JP2000036302A - Organic electrolyte battery - Google Patents
Organic electrolyte batteryInfo
- Publication number
- JP2000036302A JP2000036302A JP10202636A JP20263698A JP2000036302A JP 2000036302 A JP2000036302 A JP 2000036302A JP 10202636 A JP10202636 A JP 10202636A JP 20263698 A JP20263698 A JP 20263698A JP 2000036302 A JP2000036302 A JP 2000036302A
- Authority
- JP
- Japan
- Prior art keywords
- manganese dioxide
- positive electrode
- temp
- electrolytic manganese
- organic electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機電解質電池、
特にリチウム電池に係わり、詳しくはその低温放電特性
を改善するために正極材料を改良した有機電解質電池に
係わる。The present invention relates to an organic electrolyte battery,
In particular, the present invention relates to a lithium battery, and more particularly, to an organic electrolyte battery in which a positive electrode material is improved to improve its low-temperature discharge characteristics.
【0002】[0002]
【従来の技術】二酸化マンガンを作用物質とする正極
と、アルカリ金属もしくはその合金を作用物質とする負
極とを有する有機電解質電池、特にリチウム電池は、高
エネルギー密度を有していることから、既に多くの電子
機器の電源等として実用化されている。この有機電解質
電池は現在カメラ等の用途にも用いられているが、カメ
ラ等の電子機器の多機能化が進む中で、電源としての電
池にも広い温度範囲でのバランスの良い放電特性、特に
低温での放電特性の高容量化が望まれている。2. Description of the Related Art An organic electrolyte battery, particularly a lithium battery, having a positive electrode using manganese dioxide as an active substance and a negative electrode using an alkali metal or an alloy thereof as an active substance has a high energy density. It has been put to practical use as a power source for many electronic devices. This organic electrolyte battery is currently used for applications such as cameras, but as multi-functionality of electronic devices such as cameras progresses, batteries as power sources also have well-balanced discharge characteristics over a wide temperature range, especially There is a demand for higher discharge characteristics at low temperatures.
【0003】[0003]
【発明が解決しようとする課題】前記のような背景の中
でこれまでに正極の二酸化マンガンに混合する導電剤、
または低粘度の電解液及び高導電率の電解液等が検討さ
れた。しかしながら、これらの方法においても特に低温
放電特性は満足できるものではなかった。SUMMARY OF THE INVENTION Under the circumstances described above, a conductive agent which has been mixed with manganese dioxide of the positive electrode,
Alternatively, a low-viscosity electrolytic solution, a high-conductivity electrolytic solution, and the like have been studied. However, even in these methods, the low-temperature discharge characteristics were not particularly satisfactory.
【0004】本発明は前記問題点に鑑みてなされたもの
であって、有機電解質電池において、正極作用物質に改
良を加えて低温放電特性を向上させることを目的とする
ものである。[0004] The present invention has been made in view of the above problems, and has as its object to improve the low-temperature discharge characteristics of an organic electrolyte battery by improving the positive electrode active substance.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に本発明は、正極作用物質、導電剤および結着剤からな
るシート状正極板と、アルカリ金属もしくはその合金か
らなるシート状負極板とを、セパレータを介して巻回し
てなる渦巻状電極群を有する有機電解質電池において、
正極作用物質として、温度380〜460℃の範囲で熱
処理し比表面積を40〜80m2 /gとした電解二酸化
マンガンAと、温度350〜430℃の範囲で熱処理し
比表面積を15〜20m2 /gとした電解二酸化マンガ
ンBとの2種類の二酸化マンガンを用い、そのうちの電
解二酸化マンガンAの割合が10〜40wt%の範囲で
あることを特徴とするものである。In order to achieve the above object, the present invention provides a sheet-like positive electrode plate comprising a positive electrode active substance, a conductive agent and a binder, and a sheet-like negative electrode plate comprising an alkali metal or an alloy thereof. In an organic electrolyte battery having a spiral electrode group wound around a separator,
As the positive electrode active substance, electrolytic manganese dioxide A having a specific surface area of 40 to 80 m 2 / g by heat treatment at a temperature of 380 to 460 ° C. and a specific surface area of 15 to 20 m 2 / g at a temperature of 350 to 430 ° C. g of electrolytic manganese dioxide B and two types of manganese dioxide, wherein the ratio of electrolytic manganese dioxide A is in the range of 10 to 40 wt%.
