実現されていなかった。
In a conventional LN single crystal having a congruent melting composition, it is difficult to control the domain inversion structure because a large applied voltage is required for domain inversion. Furthermore, the electro-optic constant is a characteristic inherent in the material, and it has been considered difficult to improve it with the same crystal. Further, depending on the wavelength and intensity of light used, the occurrence of optical damage may be a major difficulty. In such a case, a crystal in which 5 mol% or more of MgO is added to the coincidence melt composition LN single crystal is light resistant. Expected because of its excellent damage, but it is possible to fabricate high-precision lenses and prismatic domain-inverted structures due to the material property problem of poor control of reversal of spontaneous polarization, similar to fabrication of QPM elements. Was not.

近年のように素子設計の完成度や作製プロセスの精度が向上するにしたがい、プロセスの
改善だけでは光学素子特性の大幅な向上には限界が見えてきているため、材料自身の性能
向上が望まれている。このため、不定比欠陥を低減した定比組成のLN単結晶の育成技
術が開発された。連続供給法を用いて一致溶融組成よりも高いLi濃度の融液から定比組
成LN単結晶を引き上げる結晶育成法は、工業的観点から見た場合には、歩留まりの点
で問題を抱えていることが次第に明らかとなってきた。
As the degree of completeness of device design and the accuracy of manufacturing processes have improved as in recent years, the improvement of the performance of the material itself is desired because the improvement of optical element characteristics has become limited by process improvement alone. ing. Therefore, development techniques LN single crystal of stoichiometric composition with reduced nonstoichiometric defects have been developed. Crystal growth method from a melt of higher Li concentration than congruent with continuous feed process raise the stoichiometric LN single crystal body, when viewed from the industrial point of view, a problem in terms of yield It has become increasingly clear.

すなわち、連続供給法は、組成制御に対して極めて有効な方法であるが、育成時間も数日
から1週間程度と長い場合には、高温度に保たれた融液表面からわずかの量の原料の蒸発
が起こり得る。これによる結晶組成の経時変動も、組成を完全に均一に制御した定比組成
の結晶育成が必要な場合には無視できない。この結晶組成のばらつきのために、同じ特性
の結晶を高い歩留まりで育成することは非常に困難となっており、Li濃度の高い融液か
らの欠陥のない完全な定比組成LN単結晶の育成技術は、工業的に実用化されていない
状態にある。
That is, the continuous supply method is an extremely effective method for controlling the composition. However, when the growth time is as long as several days to about one week, a small amount of raw material from the surface of the melt maintained at a high temperature Evaporation can occur. The variation over time of the crystal composition due to this cannot be ignored when it is necessary to grow a crystal with a stoichiometric composition in which the composition is completely uniformly controlled. For variation of the crystal composition, to foster the crystals of the same characteristics with a high yield has become very difficult, the defect-free perfect stoichiometric LN single crystal of a high Li concentration melt The breeding technique has not been put into practical use industrially.

このことは、光学特性が均一で光学的均質性の良い結晶を高い再現性で育成するには、常
に同じ組成比に保った融液からの結晶育成が必要となることを意味しており、LN結晶
の場合、非線形光学定数や周期反転構造の形成に必要な電圧、および電気光学定数は結晶
組成比に敏感であるため、その最大の特性を引き出すには、結晶のLi2O/(Nb25
+Li2O)のモル分率を極めて0.500に近い状態に固定しなければならないことに
なる。
This means that in order to grow crystals with uniform optical properties and good optical homogeneity with high reproducibility, it is necessary to grow crystals from a melt always kept at the same composition ratio. In the case of the LN single crystal, the voltage necessary for forming the nonlinear optical constant and the periodic inversion structure, and the electro-optic constant are sensitive to the crystal composition ratio. Therefore, in order to extract the maximum characteristics, the Li 2 O / ( Nb 2 O 5
The molar fraction of + Li 2 O) must be fixed very close to 0.500.

LN単結晶を用いた光素子の性能は、周期分極反転構造や、レンズやプリズム状の分極反
転構造の設計や分極反転構造の作製プロセスの精度、および材料の持つ非線形光学定数、
電気光学定数および耐光損傷性の大きさで決定される。従来の一致溶融組成のLN結晶
では分極反転に大きな印加電圧が必要なために分極反転構造の制御が困難であった。さら
に、電気光学定数は材料が本質的に持っている特性であり、これを同一結晶で向上させる
のは困難であると考えられていた。また、使用する光の波長や強度によっては光損傷の発
生が大きな難点とされる場合もあり、このような場合には一致溶融組成LN結晶に5m
ol%以上のMgOを添加した結晶が耐光損傷性に優れることから期待されたが、自発分
極の反転の制御が悪いという材料特性の問題から精度の良いレンズやプリズム状の分極反
転構造の作製は実現されていなかった。
The performance of an optical element using an LN single crystal includes the periodic polarization reversal structure, the design of the lens or prism-shaped polarization reversal structure, the accuracy of the fabrication process of the polarization reversal structure, and the nonlinear optical constant of the material,
It is determined by the electro-optic constant and the light damage resistance. In a conventional LN single crystal having a congruent melting composition, it is difficult to control the domain inversion structure because a large applied voltage is required for domain inversion. Furthermore, the electro-optic constant is a characteristic inherent in the material, and it has been considered difficult to improve it with the same crystal. Also, depending on the wavelength and intensity of the light used, the occurrence of photodamage may be a major difficulty. In such a case, the coincidence melt composition LN single crystal is 5 m.
Although crystals with ol% or more of MgO added were expected to be excellent in light damage resistance, the production of highly accurate lenses and prismatic domain-inverted structures due to the problem of material properties that the control of spontaneous polarization inversion was poor It was not realized.

本発明者らは、不定比欠陥を有するも、完全な定比組成のニオブ酸リチウム単結晶と同様
の特性を維持したニオブ酸リチウム単結晶を光素子用として提供することを達成すべく鋭
意研究の結果、可視光域で実質的に吸収を持たないMg元素を0.1〜3mol%の範囲
、より好ましくは0.2mol%以上1.0mol%以下の範囲で融液に添加することに
より、非線形光学定数d33および電気光学特性r33を低下させないで小さな分極反転電圧
が得られ、Liの欠陥部分を前記第三の元素により埋めることができ、定比組成に近いも
のの、ある程度の不定比欠陥を有するニオブ酸リチウム単結晶であっても、Li2O/(
Nb25+Li2O)のモル分率が0.500の完全LN単結晶が持つ大きさと同じ非線
形光学定数や周期的分極構造の作成に必要な印加電圧、および電気光学定数を実現するこ
とを発見、さらには、本手段がLN単結晶のLi2O/(Nb25+Li2O)のモル分率
が0.490以上0.500未満という広い範囲のニオブ酸リチウム単結晶に対して有効
であることを知見、ここに本発明をなしたものである。
The inventors of the present invention have earnestly studied to achieve the provision of a lithium niobate single crystal for optical devices that has non-stoichiometric defects but maintains the same characteristics as a lithium niobate single crystal having a perfect stoichiometric composition. As a result, by adding Mg element substantially not absorbing in the visible light range in the range of 0.1 to 3 mol%, more preferably in the range of 0.2 mol% or more and 1.0 mol% or less, A small polarization inversion voltage can be obtained without deteriorating the nonlinear optical constant d 33 and the electro-optical characteristic r 33, and the defect portion of Li can be filled with the third element. Even if it is a lithium niobate single crystal having defects, Li 2 O / (
To realize the same nonlinear optical constant as that of a perfect LN single crystal having a molar fraction of (Nb 2 O 5 + Li 2 O) of 0.500 and the applied voltage and electro-optical constant necessary for creating a periodically polarized structure Furthermore, the present means is applicable to a wide range of lithium niobate single crystals having a molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) of the LN single crystal of 0.490 or more and less than 0.500. Thus, the present invention is made here.

このd33に対するMgの添加の効果は次のように説明できる。LN結晶の非線形光学特
性はLi元素とO元素の結合により発生するため、Li欠陥の増加に伴って非線形性が減
少し、Li2O/(Nb25+Li2O)のモル分率が0.500のLN結晶は含有する
Li欠陥が存在しないために最大の非線形性を示す。定比組成でない結晶の場合は、過剰
なNb元素がLi欠陥部分に入り込むが、Nb元素とO元素の結合では非線形性がほとん
ど発生しないため、全体としての非線形性が小さくなる。
The effect of adding Mg to d 33 can be explained as follows. Since the nonlinear optical characteristics of the LN single crystal are generated by the combination of the Li element and the O element, the nonlinearity decreases as the Li defect increases, and the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) The LN single crystal having a N of 0.500 shows the maximum nonlinearity because there is no Li defect contained. In the case of a crystal having a non-stoichiometric composition, excess Nb element enters the Li defect portion, but since non-linearity hardly occurs in the combination of Nb element and O element, the overall non-linearity is reduced.

それに対して、Mg添加の場合は、MgがLi欠陥部分に入り込み、Mg元素とO元素の
結合による非線形性が発生する。このMg元素とO元素の結合非線形性は、Li元素とO
元素の結合で生じる非線形性と同程度であり、さらに育成融液の組成比変化に起因した結
晶のLi2O/(Nb25+Li2O)のモル分率が変化しても、融液中に存在するMg元
素がLi欠陥を埋めてくれるために、結晶のLi2O/(Nb25+Li2O)のモル比率
が育成された結晶全体で多少ばらついても最大の非線形光学性が保たれていると考えられ
る。
On the other hand, in the case of Mg addition, Mg enters the Li defect portion and nonlinearity due to the combination of Mg element and O element occurs. The bond nonlinearity between the Mg element and the O element is as follows.
Even if the molar fraction of the Li 2 O / (Nb 2 O 5 + Li 2 O) of the crystal changes due to a change in the composition ratio of the growth melt, it is similar to the non-linearity generated by the bonding of elements. Since the Mg element present in the liquid fills the Li defect, the maximum nonlinear optics is obtained even if the molar ratio of the Li 2 O / (Nb 2 O 5 + Li 2 O) of the crystal varies slightly throughout the grown crystal. It is thought that sex is maintained.

また、分極反転電圧に対するMg添加の効果は次のように説明できる。定比結晶の分極反
転電圧が従来の一致溶融組成LN単結晶に比べて大幅に低減するのは、分極反転をピンニ
ングするLi欠陥の数が少なくなることにより説明できる。一方、Mg添加の場合に、L
2O/(Nb25+Li2O)のモル分率が0.490以上0.500未満の範囲でばら
ついているにも関わらず最小の電圧値を示すのは、LiサイトにMgが置換している状態
のピンニング効果が、Li欠陥のそれに比べて小さいことによると考えられる。
The effect of Mg addition on the polarization inversion voltage can be explained as follows. The reason why the polarization reversal voltage of the stoichiometric crystal is significantly reduced as compared with the conventional coincidence melt composition LN single crystal can be explained by the fact that the number of Li defects pinning the polarization reversal is reduced. On the other hand, when Mg is added, L
Although the molar fraction of i 2 O / (Nb 2 O 5 + Li 2 O) varies within the range of 0.490 or more and less than 0.500, the minimum voltage value is indicated when Mg is present at the Li site. It is considered that the pinning effect in the substituted state is smaller than that of the Li defect.

しかし、LiサイトにMgが置換している状態のピンニング効果は、欠陥のない部分のそ
れに比べると大きいため、この効果が得られるのは結晶のLi2O/(Nb25+Li2
)のモル分率が0.490以上0.500未満の間という狭い範囲のみ顕著にあらわれる
。例えば、一致溶融組成の結晶にMgを添加した場合には、分極反転電圧の低下も見られ
るが、一方では、電気抵抗が無添加の場合に比べて約4桁以上も小さくなってしまうので
、通常の電圧印加法では分極反転はできず、コロナ放電法という特殊な方法が必要であっ
た。Li2O/(Nb25+Li2O)のモル分率が0.490以上0.500未満の範囲
では必要なMgの添加量が0.1〜3.0mol%、より好ましくは0.2mol%以上
1.0mol%以下と小さいので電気抵抗の急激な低下もない。
However, since the pinning effect in the state where Mg is substituted at the Li site is larger than that of the defect-free portion, this effect can be obtained because of the crystal Li 2 O / (Nb 2 O 5 + Li 2 O
) Appears only in a narrow range between 0.490 and less than 0.500. For example, when Mg is added to a crystal having a congruent melting composition, a decrease in polarization reversal voltage is also seen, but on the other hand, since the electrical resistance is about 4 orders of magnitude or less compared to the case without addition, Polarization reversal was not possible with a normal voltage application method, and a special method called a corona discharge method was required. When the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is in the range of 0.490 or more and less than 0.500, the required amount of Mg added is 0.1 to 3.0 mol%, more preferably 0.8. Since it is as small as 2 mol% or more and 1.0 mol% or less, there is no sudden drop in electrical resistance.

また、電気光学定数r33に対するMg添加の効果については、現時点では解明されていな
いが、d33に対する効果とほぼ同じように考えられる。すなわち、LN結晶のLi元素
とO元素の結合が電気光学特性の主な発現因子とするならば、Li欠陥の増加に伴って電
気光学定数が減少し、Li2O/(Nb25+Li2O)のモル分率が0.500のLN
結晶は含有するLi欠陥が存在しないために最大の電気光学定数を示すと期待できる。
Further, the effect of Mg addition on the electro-optic constant r 33 is not clarified at the present time, but is considered to be almost the same as the effect on d 33 . That is, if the bond between the Li element and the O element of the LN single crystal is the main manifestation factor of the electro-optic characteristics, the electro-optic constant decreases with the increase of Li defects, and Li 2 O / (Nb 2 O 5 + Li 2 mole fraction 0.500 LN single <br/> crystal O) can be expected to show the highest electrooptical constant because there is no Li defects contained.

定比組成でないLN単結晶の場合は、過剰なNb元素がLi欠陥部分に入り込むが、Nb
元素とO元素の結合では電気光学特性がほとんど発生しないため、全体としての電気光学
定数が小さくなる。それに対して、Mg添加の場合は、MgがLi欠陥部分に入り込み、
Mg元素とO元素の結合による電気光学特性が発生する。このMg元素とO元素の結合電
気光学特性は、Li元素とO元素の結合で生じる電気光学特性と同程度であるならば、さ
らに育成融液の組成比変化に起因した結晶のLi2O/(Nb25+Li2O))のモル分
率が変化しても、融液中に存在するMg元素がLi欠陥を埋めてくれるために、結晶のL
2O/(Nb25+Li2O)のモル比率が多少ばらついても最大の電気光学定数が保た
れていると説明できる。
In the case of an LN single crystal having a non-stoichiometric composition, excess Nb element enters the Li defect portion, but Nb
Since the electro-optical characteristics are hardly generated in the combination of the element and the O element, the electro-optic constant as a whole becomes small. On the other hand, in the case of Mg addition, Mg enters the Li defect portion,
Electro-optical characteristics are generated by the combination of Mg element and O element. If the combined electro-optical characteristics of the Mg element and the O element are similar to the electro-optical characteristics generated by the combination of the Li element and the O element, the crystal Li 2 O / Even if the molar fraction of (Nb 2 O 5 + Li 2 O) is changed, the Mg element present in the melt fills the Li defect,
It can be explained that the maximum electro-optic constant is maintained even if the molar ratio of i 2 O / (Nb 2 O 5 + Li 2 O) varies somewhat.

本発明の光素子に用いる単結晶体の製造は、例えば、連続供給法においては、Mgを0.
1mol、より好ましくは0.2mol%以上添加することで育成開始時の融液組成比の
設定が所望の融液組成から仮にずれていたとしても、Li2O/(Nb25+Li2O)の
モル分率が0.500のLN単結晶が持つ大きさと同じ非線形光学定数や分極構造作成電
圧、および電気光学定数の単結晶が育成できるため、結果としてその歩留まりを大幅に向
上できるものである。
In the production of a single crystal used in the optical element of the present invention, for example, in the continuous supply method, Mg is set to a value of 0.00.
Even if the setting of the melt composition ratio at the start of growth is deviated from the desired melt composition by adding 1 mol, more preferably 0.2 mol% or more, Li 2 O / (Nb 2 O 5 + Li 2 O ) Can grow single crystals with the same nonlinear optical constant, polarization structure creation voltage, and electro-optic constant as the LN single crystal having a mole fraction of 0.500, and as a result, the yield can be greatly improved. is there.

さらに、融液の蒸発や育成融液内における組成比の不均質に起因した育成中に発生する融
液組成比変動や、るつぼ内の温度分布に起因した結晶と融液の界面における融液温度変動
により、結晶内にLi2O/(Nb25+Li2O)のモル分率の不均質が発生するが、本
発明の製造方法により得られるLN単結晶体は、非線形光学定数や分極構造作成電圧、お
よび電気光学定数がLi2O/(Nb25+Li2O)のモル分率に依存しなくなるため、
これら特性の不均質は発生せず、結果として高い均質性と優れた性能を合わせ持つLN
結晶を安定に生産するための育成条件が極端に緩やかになるものである。
Furthermore, the melt temperature at the interface between the crystal and the melt due to the fluctuation of the melt composition ratio during the growth due to the evaporation of the melt and the inhomogeneity of the composition ratio in the growth melt and the temperature distribution in the crucible Due to the fluctuation, inhomogeneity of the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) occurs in the crystal, but the LN single crystal obtained by the production method of the present invention has a nonlinear optical constant and polarization. Since the structure creation voltage and the electro-optic constant do not depend on the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O),
Heterogeneous of these characteristics does not occur, in which growth conditions for stably producing the LN single <br/> crystal having both superior performance and high homogeneity as a result is extremely gentle.

ここで、Li2O/(Nb25+Li2O)のモル分率を0.490以上0.500未満と
したのは、0.490より小さい組成の結晶では分極反転電圧の低下が不十分であったた
めである。さらに、Li2O/(Nb25+Li2O)のモル分率が0.490以上0.5
00未満の組成の結晶では、内部電場が殆ど見られず強誘電体のヒステリシス曲線(P-E
曲線)の対称性に優れることと、抗電場近傍でのP-E曲線の立ち上がりが良いため外部か
ら自発分極と反対方向の電場を加えた時の自発分極の反転の制御が極端に容易になるのは
大きなメリットである。
Here, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) was set to 0.490 or more and less than 0.500 because the polarization inversion voltage was not lowered in the crystal having a composition smaller than 0.490. This is because it was sufficient. Furthermore, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.490 or more and 0.5
In crystals with a composition less than 00, there is almost no internal electric field, and the hysteresis curve (PE
Curve) and the rise of the PE curve near the coercive electric field makes it very easy to control the reversal of the spontaneous polarization when an electric field in the opposite direction to the spontaneous polarization is applied from the outside. This is a great merit.

また、Li2O/(Nb25+Li2O)のモル分率が0.490以上0.500未満の組
成の結晶の場合には、必要なMg添加濃度が3mol%未満、より好ましくは、1.0m
ol%以下となるので、一致溶融組成の結晶に5.0mol%のMgを添加した結晶で見
られたような急激な電気抵抗の低下を防ぐことができ、かつ、分極反転幅比がほぼ1:1
である非常に高効率のQPM素子を製造することができる。
In the case of a crystal having a composition having a molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) of 0.490 or more and less than 0.500, the required Mg addition concentration is less than 3 mol%, more preferably 1.0m
Since it is ol% or less, it is possible to prevent a sudden decrease in electrical resistance as seen in a crystal in which 5.0 mol% of Mg is added to a crystal having a congruent melting composition, and the polarization inversion width ratio is approximately 1. : 1
It is possible to manufacture a very highly efficient QPM device.

上記構成により、単結晶内に入射されたレーザ光波長を変換する光素子において、波長1
.064ミクロンにおいて非線形光学定数d33が26pm/V以上であり、室温で分極反
転するために必要な印加電圧が3.7kV/mm未満、より好ましくは3.1kV/mm
以下であることを特徴とするLN単結晶を製造することが可能である。z軸方向の厚み
が1.0mm以上で、分極反転の周期が30ミクロン以下であるQPM素子は本発明の
素子に用いるLN結晶で始めて実現したものであり、さらに、分極反転の周期が5ミ
クロン以下であるQPM素子に関しても、本発明の光素子により始めて実現したものであ
る。
With the above configuration, in the optical element that converts the wavelength of the laser light incident on the single crystal, the wavelength 1
. The non-linear optical constant d 33 at 064 microns is 26 pm / V or more, and the applied voltage required for polarization reversal at room temperature is less than 3.7 kV / mm, more preferably 3.1 kV / mm.
It is possible to produce a LN single crystal, characterized in that at most. A QPM element having a thickness in the z-axis direction of 1.0 mm or more and a polarization inversion period of 30 microns or less is the light of the present invention.
Is obtained by the first time realized in LN single crystal used in the device, further, with regard QPM element period of the domain inversion is 5 microns or less, is obtained by realizing started by the optical device of the present invention.

さらに、上記構成により、単結晶の電気光学効果を利用して単結晶内に入射されたレーザ
光を制御する光素子において、波長0.633ミクロンにおいて電気光学定数r33が36
pm/V以上であることを特徴とするニオブ酸リチウム単結晶を製造することが可能で
ある。ニオブ酸リチウム単結晶の強誘電分極を反転させた構造の大きな屈折率変化を利用
して光の偏向、焦点、又はスイッチングを高効率でかつ安定に行うことを特徴とする光素
子は本発明の製造方法で得られるLN結晶により始めて実現したものである。
(実施例)
Furthermore, in the optical element that controls the laser light incident on the single crystal using the electro-optic effect of the single crystal, the electro-optic constant r 33 is 36 at a wavelength of 0.633 microns.
It is possible to manufacture a lithium niobate single crystal, characterized in that it pm / V or more. An optical element characterized in that light deflection, focus, or switching is performed with high efficiency and stability by utilizing a large refractive index change in a structure in which ferroelectric polarization of a lithium niobate single crystal is inverted. it is obtained by realizing started by LN single crystal obtained by the production method.
(Example)

以下に本発明の実施例を示す。LN単結晶の場合、一致溶融組成融液から通常の引き上げ
法で得られるLN単結晶はNb成分過剰となるが、融液の組成を著しくLi成分過剰(
例えば、Li2O/(Nb25+Li2O)のモル分率が0.56〜0.60)にした融液か
ら結晶を育成すると、定比組成に近いLi2O/(Nb25+Li2O)のモル分率である
0.500、すなわち、不定比欠陥濃度を極力抑えた単結晶を得ることができる。本実
施例では原料を連続供給する二重るつぼ法を用いて、Li成分過剰組成の融液から定比組
成に近いLN単結晶を育成した。
Examples of the present invention are shown below. For LN single crystal, usually of LN single crystal obtained by the pulling method from congruent melt it becomes excessive Nb component, excess significantly Li component composition of the melt (
For example, when a crystal is grown from a melt in which the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.56 to 0.60), Li 2 O / (Nb 2) close to the stoichiometric composition. O 5 + Li 2 O) 0.500 mole fractions, i.e., it is possible to obtain a single crystal body while minimizing the nonstoichiometric defect concentration. Using a double crucible method continuously supplying raw material in this example, it was grown LN single crystal close to the stoichiometric composition from a melt of Li component excessive composition.