【0006】本発明では、熱処理温度および比表面積の
異なる2種類の二酸化マンガンを一定の割合で混合した
ものを正極作用物質として使用する。比表面積の大きい
二酸化マンガンを用いることにより正極合剤が活性化
し、低温での放電特性が向上する。しかしその反面、常
温における放電特性が低下するので、比表面積の小さい
二酸化マンガンを混合使用して常温における放電特性の
低下を防止する。上記した混合割合、すなわち、電解二
酸化マンガンAおよび電解二酸化マンガンBの総量に対
して電解二酸化マンガンAの割合が10〜40wt%の
範囲とした時、常温における放電特性の低下を防止しな
がら低温での放電特性を向上させることができる。In the present invention, a mixture of two kinds of manganese dioxides having different heat treatment temperatures and specific surface areas at a fixed ratio is used as a positive electrode active substance. By using manganese dioxide having a large specific surface area, the positive electrode mixture is activated, and the discharge characteristics at low temperatures are improved. However, on the other hand, the discharge characteristics at room temperature are deteriorated. Therefore, a mixture of manganese dioxide having a small specific surface area is used to prevent the deterioration of the discharge characteristics at room temperature. When the above mixing ratio, that is, the ratio of the electrolytic manganese dioxide A to the total amount of the electrolytic manganese dioxide A and the electrolytic manganese dioxide B is in the range of 10 to 40 wt%, it is possible to prevent the discharge characteristics from dropping at room temperature while maintaining the low temperature. Discharge characteristics can be improved.
【0007】[0007]
【発明の実施の形態】図1を参照して、本発明の実施の
形態を説明する。図1は本発明の一実施例に係わる有機
電解質電池CR123Aの要部構成を示す断面図であ
る。 (試料二酸化マンガンの調製) 1)電解二酸化マンガンA 平均粒径7μm,嵩密度0.55g/cm3 ,BET法
による比表面積126m2 /gのアンモニア中和処理の
電解二酸化マンガンを温度460℃で8時間加熱処理し
調製した。加熱処理後のBET法による比表面積は43
m2 /gであった。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a main configuration of an organic electrolyte battery CR123A according to one embodiment of the present invention. (Preparation of sample manganese dioxide) 1) Electrolytic manganese dioxide A Electrolytic manganese dioxide having an average particle size of 7 μm, a bulk density of 0.55 g / cm 3 , and a specific surface area of 126 m 2 / g by a BET method was subjected to ammonia neutralization at a temperature of 460 ° C. It was prepared by heating for 8 hours. The specific surface area by the BET method after the heat treatment is 43.
m 2 / g.
【0008】2)電解二酸化マンガンB 平均粒径25μm,嵩密度1.52g/cm3 ,BET
法による比表面積44m2 /gのアンモニア中和処理の
電解二酸化マンガンを温度370℃で8時間加熱処理し
調製した。加熱処理後のBET法による比表面積は17
m2 /gであった。2) Electrolytic manganese dioxide B Average particle size 25 μm, bulk density 1.52 g / cm 3 , BET
An electrolytic manganese dioxide having a specific surface area of 44 m 2 / g by an ammonia neutralization treatment was prepared by heating at 370 ° C. for 8 hours. The specific surface area by the BET method after the heat treatment is 17
m 2 / g.
【0009】(実施例1)図1において、シート状正極
板1は次のようにして作成したものである。すなわち、
正極作用物質として上記電解二酸化マンガンAと上記電
解二酸化マンガンBとを3:7の重量比で混合したもの
(二酸化マンガンAの混合率30wt%)を90重量部
と、導電剤として黒鉛粉末を5重量部と、バインダーと
してポリテトラフルオロエチレン(PTFE)水性ディ
スパージョン5重量部(固形分として)とを混練して正
極合剤を調製し、この正極合剤をステンレス製のエキス
パンドメタルへ塗着した後に、乾燥,圧延して所定の形
状に裁断し、再度乾燥してシート状正極板1とした。ま
た、負極作用物質としてのリチウムアルミニウム合金箔
を所定の寸法に裁断してシート状負極板2とし、その一
部にL字状のニッケルメッキ鋼板からなる負極集電板7
の一部に圧着した。(Example 1) In FIG. 1, a sheet-like positive electrode plate 1 was prepared as follows. That is,
90 parts by weight of a mixture of the above electrolytic manganese dioxide A and the above electrolytic manganese dioxide B in a weight ratio of 3: 7 (mixing ratio of manganese dioxide A 30 wt%) as a positive electrode active substance, and 5 parts of graphite powder as a conductive agent. Parts by weight and 5 parts by weight (as a solid content) of an aqueous dispersion of polytetrafluoroethylene (PTFE) as a binder were kneaded to prepare a positive electrode mixture, and this positive electrode mixture was applied to a stainless expanded metal. Thereafter, the sheet-shaped positive electrode plate 1 was dried and rolled, cut into a predetermined shape, and dried again. Also, a lithium aluminum alloy foil as a negative electrode active material is cut into a predetermined size to form a sheet-shaped negative electrode plate 2, and a part of the negative electrode current collector plate 7 made of an L-shaped nickel-plated steel plate
It was crimped to a part of.
【0010】次に、前記シート状正極板1とシート状負
極板2を、ポリプロピレン製のマイクロポーラスフィル
ムからなるセパレータ3を介して、渦巻き状に捲回し、
電極群4とした。この電極群4の下面より突出した負極
集電板7の端部を、樹脂製の絶縁板8を介して前記電極
群4端面内方向に折り曲げ、これを負極端子を兼ねた外
装缶5の開口端より外装缶中へ挿入し、前記外装缶5内
底面と前記負極集電板7端部とを同図中9の部分で抵抗
溶接を行った。Next, the sheet-like positive electrode plate 1 and the sheet-like negative electrode plate 2 are spirally wound through a separator 3 made of a microporous film made of polypropylene.
Electrode group 4 was obtained. An end portion of the negative electrode current collector plate 7 protruding from the lower surface of the electrode group 4 is bent inward in an end surface of the electrode group 4 via an insulating plate 8 made of resin, and this is opened into an opening of an outer can 5 serving also as a negative electrode terminal. It was inserted into the outer can from the end, and resistance welding was performed on the inner bottom surface of the outer can 5 and the end of the negative electrode current collector plate 7 at the portion 9 in the figure.
【0011】以上のようにして電極群4を外装缶5に収
納した後、プロピレンカーボネイトと1,2−ジメトキ
シエタンの混合比3:7の混合溶媒にトリフルオロメタ
スルホン酸リチウム(LiCF3 SO3 )を0.5mo
l/l溶解した有機電解液を所定量注液し、前記電極群
4の上面より突出した正極リード6を封口体10の底面
部分に抵抗溶接し、この封口体10を外装缶5の開口端
で正極端子11とともにカシメ固定し、有機電解質電池
CR123Aを組み立てた。After the electrode group 4 is housed in the outer can 5 as described above, lithium trifluorometasulfonate (LiCF 3 SO 3) is added to a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a mixing ratio of 3: 7. ) Is 0.5mo
1 / l of the dissolved organic electrolyte is injected in a predetermined amount, and the positive electrode lead 6 protruding from the upper surface of the electrode group 4 is resistance-welded to the bottom surface of the sealing body 10. And the positive electrode terminal 11 was fixed by caulking to assemble the organic electrolyte battery CR123A.
【0012】(実施例2)正極作用物質として、前記電
解二酸化マンガンAと電解二酸化マンガンBとを1:9
の重量比で混合して二酸化マンガンAの混合率を10w
t%にしたものを用いた以外は、実施例1と同様な構成
の有機電解質電池を作成し、実施例2とした。(Example 2) The above-mentioned electrolytic manganese dioxide A and electrolytic manganese dioxide B were used as positive electrode active substances in a ratio of 1: 9.