市販の高純度Li2O、Nb25の原料粉末を準備し、Li2O:Nb25の比が0.56
〜0.60:0.44〜0.40のLi成分過剰原料と、Li2O:Nb25=0.50:0.
50の定比組成原料を混合した。次に、1ton/cm2の静水圧でラバープレス成形し
、それぞれを約1050℃の大気中で焼結し原料棒を作成した。また、混合済みの定比組
成原料を連続供給用原料として、約1150℃の大気中で焼結し、粉砕し、大きさが50
ミクロン以上500ミクロンのサイズの範囲で分級した。
Commercially available high-purity Li 2 O and Nb 2 O 5 raw material powders were prepared, and the ratio of Li 2 O: Nb 2 O 5 was 0.56.
0.60: and Li components excess material of 0.44~0.40, Li 2 O: Nb 2 O 5 = 0.50: 0.
50 stoichiometric composition raw materials were mixed. Next, rubber press molding was performed at a hydrostatic pressure of 1 ton / cm 2 , and each was sintered in an atmosphere of about 1050 ° C. to prepare a raw material bar. Further, the mixed stoichiometric composition raw material is sintered in the atmosphere at about 1150 ° C. as a raw material for continuous supply, pulverized, and the size is 50
Classification was performed in the size range of micron to 500 microns.

次に、二重るつぼ法による単結晶育成に際して、作成したLi成分過剰原料からなる原
料棒を内側および外側るつぼに予め充填し、次にるつぼを加熱してLi成分過剰な融液を
作成した。Mg添加の効果を確認する実験では、この充填の際に、Mg元素源として市販
の高純度MgCO3を内側および外側るつぼに予め充填した。充填するMgCO3の重量は
、融液中のMg濃度が融液中のNbに対して各々0.1、0.2、0.5、1.0、3.0m
ol%の5種類の実験を行った。また、比較のためにMg濃度を0、0.05、5.0mo
l%として実験を行った。
Then, when the single crystal grown by the double crucible method, pre-filled with a feed rod consisting of Li component excessive material created inner and outer crucibles were generated Li component excessive melt and then heated crucible . In an experiment for confirming the effect of adding Mg, commercially available high-purity MgCO 3 was prefilled in the inner and outer crucibles as the Mg element source during the filling. The weight of MgCO 3 to be filled is such that the Mg concentration in the melt is 0.1, 0.2, 0.5, 1.0, and 3.0 m, respectively, with respect to Nb in the melt.
Five types of experiments of ol% were conducted. For comparison, the Mg concentration is set to 0, 0.05, 5.0 mo.
The experiment was conducted at 1%.

ここで、定比組成LN結晶を育成する二重るつぼ法の原理について図1と図2を用い
て簡単に説明する。図2は、LNの相図を示す。相図に見られるように、LN単結晶の一
致溶融組成融液から通常の引き上げ法で得られるLN単結晶はNb成分過剰となるが、
融液の組成を著しくLi成分過剰(例えばLi2O/(Nb25+Li2O)のモル分率が
0.56〜0.60)にした融液から育成すると、定比組成に近いLi2O/(Nb25
+Li2O)のモル分率である0.500、すなわち不定比欠陥濃度を極力抑えた単結晶
を得ることができる。
Here it will be briefly described with reference to FIGS. 1 and 2 the principle of the double crucible method of growing a stoichiometric LN single crystal. FIG. 2 shows the phase diagram of LN. Phase as seen in FIG, LN single crystal body from the congruent melt LN single crystal obtained by the conventional pulling method becomes excessive Nb component,
When the composition of the melt is grown from a melt in which the Li component is excessively large (for example, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.56 to 0.60), it is close to the stoichiometric composition. Li 2 O / (Nb 2 O 5
+ Li 2 O), which is 0.500, that is, a single crystal that suppresses the non-stoichiometric defect concentration as much as possible.
You can get a body .

図1は、本発明の光素子に用いる単結晶体の製造に用いた育成炉1を示すものである。本
実施例に用いた二重るつぼの構造は外るつぼ35の内部に外るつぼより高さが7.5mm
高い円筒36(内るつぼと呼ぶ)を設置した構造となっており、内るつぼの底に外るつぼ
から内るつぼに通じる孔を設けた。この孔は約20mm×30mmの略四角形状で内るつ
ぼに3箇所設けた。ここで、育成に用いたるつぼの材質は白金製のものを用い、かつ周囲
を育成炉体47でカバーし外部雰囲気の流入を防止した。
FIG. 1 shows a growth furnace 1 used for producing a single crystal used in the optical element of the present invention. The structure of the double crucible used in this example is 7.5 mm in height inside the outer crucible 35 than the outer crucible.
It has a structure in which a high cylinder 36 (referred to as an inner crucible) is installed, and a hole is provided at the bottom of the inner crucible from the outer crucible to the inner crucible. The holes were approximately 20 mm × 30 mm in a substantially quadrangular shape, and three holes were provided in the inner crucible. Here, the crucible material used for the growth was made of platinum, and the periphery was covered with a growth furnace body 47 to prevent the inflow of the external atmosphere.

用いた二重るつぼの形状は、外るつぼ35の高さ/直径の比を0.45としており、内るつ
ぼ/外るつぼの直径比は0.8とした。その大きさは外るつぼ35が直径150mm高さ6
7.5mm、内るつぼ36が直径120mm高さ75mmとした。内るつぼ36と外るつ
ぼ35の間は片側約15mmのスペース34があり、ここに原料45がスムーズに落下で
きるように原料供給管37を安定に設置した。融液表面の様子をビデオカメラ(図示せず
)で観察した。るつぼを回転しないと融液表面の対流はほとんど見られないが、るつぼの
回転数を徐々に上げていくと回転方向への強制的な融液対流が強くなる様子が見られ、る
つぼの回転の効果が観察された。
The shape of the double crucible used was such that the height / diameter ratio of the outer crucible 35 was 0.45, and the diameter ratio of the inner crucible / outer crucible was 0.8. The outer crucible 35 is 150mm in diameter and 6mm in height.
The inner crucible 36 had a diameter of 120 mm and a height of 75 mm. There is a space 34 of about 15 mm on one side between the inner crucible 36 and the outer crucible 35, and the raw material supply pipe 37 is stably installed so that the raw material 45 can fall smoothly. The state of the melt surface was observed with a video camera (not shown). If the crucible is not rotated, almost no convection on the surface of the melt can be seen. An effect was observed.

Li成分過剰の内側るつぼの融液41から結晶を成長させた。融液の温度を高周波発振機
48への投入電力と高周波誘導コイル43により所定の温度に安定させた後、Z軸方位に
切り出した5mm×5mm×長さ70mmの単一分極状態にあるLN単結晶を種結晶40
として回転支持棒38の下部に接続し、融液41に付け、融液温度を制御しながら結晶を
回転させて上方向に引き上げることでLN単結晶42を成長させた。育成雰囲気は大気中
とした。LN単結晶42の回転速度は5〜20rpmの範囲内で一定とし、引き上げ速度
は0.5〜3.0mm/hの範囲で変化させた。
Crystals were grown from the inner crucible melt 41 with an excess of Li component. After the temperature of the melt is stabilized at a predetermined temperature by the input power to the high-frequency oscillator 48 and the high-frequency induction coil 43, the single LN in a single polarization state of 5 mm × 5 mm × length 70 mm cut out in the Z-axis direction Seed crystal 40
The LN single crystal 42 was grown by connecting to the lower part of the rotation support bar 38, attaching to the melt 41, rotating the crystal while controlling the melt temperature, and pulling it upward. The growing atmosphere was in the air. The rotation speed of the LN single crystal 42 was constant within a range of 5 to 20 rpm, and the pulling speed was changed within a range of 0.5 to 3.0 mm / h.

育成した結晶から2インチ径のウエハーが作成できるよう結晶の直胴部に対し、自動直径
制御を行った。育成結晶成長重量をロードセル52により測定し、結晶化した成長量に見
合った量のLi2O/(Nb25+Li2O)のモル分率が0.500の定比の原料45を
外側るつぼ35に供給した。ここではLN単結晶42の成長量変化がコンピュータ49に
より求められているので、原料45の供給はLN種結晶40から単結晶42の育成が始ま
り直径制御が安定化した時点から開始した。
Automatic diameter control was performed on the straight body of the crystal so that a 2-inch wafer could be made from the grown crystal. The growth weight of the grown crystal is measured by the load cell 52, and the raw material 45 having a constant ratio with a molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) in an amount commensurate with the amount of crystallized growth is 0.500. The crucible 35 was supplied. Here, since the change in the growth amount of the LN single crystal 42 is obtained by the computer 49, the supply of the raw material 45 is started when the growth of the single crystal 42 starts from the LN seed crystal 40 and the diameter control is stabilized.

原料45の供給は、予め育成炉体47上部に設置した重量測定センサーを兼ね備えた密封
容器46内に保管した原料45をセラミックスあるいは貴金属からなる供給管37を通じ
て行った。供給管37及び密封容器46に毎分50〜500ccの範囲でガス51を弁を
具備するガス管33を介して流入した。ガス51の流量は供給する原料45の単位時間当
たりの量と粒径によって最適化した。これによって、飛散や供給管37内での詰まりのな
い円滑な原料供給を行った。育成中、貴金属二重るつぼを回転させることで、供給した粉
末原料の融液との均質化と同時に、強制定に結晶成長界面を液面に対してフラットもしく
は凸になるよう融液の対流を制御した。各々の組成において約1.5週間の育成により、
直径60mm,長さ110mmでクラックのない無色透明のLN結晶体を得た。
The raw material 45 was supplied through the supply pipe 37 made of ceramics or noble metal, and the raw material 45 stored in a sealed container 46 that also had a weight measuring sensor installed in advance on the growth furnace body 47 was supplied. Gas 51 was introduced into the supply pipe 37 and the sealed container 46 at a rate of 50 to 500 cc per minute through the gas pipe 33 provided with a valve. The flow rate of the gas 51 was optimized by the amount and particle size of the raw material 45 to be supplied per unit time. Thereby, smooth raw material supply without scattering and clogging in the supply pipe 37 was performed. By rotating the noble metal double crucible during growth, the melt convection is forced to be constant and at the same time the crystal growth interface is flat or convex with respect to the liquid surface. Controlled. With about 1.5 weeks of growth in each composition,
A colorless and transparent LN single crystal having a diameter of 60 mm and a length of 110 mm and having no cracks was obtained.

得られた全てのLN単結晶に関して、Li2O/(Nb25+Li2O)のモル分率を化
学分析より求めた。試料の測定位置は種結晶から15mm離れたLN単結晶の軸中心部
を測定位置aとし、また測定位置aから軸中心に沿って種結晶から離れる方向に10mm
毎の位置を3点とり、順に測定部b、c、dとした。測定試料は測定位置を中心に7mm
角の立方体形状として切りだした。
For all resulting in LN single crystal was determined from the chemical analysis of the mole fraction of Li 2 O / (Nb 2 O 5 + Li 2 O). The measurement position of the sample is 10 mm in the direction away from the seed crystal from the measurement position a along the axial center from the axial center of the LN single crystal body 15 mm away from the seed crystal.
Three points were taken for each position, and the measurement parts b, c, and d were taken in order. The measurement sample is 7mm around the measurement position.
Cut out as a cube of corners.

表1は、Li2O/(Nb25+Li2O)のモル分率の測定結果を示す。化学分析では組
成比の絶対値を精度良く求めることは難しく、LN結晶の場合Li2O/(Nb25
Li2O)のモル分率で約0.001〜0.005程度の誤差を含んでいる。そこで、定比
に近い組成の試料については非常に慎重に組成を分析した。表1の結果は同一試料につい
て数カ所の異なる分析装置を用いて評価した結果の平均値を示している。その結果、LN
単結晶の場合、定比に近い組成であってもMg等を添加したLN単結晶ではLi2O/
(Nb25+Li2O)のモル分率の値は0.005を超えることはなかった。また、これ
ら試料のMg含有量に関する測定も行い、LN単結晶Mg含有量が融液に添加したM
g濃度とほぼ同じであることを確認した。
Table 1 shows the measurement results of the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O). In chemical analysis, it is difficult to accurately determine the absolute value of the composition ratio. In the case of an LN single crystal, Li 2 O / (Nb 2 O 5 +
The molar fraction of Li 2 O) includes an error of about 0.001 to 0.005. Therefore, the composition of the sample having a composition close to the constant ratio was analyzed very carefully. The results in Table 1 show the average values of the results of evaluating the same sample using several different analyzers. As a result, LN
In the case of a single crystal, an LN single crystal added with Mg or the like has a composition close to a constant ratio , but Li 2 O /
The value of the molar fraction of (Nb 2 O 5 + Li 2 O) did not exceed 0.005. In addition, we also measured about the Mg content of the sample, the Mg content of the LN single crystal was added to the melt M
It was confirmed that the concentration was almost the same as the g concentration.

Figure 0004590531
Figure 0004590531

次に、これら試料の非線形光学定数を測定した。我々はウェッジ法を用いた絶対測定を行
い、測定データに対して多重反射の効果を考慮した解析を行うことによって、非線形光学
定数の絶対値を正確に決定した。その結果、LN単結晶のような高屈折率の物質(n> 2
)に対する従来の値のほとんどは過大評価されていたことを明らかにし、溶融一致組成の
LN結晶のd33を測定したところ、文献で求められている結果と良く一致する25.1
pm/Vという値が得られた。測定に使用したレーザ光は単一縦モード連続発振の波長は
1.064ミクロンである。表2に測定の結果を示す。
Next, the nonlinear optical constants of these samples were measured. We performed absolute measurement using the wedge method, and determined the absolute value of the nonlinear optical constant accurately by analyzing the measurement data in consideration of the effect of multiple reflection. As a result, a material having a high refractive index such as an LN single crystal (n> 2
Revealed that had most conventional values are overestimated relative) was measured d 33 of LN single crystal melting congruent composition, good agreement with the results that are sought in the literature 25.1
A value of pm / V was obtained. The laser beam used for the measurement has a single longitudinal mode continuous oscillation wavelength of 1.064 microns. Table 2 shows the measurement results.

Mgの添加量が0.1mol%以上添加した場合には、結晶のLi2O/(Nb25+Li
2O)のモル分率が0.489から0.499の間で大きくばらついているにも関わらず、
全てが30.0pm/V以上の値であるのに対し、0.1mol%未満では、それより若干
劣る傾向にある。ウェッジ法を用いた絶対測定法では、従来の位相整合法による絶対測定
法と異なり、d33などの対角成分も測定可能である。また、回転型Makerフリンジ法では多
重反射を考慮した厳密な解析を行うのは極めて困難であり、非線形光学定数を正確に求め
るためには無反射コーティングを行って多重反射が起きない条件下で測定するしかない。
以上のことから、ウェッジ法による絶対測定は極めて有効な測定手法であるということが
できる。
When the addition amount of Mg is 0.1 mol% or more, the crystalline Li 2 O / (Nb 2 O 5 + Li
Although the molar fraction of 2 O) varies widely between 0.489 and 0.499,
All of the values are 30.0 pm / V or more, whereas when they are less than 0.1 mol%, they tend to be slightly inferior. The absolute measurement method using a wedge method, unlike the absolute measurement method by the conventional phase matching method, the diagonal components such as d 33 can also be measured. In addition, it is extremely difficult to perform rigorous analysis considering multiple reflections with the rotating Maker fringe method, and in order to accurately determine nonlinear optical constants, measurement is performed under conditions where non-reflective coating is applied and multiple reflections do not occur. There is no choice but to do.
From the above, it can be said that the absolute measurement by the wedge method is a very effective measurement method.

Figure 0004590531
Figure 0004590531

次に、上記と同様にして得られた各々の単結晶に関して、測定位置a〜dの各場所から
、断面が10mm×10mmで厚みが1.0mmのz板試料を切り出した。両z軸面に電
極を形成した後、電圧を印加し、結晶が分極反転を起こす電圧を測定した。表3に測定の
結果を示す。
Next, with respect to a single crystal of each obtained in the same manner as described above, from the location of the measurement positions to d, in cross-section and a thickness 10 mm × 10 mm was cut out z Plaques of 1.0 mm. After electrodes were formed on both z-axis surfaces, a voltage was applied to measure the voltage at which the crystal causes polarization reversal. Table 3 shows the measurement results.

Mgの添加量が0.1mol%以上添加した場合には全てが印加電圧3.7kV/mm以下
であり、0.2mol%以上ではより小さな値3.1kV/mm近傍でそれ以下の一定の値
が得られる。これらの結晶では、内部電場が殆ど見られず強誘電体のヒステリシス曲線(
P-E曲線)の対称性に優れることと、抗電場近傍でのP-E曲線の立ち上がりが良いため測定
値にもばらつきが少ないものと考えられる。
When the addition amount of Mg is 0.1 mol% or more, all are applied voltage of 3.7 kV / mm or less, and when it is 0.2 mol% or more, a constant value smaller than 3.1 kV / mm is smaller than that. Is obtained. In these crystals, almost no internal electric field is seen, and the hysteresis curve of ferroelectrics (
It is considered that there is little variation in measured values because of the excellent symmetry of the (PE curve) and the good rise of the PE curve near the coercive electric field.

一方、0.1mol%未満では、それ以上の量の添加結晶に比べて分極反転電圧は若干上
回る傾向にあることが分かる。一方、Mgの添加量が5mol%以上添加した場合には分
極反転は小さくなるが、試料毎のばらつきが大きくなる傾向が見られた。これは、強誘電
体のヒステリシス曲線(P-E曲線)の抗電場近傍でのP-E曲線の立ち上がりがなだらかで悪
いため分極反転電圧の絶対値測定が困難になること、また、材料の電気抵抗によることが
原因であると考えられた。尚、同様の試料形状、測定条件で溶融一致組成結晶の反転電圧
を測定したところ場合によっては測定は困難であった。試料厚みが0.2〜0.5mm程度
の薄い試料で測定ができ、21.0kV/mmという非常に高い値であった。
On the other hand, when the amount is less than 0.1 mol%, the polarization inversion voltage tends to be slightly higher than that of the added crystal of a larger amount. On the other hand, when Mg was added in an amount of 5 mol% or more, the polarization inversion was reduced, but the variation from sample to sample tended to increase. This is because the rise of the PE curve in the vicinity of the coercive field of the ferroelectric hysteresis curve (PE curve) is gentle and difficult to measure the absolute value of the polarization inversion voltage, and also due to the electrical resistance of the material. It was thought to be the cause. When the reversal voltage of the melt coincidence composition crystal was measured under the same sample shape and measurement conditions, measurement was difficult in some cases. Measurement was possible with a thin sample having a thickness of about 0.2 to 0.5 mm, which was a very high value of 21.0 kV / mm.

Figure 0004590531
Figure 0004590531

次に、上記と同様にして得られた各々の単結晶に関して、測定位置a〜dの各場所から
、x、y、z方位に5mm×3mm×2mmの試料を切り出した。両z軸面に電極を形成し
た後、マッハツェンダー干渉法を用いて試料の電気光学定数を測定した。表4に測定の結
果を示す。
Next, with respect to a single crystal of each obtained in the same manner as described above, were cut from each location of measurement positions to d, x, y, a sample of 5 mm × 3 mm × 2 mm in the z direction. After forming electrodes on both z-axis surfaces, the electro-optic constant of the sample was measured using Mach-Zehnder interferometry. Table 4 shows the measurement results.

表4に示すように、これらの定数のいくつかは結晶組成に非常に敏感であると言うことが
明らかにされた。すなわち、結晶のLi2O/(Nb25+Li2O)のモル分率が0.4
90以上0.500未満のLN単結晶では、従来の一致溶融組成LN単結晶と較べて電気
光学定数r13は増大しないが、r33は約20%以上増大し約36pm/V以上となり、一
致溶融組成LN単結晶の値の約31.5pm/Vに較べて非常に大きいことが明らかにさ
れた。
As shown in Table 4, it was revealed that some of these constants were very sensitive to the crystal composition. That is, the molar fraction of crystalline Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.4.
The LN single crystal of 90 or more and less than 0.500 does not increase the electro-optic constant r 13 as compared with the conventional matched melt composition LN single crystal, but r 33 increases by about 20% or more and becomes about 36 pm / V or more. It was clarified that it was very large compared to the value of about 31.5 pm / V of the melt composition LN single crystal.

特に、電気光学定数に関しては定比組成に近づくほど大きくなる傾向が見られた。また、
Mgを添加した結晶では添加量が0.1mol%以上添加した場合には38pm/V以上
と更なる増加が見られ、特に約1mol%添加した結晶で最大の39.5pm/Vが得ら
れた。一方、Mgの添加量が1mol%よりも多くなると電気光学定数は徐々に低下する
傾向も見られた。
In particular, the electro-optic constant tended to increase as it approached the stoichiometric composition. Also,
In the crystal added with Mg, when the addition amount was 0.1 mol% or more, a further increase was seen to 38 pm / V or more, and the maximum of 39.5 pm / V was obtained especially in the crystal added with about 1 mol%. . On the other hand, when the added amount of Mg is more than 1 mol%, the electro-optic constant tends to gradually decrease.