And the mixing ratio of manganese dioxide A is 10w.
An organic electrolyte battery having the same configuration as in Example 1 was prepared, except that the battery was changed to t%.
【0013】(実施例3)正極作用物質として、前記電
解二酸化マンガンAと電解二酸化マンガンBとを4:6
の重量比で混合して二酸化マンガンAの混合率を40w
t%にしたものを用いた以外は、実施例1と同様な構成
の有機電解質電池を作成し、実施例3とした。(Example 3) The above-mentioned electrolytic manganese dioxide A and electrolytic manganese dioxide B were 4: 6
And the mixing ratio of manganese dioxide A is 40w.
An organic electrolyte battery having the same configuration as in Example 1 was prepared, except that the battery was used in an amount of t%.
【0014】(比較例1)正極作用物質として、前記電
解二酸化マンガンAと電解二酸化マンガンBとを5:5
の重量比で混合して二酸化マンガンAの混合率を50w
t%にしたものを用いた以外は、実施例1と同様な構成
の有機電解質電池を作成し、比較例1とした。Comparative Example 1 The above-mentioned electrolytic manganese dioxide A and electrolytic manganese dioxide B were used in a ratio of 5: 5
The mixing ratio of manganese dioxide A is 50 w
An organic electrolyte battery having the same configuration as that of Example 1 was prepared, except that the battery was changed to t%, and Comparative Example 1 was obtained.
【0015】(比較例2)正極作用物質として、前記電
解二酸化マンガンAと電解二酸化マンガンBとを0.
5:9.5の重量比で混合して二酸化マンガンAの混合
率を5wt%にしたものを用いた以外は、実施例1と同
様な構成の有機電解質電池を作成し、比較例2とした。(Comparative Example 2) The above-mentioned electrolytic manganese dioxide A and electrolytic manganese dioxide B were used as positive electrode active substances in a concentration of 0.1%.
An organic electrolyte battery having the same configuration as that of Example 1 was prepared except that a mixture of manganese dioxide A was mixed at a weight ratio of 5: 9.5 to 5 wt% to obtain Comparative Example 2. .
【0016】(比較例3)正極作用物質として、電解二
酸化マンガンAは混合せず、電解二酸化マンガンBのみ
を用いた以外は、実施例1と同様な構成の有機電解質電
池を作成し、従来例である比較例3とした。Comparative Example 3 An organic electrolyte battery having the same structure as in Example 1 was prepared except that electrolytic manganese dioxide A was not used as the positive electrode active substance and only electrolytic manganese dioxide B was used. Comparative Example 3 was obtained.
【0017】(評価)上記で作成した各電池について、
それぞれ低温放電特性及び連続放電特性を評価し、その
結果を表1に示した。(Evaluation) For each battery prepared above,
The low-temperature discharge characteristics and continuous discharge characteristics were evaluated, and the results are shown in Table 1.
【0018】1)低温放電特性は、各電池20個につい
て、温度−20℃の雰囲気下で1200mA間欠放電
(1200mAの定電流を3秒間流し、7秒間休止する
放電)を行い、終止電圧1.5Vまでの電気容量を求
め、比較例3の値を100としたときの比率(%)で表
し、その平均値を表1に示した。1) The low-temperature discharge characteristics were as follows: 20 batteries were subjected to 1200 mA intermittent discharge (discharge in which a constant current of 1200 mA was passed for 3 seconds and paused for 7 seconds) in an atmosphere at a temperature of -20.degree. The electric capacity up to 5 V was obtained, expressed as a ratio (%) when the value of Comparative Example 3 was set to 100, and the average value was shown in Table 1.
【0019】2)連続放電特性は、各電池20個につい
て、温度20℃の雰囲気下で100Ω連続放電を行い、
終止電圧2.0Vまでの電気容量を求め、比較例3の値
を100としたときの比率(%)で表し、その平均値を
表1に示した。2) Continuous discharge characteristics are as follows: 20 batteries were subjected to 100Ω continuous discharge in an atmosphere at a temperature of 20 ° C.