Figure 0004590531
Figure 0004590531

市販の高純度Li2O、Nb25の原料粉末を準備し、Li2O:Nb25の比が0.56
〜0.60:0.44〜0.40のLi成分過剰原料を混合した。次に、1ton/cm2
静水圧でラバープレス成形し、約1050℃の大気中で焼結し原料棒を作成した。次に、
一重るつぼ法、すなわち、従来のCZ法による単結晶育成に際して、作成したLi成分
過剰原料からなる原料棒を予め充填し、次に、るつぼを加熱してLi成分過剰な融液を作
成した。Mg添加の効果を確認する実験では、この充填の際に、Mg元素源として市販の
高純度MgCO3をるつぼに予め充填した。充填するMgCO3の重量は、融液中のMg濃
度が融液中のNbに対して決定し、0.1、0.2、0.5、1.0、3.0mol%の5種
類の実験を行った。
A commercially available raw powder of high purity Li 2 O, Nb 2 O 5 is prepared, and the ratio of Li 2 O: Nb 2 O 5 is 0.56.
~ 0.60: 0.44 ~ 0.40 Li component excess raw material was mixed. Next, a rubber press was formed at a hydrostatic pressure of 1 ton / cm 2 and sintered in the atmosphere at about 1050 ° C. to prepare a raw material bar. next,
Single crucible method, i.e., when the single crystal growing according to the conventional CZ method, pre-filled with a feed rod consisting of Li component excessive material created, then to prepare a Li component excessive melt by heating the crucible. In an experiment for confirming the effect of Mg addition, a commercially available high-purity MgCO 3 was prefilled in a crucible as an Mg element source during the filling. As for the weight of MgCO 3 to be filled, the Mg concentration in the melt is determined with respect to Nb in the melt, and five types of 0.1, 0.2, 0.5, 1.0, and 3.0 mol% are available. The experiment was conducted.

また、比較として無添加、0.05、5.0mol%添加した以外は同様にして実験を行
った。育成に用いたるつぼは白金製のものを用いた。用いたるつぼの形状は、円筒形状で
あり、その大きさは直径150mm高さ100mmとした。育成の終始に渡り、融液表面
の様子をビデオカメラで観察した。実施例1と異なり、るつぼの回転がない場合でも、強
い融液対流が観察された。
For comparison, the same experiment was conducted except that no addition, 0.05, and 5.0 mol% were added. The crucible used for the growth was made of platinum. The shape of the crucible used was a cylindrical shape, and the size was 150 mm in diameter and 100 mm in height. Throughout the growth, the surface of the melt was observed with a video camera. Unlike Example 1, strong melt convection was observed even without crucible rotation.

融液液面のるつぼ中心付近から結晶を成長させた。融液の温度を所定の温度に安定させた
後、Z軸方位に切り出した5mm×5mm×長さ70mmの単一分極状態にあるLN単結
晶を種結晶60として融液に付け、融液温度を制御しながら結晶を回転させて上方向に引
き上げることで単結晶を成長させた。るつぼは回転させずに固定した状態とした。育成
雰囲気は大気中とした。結晶の回転速度は2rpmで一定とし、引き上げ速度は0.5〜
3.0mm/hの範囲で変化させた。育成した結晶から2インチ径のウエハーが作成できる
ように、育成の終始に渡って育成結晶成長重量をロードセルにより測定しながら、結晶の
直胴部の直径は約60mmになるよう種付け直後から自動直径制御を行った。本実施例の
育成では、実施例1の二重るつぼを用いた場合のような育成中の原料の供給は行わなかっ
た。図3に得られたLN単結晶の模式図を示す。
Crystals were grown from near the center of the crucible on the melt surface. After stabilizing the temperature of the melt at a predetermined temperature, an LN single crystal in a single polarization state of 5 mm × 5 mm × length 70 mm cut in the Z-axis direction is attached to the melt as a seed crystal 60, and the melt temperature controlled crystal is rotated while the grown single crystal by pulling upward. The crucible was fixed without rotating. The growing atmosphere was in the air. The rotation speed of the crystal is constant at 2 rpm, and the pulling speed is 0.5 to
It was changed in the range of 3.0 mm / h. Automatic diameter from immediately after seeding so that the diameter of the straight body of the crystal is about 60 mm while measuring the growth weight of the grown crystal with a load cell throughout the growth so that a 2 inch wafer can be made from the grown crystal. Control was performed. In the growth of this example, the raw material during the growth as in the case of using the double crucible of Example 1 was not supplied. It shows a schematic view of the obtained LN single crystal body in FIG.

Mgを添加しなかった場合も、また各種濃度のMgを添加した場合も、直径60mmで引
き上げたところ、育成開始直後から約30mmまでは透明な単結晶部61が育成できたが
、その後、融液の組成が共晶点に達し、共晶点に達した以後に引き上げた部分は、LN単
結晶ではなく、セラミック層62であった。
When Mg was not added or when various concentrations of Mg were added, the transparent single crystal part 61 was grown up to about 30 mm immediately after the start of the growth when the diameter was pulled up to 60 mm. The composition of the liquid reached the eutectic point, and the portion pulled after reaching the eutectic point was not the LN single crystal but the ceramic layer 62.

得られた各々の結晶に関して、Li2O/(Nb25+Li2O)のモル分率を化学分析よ
り求めた。測定位置は種結晶60から5mm離れた結晶の軸中心部を測定位置gとし、ま
た、測定位置gから軸中心に沿って種結晶60から離れる方向に10mm毎の位置で2点
とり、順に測定部h、iとした。測定試料は測定位置を中心に7mm角の立方体形状とし
て切りだした。表5は、Li2O/(Nb25+Li2O)のモル分率の測定結果を示す。
また、これら試料のMg含有量に関する測定も行い、結晶中のMgの含有量が融液に添加
したMg濃度とほぼ同じであることを確認した。
For each of the obtained crystals, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) was determined by chemical analysis. The measurement position is the center position of the crystal 5 mm away from the seed crystal 60 as the measurement position g, and two points are taken at 10 mm intervals in the direction away from the seed crystal 60 along the axis center from the measurement position g. It was set as the parts h and i. The measurement sample was cut out as a 7 mm square cube around the measurement position. Table 5 shows the measurement results of the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O).
Moreover, the measurement regarding Mg content of these samples was also performed, and it was confirmed that the Mg content in the crystal was almost the same as the Mg concentration added to the melt.

Figure 0004590531
Figure 0004590531

次に、これら試料の非線形光学定数を測定した。測定にはウェッジ法を使用した。表6に
測定の結果を示す。表から、Mgの添加量が0.1mol%未満の場合は、種結晶から共
晶点に近づくにしたがって、非線形光学定数d33が徐々に増加している様子が分かる。こ
の増加は、育成中に原料の供給を行わなかったために、融液組成比が経時的に変動し、そ
の結果生じたものと考えられる。一方、Mgの添加量が0.1mol%以上の場合には、
0.1mol%未満の場合に見られたような増加は見られない。測定位置gからiまでの距
離10mm間においても非線形光学定数d33はほぼ一定値に収まり、かつ0.2mol%
以上では結晶全体でほぼ一様に30pm/V以上という最大の値を示している。
Next, the nonlinear optical constants of these samples were measured. The wedge method was used for the measurement. Table 6 shows the measurement results. From the table, it can be seen that when the added amount of Mg is less than 0.1 mol%, the nonlinear optical constant d 33 gradually increases as it approaches the eutectic point from the seed crystal. This increase is considered to have occurred as a result of fluctuations in the melt composition ratio over time because the raw material was not supplied during the growth. On the other hand, when the addition amount of Mg is 0.1 mol% or more,
There is no increase as seen with less than 0.1 mol%. Even within the distance of 10 mm from the measurement position g to i, the non-linear optical constant d 33 is almost constant and is 0.2 mol%.
The above shows the maximum value of 30 pm / V or more almost uniformly throughout the crystal.

Figure 0004590531
Figure 0004590531

次に、上記と同様にして得られた各々の単結晶を製造し、測定位置g〜iの各場所から
、断面が10mm×10mmで厚みが1.0mmのz板試料を切り出した。両z軸面に電
極を形成した後、電圧を印加し、結晶が分極反転を起こす電圧を測定した。表7に測定の
結果を示す。表から、Mgの添加量が0.1mol%未満の場合は、種結晶から共晶点に
近づくにしたがって、分極反転電圧が徐々に減少している様子が分かる。この減少は、育
成中に原料の供給を行わなかったために、融液組成比が経時的に変動し、その結果生じた
ものと考えられる。一方、Mgの添加量が0.1mol%以上の場合には、0.1mol%
未満の場合に見られたような減少は見られず、測定位置gからiまでの距離10mm間に
おいても反転電圧の差は0.5kV/mm以内に収まり、かつ0.2mol%以上では結晶
全体でほぼ一様に3.1kV/mmという最小の値を示している。
Next, to produce a single crystal of each obtained in the same manner as described above, from the location of the measurement positions G to I, cross-section and a thickness 10 mm × 10 mm was cut out z Plaques of 1.0 mm. After electrodes were formed on both z-axis surfaces, a voltage was applied to measure the voltage at which the crystal causes polarization reversal. Table 7 shows the measurement results. From the table, it can be seen that when the addition amount of Mg is less than 0.1 mol%, the polarization inversion voltage gradually decreases as the eutectic point approaches from the seed crystal. This decrease is considered to have occurred as a result of fluctuations in the melt composition ratio over time because the raw material was not supplied during the growth. On the other hand, when the added amount of Mg is 0.1 mol% or more, 0.1 mol%
The difference in reversal voltage is within 0.5 kV / mm even at a distance of 10 mm from the measurement position g to i, and the entire crystal is not less than 0.2 mol%. Shows the minimum value of 3.1 kV / mm almost uniformly.

Figure 0004590531
Figure 0004590531

次に、実施例1と同様にして作られたLN単結晶体から切り出したウエハーに周期的に分
極反転させて種々の光機能素子を製作した。840nmまたは1064nmの近赤外光の
基本波に対して青色または緑色光を発生するQPM素子の作成について示す。実施例1で
得られた結晶に関して、各々の濃度でMgを添加した結晶からウエハーを1枚ずつ切り出
した。切り出したウエハーは、直径が2インチで、厚みがそれぞれ0.3mm、0.5mm
、1.0mm、2.0mm、3.0mmを用意し試料とした。
Next, various optical functional elements were manufactured by periodically reversing the polarization of a wafer cut out from the LN single crystal produced in the same manner as in Example 1. The production of a QPM element that generates blue or green light with respect to a fundamental wave of near-infrared light of 840 nm or 1064 nm will be described. Regarding the crystals obtained in Example 1, one wafer was cut out from the crystals to which Mg was added at each concentration. The cut wafers are 2 inches in diameter and 0.3 mm and 0.5 mm in thickness, respectively.
1.0 mm, 2.0 mm, and 3.0 mm were prepared and used as samples .

両面に研摩を施したz軸方位に切り出し、+z面にリソグラフを用いて、厚み500nm
のCr膜を電極として櫛形のパターンを形成した。青色、および緑色光の高調波を高効率
で発生させるために1次のQPM構造となるように電極の周期は3.0ミクロンおよび6.
8ミクロンとした。つぎに、+z面上に厚み0.5ミクロンの絶縁膜をオーバーコートし3
50℃で8時間保存処理を施した。次に結晶の両z面に塩化リチウム水溶電界液を介して
電極に挟み、高電圧パルスを印加した。LN単結晶に流れる電流は1キロオームの抵抗を
通してモニターした。
Cut into z-axis orientation with both sides polished, use lithograph on + z plane, thickness 500nm
A comb-shaped pattern was formed using the Cr film as an electrode. In order to generate blue and green light harmonics with high efficiency, the electrode period is 3.0 microns and 6.
It was 8 microns. Next, an insulating film with a thickness of 0.5 microns is overcoated on the + z plane.
The storage process was performed at 50 degreeC for 8 hours. Next, a high voltage pulse was applied between both z planes of the crystal, sandwiched between electrodes via a lithium chloride aqueous solution. The current flowing through the LN single crystal was monitored through a 1 kilohm resistor.

分極反転格子を形成した後、側面となる結晶のy面を研摩、フッ酸・硝酸の混合液でエッ
チングして、分極反転格子の様子を観察した。各試料に関して、この観察と分極反転を繰
り返すことで、印加電圧のパルス幅や電流の最適化を行い、試料全体にわたって分極反転
格子幅比、およびその分極反転の形が理想的な各々1:1(1:0.95〜1)に近づく
ようにした。
After the domain-inverted lattice was formed, the y-plane of the crystal serving as the side surface was polished and etched with a mixed solution of hydrofluoric acid and nitric acid, and the state of the domain-inverted lattice was observed. By repeating this observation and polarization inversion for each sample, the pulse width and current of the applied voltage are optimized, and the polarization inversion lattice width ratio and the shape of the polarization inversion are ideally 1: 1 over the entire sample. It was made to approach (1: 0.95-1).

実験の結果、試料の厚みは0.3mm、0.5mm、1.0mm、2.0mm、3.0mmの
いずれの場合でも、大半の試料に関してはほぼ1:1の分極反転格子幅比を得ることがで
きたが、Mg濃度が3mol%より高い濃度の結晶では得ることができなかった。具体的
には、分極反転の直進性が悪く、隣同士がつながった反転格子が多くの場所で形成される
傾向が見られた。これは、Mg濃度が高くなりすぎたために、電気抵抗が低下し微細な周
期的電圧印加が困難になったため、結晶の不均質が発生し特にMgが多く含まれた場所が
分極反転の直進を妨げたためと思われる。つまり、分極反転させる素子作成を考えた場合
には、Mg添加濃度は3mol%以下、より好ましくは1.0mol%以下とすることが
望ましい。
As a result of the experiment, even when the sample thickness is 0.3 mm, 0.5 mm, 1.0 mm, 2.0 mm, or 3.0 mm, a polarization inversion grating width ratio of about 1: 1 is obtained for most samples. However, it could not be obtained with crystals having a Mg concentration higher than 3 mol%. Specifically, the straightness of polarization inversion was poor, and there was a tendency that inversion lattices in which adjacent neighbors were connected were formed in many places. This is because the Mg concentration becomes too high, and it becomes difficult to apply a fine periodic voltage because the electric resistance is reduced, so that crystal inhomogeneity occurs, and the place where a large amount of Mg is contained, in particular, goes straight through the polarization inversion. It seems that it was hindered. That is, when considering the creation of an element that reverses polarization, the Mg addition concentration is desirably 3 mol% or less, more preferably 1.0 mol% or less.

ウエハーの直径が2インチ、厚みを1.0mmとした以外は実施例3と同様にして分極反
転格子を有する光機能素子を作成した。分極反転格子幅の目標を5ミクロン毎とし、理想
的な各々1:1(1:0.95〜1)に近づくようにした。実験の結果、大半の試料に関
してほぼ1:1(1:0.95〜1)の分極反転格子幅比を得ることができたが、Mg濃
度が3mol%より高い結晶では得ることができなかった。
An optical functional element having a polarization inversion grating was prepared in the same manner as in Example 3 except that the diameter of the wafer was 2 inches and the thickness was 1.0 mm. The target of the domain-inverted lattice width was set to every 5 microns so as to approach the ideal 1: 1 (1: 0.95 to 1). As a result of the experiment, a polarization inversion lattice width ratio of about 1: 1 (1: 0.95 to 1) was obtained for most of the samples, but it was not obtained with crystals having an Mg concentration higher than 3 mol%. .

次に、実施例1で作成したLN単結晶体から切り出したウエハーにレンズやプリズム状の
分極反転構造を作製し電気光学効果を利用した偏向素子やシリンドリカルレンズ、ビーム
スキャナー、スイッチなどの光素子を製作した。直径2インチ、厚み0.2〜2.0mm
、両面研摩されたz−カットのLN単結晶ウエハーを準備し、両z面に厚さ約200ミク
ロンのAl電極をスパッタリングにより形成し、リソグラフを用いて、レンズやプリズム
状パターンを形成した。その後、+z面にパルス状の電圧を約3.5KV/mm印加し分
極を反転させた。さらに500℃で約5時間、空気中で熱処理を施した。これにより分極
反転に際して導入された屈折率の不均一性を解消させた。さらに、LN単結晶ウエハー
端面を鏡面研磨仕上げを行い、レーザ光の入出射面とした。
Next, optical elements such as a deflection element, a cylindrical lens, a beam scanner, and a switch using a electro-optic effect by producing a lens or prism-like domain-inverted structure on a wafer cut out from the LN single crystal produced in Example 1 are used. Produced. Diameter 2 inches, thickness 0.2-2.0mm
A z-cut LN single crystal wafer polished on both sides was prepared, Al electrodes having a thickness of about 200 microns were formed on both z planes by sputtering, and a lens or a prism-like pattern was formed using a lithograph. Thereafter, a pulsed voltage was applied to the + z plane at about 3.5 KV / mm to reverse the polarization. Further, heat treatment was performed in air at 500 ° C. for about 5 hours. As a result, the non-uniformity of the refractive index introduced upon polarization reversal was eliminated. Further, the end surface of the LN single crystal wafer was mirror-polished to form a laser light incident / exit surface.

試作した分極反転構造による屈折率の反転を形成したLN単結晶ウエハーの電気光学効果
を利用した光素子の性能は、レンズやプリズム状の分極反転構造の設計や分極反転構造の
作製プロセスの精度、および材料の持つ電気光学定数の大きさで決定された。ここで試作
したレンズやプリズム状パターンの分極反転構造で、特筆すべきことは、分極反転性の制
御が非常に容易であることから良好な素子特性が得られたことである。
The performance of the optical element using the electro-optic effect of the LN single crystal wafer formed with the reversal of the refractive index by the prototype domain-inverted structure depends on the design of the lens- and prism-shaped domain-inverted structure and the accuracy of the fabrication process of the domain-inverted structure, And the size of the electro-optic constant of the material. In the polarization inversion structure of the lens or prism pattern produced here as a prototype, it should be noted that the control of the polarization inversion property is very easy, so that good element characteristics were obtained.

従来の一致溶融組成のLN結晶では分極反転に大きな印加電圧が必要なために分極反転
構造の制御が困難であった。また、従来の一致溶融組成のLN結晶にMgOを5mol
%以上添加したLN単結晶では自発分極の反転の制御が悪いため精度の良いレンズやプリ
ズム状の分極反転構造の作製は困難だった。
In a conventional LN single crystal having a congruent melting composition, it is difficult to control the domain inversion structure because a large applied voltage is required for domain inversion. In addition, 5 mol of MgO is added to a conventional LN single crystal with a congruent melting composition.
In the case of LN single crystal added in an amount of at least%, the control of spontaneous polarization inversion is poor, and it was difficult to produce a highly accurate lens or prism-like domain-inverted structure.

実施例1で作成したLN単結晶体から切り出したウエハーにレンズやプリズム状の分極反
転構造を作製し電気光学効果を利用した偏向素子やシリンドリカルレンズ、ビームスキャ
ナー、スイッチなどの光素子を製作した場合には、このような問題は見られなかった。さ
らに本光素子に用いるLN単結晶は一致溶融組成の結晶よりも大きな電気光学定数r33
有しているので、より小さな動作電圧でより優れたデバイス性能が得られた。例えば偏向
素子の場合には約600V/mmの電圧で約6°と大きな偏向角が得られた。また、約1
00V/mm近傍で動作するレンズや、約500V/mmでのスイッチング動作も得られ
た。
When a lens or prism-like polarization inversion structure is produced on a wafer cut from the LN single crystal produced in Example 1, and an optical element such as a deflection element, a cylindrical lens, a beam scanner, or a switch using the electro-optic effect is produced. There was no such problem. Furthermore, since the LN single crystal used in the present optical element has a larger electro-optic constant r 33 than that of the crystal having the coincidence melting composition, a superior device performance can be obtained with a smaller operating voltage. For example, in the case of a deflection element, a large deflection angle of about 6 ° was obtained at a voltage of about 600 V / mm. About 1
A lens operating near 00 V / mm and a switching operation at about 500 V / mm were also obtained.

本実施例では、キュリー温度以下の温度で分極反転する実施例として電圧印加方法につい
て詳しく述べたが、本発明の製造方法で得られるLN単結晶体によれば1)Ti内拡散法
。2)SiO2装荷熱処理法。3)プロトン交換熱処理法。4)電子ビーム走査照射法。
など他の方法を用いた場合でも、結晶の完全性と制御性に優れたストイキオメトリ組成L
N単結晶を用いることで、高精度に周期分極反転格子を形成した光素子を実現することが
可能である。
In this example, the voltage application method was described in detail as an example of polarization reversal at a temperature equal to or lower than the Curie temperature. However, according to the LN single crystal obtained by the production method of the present invention , 1) Ti in-diffusion method. 2) SiO 2 loading heat treatment method. 3) Proton exchange heat treatment method. 4) Electron beam scanning irradiation method.
Even when using other methods such as, stoichiometric composition L with excellent crystal perfection and controllability
By using N single crystal, it is possible to realize an optical element in which a periodically poled lattice is formed with high accuracy.

また、ここでは、840nmまたは1064nmの近赤外光の基本波に対して青色または
緑色光を発生するQPM素子を作成した実施例に付いて詳しく述べたが、本発明の光り素
によれば基本波がこの二つの波長に限ることはなく、LN単結晶が透明でかつ位相整合
が可能である波長域に関して適用することが可能である。さらに、本発明のニオブ酸リチ
ウム単結晶の分極構造を周期的に反転させ、可視から近赤外域の波長を持った入射レーザ
の波長を短波長化あるいは長波長化させる光機能素子は第二高調波発生素子に限らず光パ
ラメトリック発振器素子など、リモートセンシング、ガス検知をはじめとする各種の応用
分野での適用が可能とされる。
In addition, although the embodiment in which the QPM element that generates blue or green light with respect to the fundamental wave of near-infrared light of 840 nm or 1064 nm is produced is described in detail, the light element of the present invention is described.
According to the child , the fundamental wave is not limited to these two wavelengths, and the present invention can be applied to a wavelength region where the LN single crystal is transparent and phase matching is possible. Further, the optical functional element that periodically inverts the polarization structure of the lithium niobate single crystal of the present invention and shortens or lengthens the wavelength of an incident laser having a wavelength in the visible to near-infrared region is a second harmonic. The present invention can be applied to various application fields such as remote sensing and gas detection such as optical parametric oscillator elements as well as wave generating elements.