The electric capacity up to the end voltage of 2.0 V was obtained, expressed as a ratio (%) when the value of Comparative Example 3 was set to 100, and the average value was shown in Table 1.
【0020】[0020]
【表1】 [Table 1]
【0021】表1から判るように、前記電解二酸化マン
ガンAのような比表面積の大きい電解二酸化マンガンを
混合することにより、正極合剤が活性化し、−20℃で
の放電特性はその混合率に応じて向上し、混合率10w
t%(実施例2)では10%を上回る特性の向上が見ら
れるようになり、混合率50wt%(比較例1)では5
0%の特性向上を得ることができた。しかしその反面、
20℃における放電特性は混合率50wt%(比較例
1)の特性が最も低い結果となった。これは、前記二酸
化マンガンAの混合率を増加していくことにより、正極
板製作時の密度が低下して正極合剤としての質量が減少
し、放電容量を低下させるためである。混合率5wt%
(比較例2)では、−20℃の放電特性は3%しか向上
せず前記電解二酸化マンガンAを混合したことによる効
果は得られていないが、20℃における放電特性では低
下率1%と最高値を得ている。As can be seen from Table 1, by mixing electrolytic manganese dioxide having a large specific surface area such as electrolytic manganese dioxide A, the positive electrode mixture is activated, and the discharge characteristics at -20 ° C. According to the mixing ratio 10w
In the case of t% (Example 2), an improvement in characteristics exceeding 10% was observed, and in the case of a mixing ratio of 50 wt% (Comparative Example 1), 5%.
0% improvement in characteristics was obtained. But on the other hand,
As for the discharge characteristics at 20 ° C., the results with the mixing ratio of 50 wt% (Comparative Example 1) were the lowest. This is because, by increasing the mixing ratio of the manganese dioxide A, the density at the time of manufacturing the positive electrode plate decreases, the mass as the positive electrode mixture decreases, and the discharge capacity decreases. Mixing ratio 5wt%
In (Comparative Example 2), the discharge characteristics at −20 ° C. were improved by only 3%, and the effect of mixing the electrolytic manganese dioxide A was not obtained. Value.
【0022】上記の結果から、前記電解二酸化マンガン
Aと前記電解二酸化マンガンBとの2種類の電解二酸化
マンガンを用い、前記電解二酸化マンガンAの混合率を
10〜40wt%の範囲とした場合には、20℃での放
電特性を大幅に低下することなく、−20℃での放電特
性を向上することができることがわかる。前記電解二酸
化マンガンAの混合率が10wt%より低いと、−20
℃での放電特性において大幅な効果を得ることができ
ず、前記電解二酸化マンガンAの混合率が40wt%を
超えると、20℃における放電特性の大幅な低下が発生
する。From the above results, when two types of electrolytic manganese dioxide, electrolytic manganese dioxide A and electrolytic manganese dioxide B, are used and the mixing ratio of electrolytic manganese dioxide A is in the range of 10 to 40 wt%, It can be seen that the discharge characteristics at −20 ° C. can be improved without significantly lowering the discharge characteristics at 20 ° C. When the mixing ratio of the electrolytic manganese dioxide A is lower than 10 wt%, -20
When the mixing ratio of the electrolytic manganese dioxide A exceeds 40 wt%, the discharge characteristics at 20 ° C. are significantly reduced.
【0023】なお、上記以外に、二酸化マンガンAとし
て、平均粒径7μm,嵩密度0.55g/cm3 ,BE
T法による比表面積126m2 /gのアンモニア中和処
理の電解二酸化マンガンを温度380℃及び420℃で
8時間加熱処理し、熱処理後のBET法による比表面積
が76m2 /g並びに60m2 /gのものを調製し、二
酸化マンガンBとして、平均粒径25μm,嵩密度1.