次に、実施例1で作成したLN単結晶体から切り出したウエハーにレンズやプリズム状の
分極反転構造を作製し電気光学効果を利用した偏向素子やシリンドリカルレンズ、ビーム
スキャナー、スイッチなどの光素子を製作した。直径2インチ、厚み0.2〜2.0mm
、両面研摩されたzーカットのLN単結晶ウエハーを準備し、両z面に厚さ約200ミク
ロンのAl電極をスパッタリングにより形成し、リソグラフを用いて、レンズやプリズム
状パターンを形成した。その後、+z面にパルス状の電圧を約3.5KV/mm印加し分
極を反転させた。さらに500℃で約5時間、空気中で熱処理を施した。これにより分極
反転に際して導入された屈折率の不均一性を解消させた。さらにLN単結晶ウエハーの端
面を鏡面研磨仕上げを行い、レーザ光の入出射面とした。試作した分極反転構造による屈
折率の反転を形成したLN単結晶の電気光学効果を利用した光素子の性能は、レンズやプ
リズム状の分極反転構造の設計や分極反転構造の作製プロセスの精度、および材料の持つ
電気光学定数の大きさで決定された。
Next, optical elements such as a deflection element, a cylindrical lens, a beam scanner, and a switch using a electro-optic effect by producing a lens or prism-like domain-inverted structure on a wafer cut out from the LN single crystal produced in Example 1 are used. Produced. Diameter 2 inches, thickness 0.2-2.0mm
A z-cut LN single crystal wafer polished on both sides was prepared, Al electrodes having a thickness of about 200 microns were formed on both z planes by sputtering, and a lens or a prism-like pattern was formed using a lithograph. Thereafter, a pulsed voltage was applied to the + z plane at about 3.5 KV / mm to reverse the polarization. Further, heat treatment was performed in air at 500 ° C. for about 5 hours. As a result, the non-uniformity of the refractive index introduced upon polarization reversal was eliminated. Further, the end surface of the LN single crystal wafer was mirror-polished to form a laser beam incident / exit surface. The performance of the optical element using the electro-optic effect of the LN single crystal formed with the reversal of the refractive index by the prototype domain-inverted structure is the design of the lens- and prism-like domain-inverted structure, the accuracy of the process for producing the domain-inverted structure, and It was determined by the size of the electro-optic constant of the material.

ここで試作したレンズやプリズム状パターンの分極反転構造で、特筆すべきことは分極反
転性の制御が非常に容易であることから良好な素子特性が得られたことである。さらに本
光素子に用いる単結晶は一致溶融組成の結晶よりも大きな電気光学定数r33を有している
ので、より小さな動作電圧でより優れたデバイス性能が得られた。例えば、偏向素子の場
合には約600V/mmの電圧で約6°と大きな偏向角が得られた。また、約100V/
mm近傍で動作するレンズや、約500V/mmでのスイッチング動作も得られた。
In the polarization reversal structure of the lens or prismatic pattern produced here as a prototype, it should be noted that excellent device characteristics were obtained because the polarization reversal property was very easy to control. More books
Since the single crystal used for the optical element has a larger electro-optic constant r 33 than the crystal of the coincidence melt composition, a better device performance was obtained with a smaller operating voltage. For example, in the case of a deflection element, a large deflection angle of about 6 ° was obtained at a voltage of about 600 V / mm. Also, about 100V /
A lens operating in the vicinity of mm and a switching operation at about 500 V / mm were also obtained.

本実施例では、キュリー温度以下の温度で分極反転する実施例として電圧印加方法につい
て詳しく述べたが、本発明の製造方法で得られるLN単結晶体によれば1)Ti内拡散法
。2)SiO2装荷熱処理法。3)プロトン交換熱処理法。4)電子ビーム走査照射法。
など他の方法を用いた場合でも、結晶の完全性と制御性に優れたストイキオメトリ組成L
N単結晶を用いることで、高精度に周期分極反転格子を形成した光素子を実現することが
可能である。
In this example, the voltage application method was described in detail as an example of polarization reversal at a temperature equal to or lower than the Curie temperature. However, according to the LN single crystal obtained by the production method of the present invention , 1) Ti in-diffusion method. 2) SiO 2 loading heat treatment method. 3) Proton exchange heat treatment method. 4) Electron beam scanning irradiation method.
Even when using other methods such as, stoichiometric composition L with excellent crystal perfection and controllability
By using N single crystal, it is possible to realize an optical element in which a periodically poled lattice is formed with high accuracy.

また、ここでは、840nmまたは1064nmの近赤外光の基本波に対して青色または
緑色光を発生するQPM素子を作成した実施例に付いて詳しく述べたが、本発明の光素子
によれば基本波がこの二つの波長に限ることはなく、LN単結晶が透明でかつ位相整合が
可能である波長域に関して適用することが可能である。さらに、本発明のニオブ酸リチウ
ム単結晶の分極構造を周期的に反転させ、可視から近赤外域の波長を持った入射レーザの
波長を短波長化あるいは長波長化させる光機能素子は第二高調波発生素子に限らず光パラ
メトリック発振器素子など、リモートセンシング、ガス検知をはじめとする各種の応用分
野での適用が可能とされる。
In addition, although an example in which a QPM element that generates blue or green light with respect to a fundamental wave of near-infrared light of 840 nm or 1064 nm is produced is described in detail here, the optical element of the present invention is described. Therefore, the fundamental wave is not limited to these two wavelengths, and the present invention can be applied to a wavelength region in which the LN single crystal is transparent and phase matching is possible. Further, the optical functional element that periodically inverts the polarization structure of the lithium niobate single crystal of the present invention and shortens or lengthens the wavelength of an incident laser having a wavelength in the visible to near-infrared region is a second harmonic. The present invention can be applied to various application fields such as remote sensing and gas detection such as optical parametric oscillator elements as well as wave generating elements.

以上詳しく述べたように、本発明の光素子に用いるLN単結晶体の製造方法によれば、L
結晶のLi2O/(Nb25+Li2O)のモル分率を完全に定比組成の0.500に
することなしに、第三の元素のMgを加えることでLi2O/(Nb25+Li2O)のモ
ル分率が0.500である完全LN結晶が持つ大きさと同じ非線形光学定数、分極反転
電圧および電気光学定数を有するLN結晶を用いた光素子を提供することができる。
た、本発明のLN単結晶体の製造方法を利用することにより、LN単結晶全体に最高の
波長変換特性および電気光学特性を有するLi2O/(Nb25+Li2O)のモル分率が
、0.490以上0.500未満の間にある定比組成に近いLN結晶を育成すること
ができる。
As described in detail above, according to the method for producing an LN single crystal used in the optical element of the present invention, L
The N mole fraction of single crystals of Li 2 O / (Nb 2 O 5 + Li 2 O) without a 0.500 fully stoichiometric composition, Li 2 O by addition of Mg of the third element Device using LN single crystal having non-linear optical constant, polarization reversal voltage and electro-optical constant the same as the size of complete LN single crystal having a molar fraction of / (Nb 2 O 5 + Li 2 O) of 0.500 Can be provided . Ma
In addition, by using the method for producing an LN single crystal of the present invention, the mole of Li 2 O / (Nb 2 O 5 + Li 2 O) having the best wavelength conversion characteristics and electro-optical characteristics in the entire LN single crystal is obtained. min rate, it is possible to grow a LN single crystal close to the stoichiometric composition is between less than 0.490 or 0.500.

本発明の光素子用ウエハーの切り出しに用いたLN単結晶の育成炉を示す一例である。It is an example showing the growth furnace of LN single crystal used in the cut of the optical device wafers of the present invention. LiとNbとの相図を示す図である。It is a figure which shows the phase diagram of Li and Nb. 一重るつぼを用いた際に育成されるLN単結晶の様態を示す模式図である。It is a schematic view showing the manner of LN single crystal which is grown when using a single crucible.

1 育成炉
35 外るつぼ
36 内るつぼ
37 原料供給管
40 種結晶
41 融液
42 LN単結晶
43 高周波誘導コイル
45 原料
47 育成炉体
51 ガス
52 ロードセル
61 単結晶部
62 セラミック層
DESCRIPTION OF SYMBOLS 1 Growth furnace 35 Outer crucible 36 Inner crucible 37 Raw material supply pipe 40 Seed crystal 41 Melt 42 LN single crystal body 43 High frequency induction coil 45 Raw material 47 Growth furnace body 51 Gas 52 Load cell 61 Single crystal part 62 Ceramic layer

Claims (9)

単結晶内に入射されたレーザ光の波長を変換する光素子であって、前記単結晶として、
2 O/(Nb 2 5 +Li 2 O)のモル分率が0.56〜0.60である、Liが定比組成
よりも過剰な組成の融液から引き上げ法により育成されたニオブ酸リチウム単結晶体であ
って、
前記融液は、Mg元素を含み、
前記ニオブ酸リチウム単結晶体は、前記Mg元素を前記ニオブ酸リチウム単結晶体に対
して0.2mol%以上1.0mol%以下含み、
前記ニオブ酸リチウム単結晶体全体におけるLi 2 O/(Nb 2 5 +Li 2 O)のモル分
率は、0.490以上、完全定比組成の0.500未満の範囲でばらついている、不定比
欠陥を有するニオブ酸リチウム単結晶体から切り出したウエハーからなり
室温で分極反転するために必要な印加電圧が3.1kV/mm以下であり、波長1.0
64ミクロンにおいて非線形光学定数d 33 が29.9pm/V以上であるニオブ酸リチウ
ム単結晶を用い、前記単結晶の強誘電体分極を反転させた構造で擬似位相整合を行うこと
を特徴とする光素子。
An optical element for converting the wavelength of laser light incident on a single crystal, wherein the single crystal is L
The molar fraction of i 2 O / (Nb 2 O 5 + Li 2 O) is 0.56 to 0.60, Li is a stoichiometric composition
Lithium niobate single crystal grown by a pulling method from a melt with an excessive composition.
What
The melt contains Mg element,
In the lithium niobate single crystal, the Mg element is paired with the lithium niobate single crystal.
0.2 mol% or more and 1.0 mol% or less
The mole fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) in the entire lithium niobate single crystal.
The ratio varies in a range of 0.490 or more and less than 0.500 of the complete stoichiometric composition.
Consisting of a wafer cut from a defected lithium niobate single crystal ,
The applied voltage required for polarization reversal at room temperature is 3.1 kV / mm or less, and the wavelength is 1.0.
Light nonlinear optical constant d 33 in 64 micron using a lithium niobate single crystal is 29.9pm / V or more, and performs quasi-phase matching in the inverted structure of the ferroelectric polarization of the single crystal element.
請求項1に記載の光素子であって、前記ニオブ酸リチウム単結晶は、波長1.064ミク2. The optical element according to claim 1, wherein the lithium niobate single crystal has a wavelength of 1.064 μm.
ロンにおいて非線形光学定数d33が26pm/V以上であることを特徴とする光素子。A non-linear optical constant d33 in Ron is 26 pm / V or more.
請求項1に記載の光素子であって、前記ニオブ酸リチウム単結晶は、波長0.633ミク2. The optical element according to claim 1, wherein the lithium niobate single crystal has a wavelength of 0.633 mix.
ロンにおいて電気光学定数r33が36pm/V以上であることを特徴とする光素子。An optical element having an electro-optic constant r33 of 36 pm / V or more in Ron.
素子のz軸方向の厚みが1.0mm以上で、分極反転の周期が30ミクロン以下であるこ
とを特徴とする請求項に記載の光素子。
The optical element according to claim 1 , wherein the element has a thickness in the z-axis direction of 1.0 mm or more and a period of polarization inversion of 30 μm or less.
分極反転の周期が5ミクロン以下であることを特徴とする請求項に記載の光素子。 2. The optical element according to claim 1 , wherein the period of polarization inversion is 5 microns or less. 単結晶の電気光学効果を利用して単結晶内に入射されたレーザ光を制御する光素子であっ
て、前記単結晶として、Li 2 O/(Nb 2 5 +Li 2 O)のモル分率が0.56〜0.6
0である、Liが定比組成よりも過剰な組成の融液から引き上げ法により育成されたニオ
ブ酸リチウム単結晶体であって、
前記融液は、Mg元素を含み、
前記ニオブ酸リチウム単結晶体は、前記Mg元素を前記ニオブ酸リチウム単結晶体に対
して0.2mol%以上1.0mol%以下含み、
前記ニオブ酸リチウム単結晶体全体におけるLi 2 O/(Nb 2 5 +Li 2 O)のモル分
率は、0.490以上、完全定比組成の0.500未満の範囲でばらついている、不定比
欠陥を有するニオブ酸リチウム単結晶体から切り出したウエハーからなり
室温で分極反転するために必要な印加電圧が3.1kV/mm以下であり、波長0.6
33ミクロンにおいて電気光学定数r 33 が36pm/V以上であるニオブ酸リチウム単結
晶を用い、前記単結晶の強誘電分極を反転させた構造の大きな屈折率変化を利用して光の
偏向、焦点、又はスイッチングを行うことを特徴とする光素子。
An optical element that controls a laser beam incident on a single crystal by using an electro-optic effect of the single crystal, wherein the single crystal has a mole fraction of Li 2 O / (Nb 2 O 5 + Li 2 O). 0.56-0.6
Nio grown by a pulling method from a melt having a composition in which Li is more than the stoichiometric composition.
Lithium butyrate single crystal,
The melt contains Mg element,
In the lithium niobate single crystal, the Mg element is paired with the lithium niobate single crystal.
0.2 mol% or more and 1.0 mol% or less
The mole fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) in the entire lithium niobate single crystal.
The ratio varies in a range of 0.490 or more and less than 0.500 of the complete stoichiometric composition.
Consisting of a wafer cut from a defected lithium niobate single crystal ,
The applied voltage required to reverse the polarization at room temperature is 3.1 kV / mm or less, and the wavelength is 0.6.
Single lithium niobate with an electro-optic constant r 33 of 36 pm / V at 33 microns
An optical element characterized in that light is deflected, focused, or switched using a large refractive index change of a structure in which a single crystal is inverted in ferroelectric polarization.
請求項1または6記載の光素子用のウエハーを切り出すためのニオブ酸リチウム単結晶
を製造する方法であって、
るつぼに、Li2O/(Nb25+Li2O)のモル分率が0.56〜0.60であるL
iが定比組成よりも過剰なLi成分過剰の原料と、融液中のMg濃度が融液中のNbに対
して0.2mol%以上1.0mol%以下の範囲を満たすMg元素源とを充填および加
熱し、融液とし、
前記融液にニオブ酸リチウム単結晶の種結晶を漬け、回転させつつ引き上げ、
前記引き上げられたニオブ酸リチウム単結晶に見合った量の定比組成原料を、前記るつ
ぼに供給する、方法。
A claim 1 or 6 process for producing lithium niobate single crystal <br/> for cutting out the wafer for optical element described in
In the crucible, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.56 to 0.60.
a raw material in which Li is excessive in excess of the stoichiometric composition, and an Mg element source satisfying a Mg concentration in the melt satisfying a range of 0.2 mol% to 1.0 mol% with respect to Nb in the melt. Fill and heat to make melt,
Dipping a seed crystal of lithium niobate single crystal in the melt, pulling it up while rotating,
A method in which an amount of a stoichiometric composition raw material commensurate with the pulled lithium niobate single crystal is supplied to the crucible.
前記るつぼは、内るつぼおよび外るつぼからなる二重るつぼであり、前記Li成分過剰の
原料と前記Mg元素源とは、前記内るつぼおよび前記外るつぼに充填され、
前記定比組成原料は、連続供給によって前記外るつぼに供給される、請求項に記載の
方法。
The crucible is a double crucible composed of an inner crucible and an outer crucible, and the Li component excess raw material and the Mg element source are filled in the inner crucible and the outer crucible,
The method according to claim 7 , wherein the stoichiometric composition raw material is supplied to the outer crucible by continuous supply.
請求項1または6記載の光素子用のウエハーを切り出すためのニオブ酸リチウム単結晶
を製造する方法であって、
るつぼに、Li2O/(Nb25+Li2O)のモル分率が0.56〜0.60であるL
iが定比組成よりも過剰なLi成分過剰の原料と、融液中のMg濃度が融液中のNbに対
して0.2mol%以上1.0mol%以下の範囲を満たすMg元素源とを充填および加
熱し、融液とし、
前記融液にニオブ酸リチウム単結晶の種結晶を漬け、回転させつつ引き上げ、
育成中の原料の供給は行わないで、融液の組成が共晶点に達するまで前記単結晶を育成
する、方法。
A claim 1 or 6 process for producing lithium niobate single crystal <br/> for cutting out the wafer for optical element described in
In the crucible, the molar fraction of Li 2 O / (Nb 2 O 5 + Li 2 O) is 0.56 to 0.60.
a raw material in which Li is excessive in excess of the stoichiometric composition, and an Mg element source satisfying a Mg concentration in the melt satisfying a range of 0.2 mol% to 1.0 mol% with respect to Nb in the melt. Fill and heat to make melt,
Dipping a seed crystal of lithium niobate single crystal in the melt, pulling it up while rotating,
A method in which the single crystal is grown until the composition of the melt reaches the eutectic point without supplying the raw material during the growth.
JP2007100442A 1999-11-09 2007-04-06 Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer Expired - Lifetime JP4590531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100442A JP4590531B2 (en) 1999-11-09 2007-04-06 Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31756599 1999-11-09
JP2007100442A JP4590531B2 (en) 1999-11-09 2007-04-06 Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000341132A Division JP4553081B2 (en) 1999-11-09 2000-11-08 Lithium niobate single crystal, optical element thereof, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007269626A JP2007269626A (en) 2007-10-18
JP4590531B2 true JP4590531B2 (en) 2010-12-01

Family

ID=38672793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100442A Expired - Lifetime JP4590531B2 (en) 1999-11-09 2007-04-06 Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer

Country Status (1)

Country Link
JP (1) JP4590531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105358B2 (en) * 2007-11-27 2012-12-26 大学共同利用機関法人自然科学研究機構 Periodic polarization reversal member and method of manufacturing periodic polarization reversal element
CN117604640A (en) * 2023-11-23 2024-02-27 哈尔滨理工大学 Scandium cerium iron doped lithium niobate crystal and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263026A (en) * 1988-08-30 1990-03-02 Nec Corp Waveguide type wavelength converting element
JPH04300281A (en) * 1991-03-27 1992-10-23 Daiso Co Ltd Production of oxide single crystal
JPH05270992A (en) * 1992-03-24 1993-10-19 Daiso Co Ltd Lithium niobate single crystal free from optical damage
JPH06242478A (en) * 1993-02-18 1994-09-02 Fuji Photo Film Co Ltd Formation of domain inversion structure of ferroelectric substance
JPH1039346A (en) * 1996-07-26 1998-02-13 Sony Corp Electro-optic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263026A (en) * 1988-08-30 1990-03-02 Nec Corp Waveguide type wavelength converting element
JPH04300281A (en) * 1991-03-27 1992-10-23 Daiso Co Ltd Production of oxide single crystal
JPH05270992A (en) * 1992-03-24 1993-10-19 Daiso Co Ltd Lithium niobate single crystal free from optical damage
JPH06242478A (en) * 1993-02-18 1994-09-02 Fuji Photo Film Co Ltd Formation of domain inversion structure of ferroelectric substance
JPH1039346A (en) * 1996-07-26 1998-02-13 Sony Corp Electro-optic element

Also Published As

Publication number Publication date
JP2007269626A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US6673330B1 (en) Single crystal of lithium niobate or tantalate and its optical element, and process and apparatus for producing an oxide single crystal
US6211999B1 (en) Lithium tantalate single-crystal and photo-functional device
JP4553081B2 (en) Lithium niobate single crystal, optical element thereof, and manufacturing method thereof
US6747787B2 (en) Optically functional device, single crystal substrate for the device and method for its use
JP4107365B2 (en) Lithium tantalate single crystal, optical element thereof, and manufacturing method thereof
US6624923B2 (en) Optically functional device, single crystal substrate for the device and method for its use
JP4590531B2 (en) Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer
JP3424125B2 (en) Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal
Kumaragurubaran et al. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals
US6195197B1 (en) Lithium niobate single-crystal and photo-functional device
JP4569911B2 (en) Wavelength conversion element made of lithium tantalate single crystal
CN1379127A (en) Process for preparing chemical-specific Mg-doped lithium niobate crystal with periodic polarizing microstructure
JP4729698B2 (en) Lithium tantalate single crystal and its optical functional device
JP2000103697A (en) Lithium niobate single crystal and optical functional element
Xu et al. Influence of [K]/[Li] and [Li]/[Nb] ratios in melts on the TSSG growth and SHG characteristics of potassium lithium niobate crystals
JP3909845B2 (en) Manufacturing method of optical functional element
EP0491431B1 (en) Device for doubling the frequency of a light wave
JPH05310499A (en) Lithium niobate single crystal, its production and optics
JP2001059983A (en) Lithium niobate single crystal
Ravi et al. Effect of niobium substitution in stoichiometric lithium tantalate (SLT) single crystals
JPH0412095A (en) Production of thin film of lithium niobate single crystal
LEE Optically functional device, single crystal substrate for the device and method for its use
JPH0954347A (en) Kltn single crystal for optical element and optical element
Jia et al. Research on defects and domain characteristics of MgO-doped near-stoichiometric lithium tantalate in room-temperature polarization process
Pan et al. Crack-free K3Li2− xNb5+ 2xO15+ 2x crystals grown by the resistance-heated Czochralski technique

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term