52g/cm3 ,BET法による比表面積44m2 /g
のアンモニア中和処理の電解二酸化マンガンを温度35
0℃及び430℃で8時間加熱処理し、熱処理後のBE
T法による比表面積が20m2 /g並びに15m2 /g
のものを調製した。そして、各二酸化マンガンAと各二
酸化マンガンBとを、二酸化マンガンAの混合率が10
〜40wt%になるようにそれぞれ組み合わせ混合し、
それらについて実施例と同様にして有機電解質電池CR
123Aを組み立て評価した。その結果、上記実施例と
同様に優れた評価が得られた。In addition to the above, manganese dioxide A has an average particle size of 7 μm, a bulk density of 0.55 g / cm 3 , and a BE.
The electrolytic manganese dioxide of the ammonia neutralization treatment having a specific surface area of 126 m 2 / g by the T method is heat-treated at 380 ° C. and 420 ° C. for 8 hours, and the specific surface area by the BET method after the heat treatment is 76 m 2 / g and 60 m 2 / g. Was prepared as manganese dioxide B, having an average particle size of 25 μm and a bulk density of 1.
52 g / cm 3 , BET specific surface area 44 m 2 / g
Manganese dioxide for ammonia neutralization at a temperature of 35
BE after heat treatment at 0 ° C and 430 ° C for 8 hours
Specific surface area by T method of 20 m 2 / g and 15 m 2 / g
Was prepared. Then, each manganese dioxide A and each manganese dioxide B are mixed at a mixing ratio of manganese dioxide A of 10
組 み 合 わ せ 40 wt% and mix and mix each
The organic electrolyte battery CR was obtained in the same manner as in the example.
123A was assembled and evaluated. As a result, excellent evaluation was obtained in the same manner as in the above example.
【0024】[0024]
【発明の効果】以上説明したように、本発明の有機電解
質電池は、低温での放電特性を向上させしかも常温での
放電特性も低下させないので、広い温度範囲での適用が
可能である。As described above, the organic electrolyte battery of the present invention can be applied in a wide temperature range because it improves the discharge characteristics at low temperatures and does not lower the discharge characteristics at room temperature.
【図1】本発明の一実施例である有機電解質電池の要部
構成を示す縦断面図。FIG. 1 is a longitudinal sectional view showing a configuration of a main part of an organic electrolyte battery according to an embodiment of the present invention.
1…シート状正極板、2…シート状負極板、3…セパレ
ータ、4…電極群、5…外装缶、6…正極リード、7…
負極集電棒、8…絶縁板、9…抵抗溶接部、10…封口
体、11…正極端子。DESCRIPTION OF SYMBOLS 1 ... Sheet-shaped positive electrode plate, 2 ... Sheet-shaped negative electrode plate, 3 ... Separator, 4 ... Electrode group, 5 ... Outer can, 6 ... Positive electrode lead, 7 ...
Negative electrode current collecting rod, 8: insulating plate, 9: resistance welded part, 10: sealing body, 11: positive electrode terminal.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 宏次 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 (72)発明者 大友 栄二 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H003 AA01 AA02 BA01 BB04 BD01 BD04 BD05 5H014 AA02 BB01 CC01 EE10 HH01 HH06 HH08 5H015 AA02 BB01 CC01 DD01 EE01 HH01 HH06 HH11 5H024 AA03 AA12 BB01 CC02 CC12 FF11 HH00 HH01 HH11 5H029 AJ02 AJ03 AK02 AL11 BJ02 BJ14 HJ01 HJ07 HJ14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Fujita, Inventor Koji Fujita 3-4-10, Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (72) Eiji Otomo 3-4-1, Minamishinagawa, Shinagawa-ku, Tokyo No. Toshiba Battery Co., Ltd. F term (reference) 5H003 AA01 AA02 BA01 BB04 BD01 BD04 BD05 5H014 AA02 BB01 CC01 EE10 HH01 HH06 HH08 5H015 AA02 BB01 CC01 DD01 EE01 HH01 HH06 HH11 5H024 AA03 AA12 H01H02 H02 H01 H02 AL11 BJ02 BJ14 HJ01 HJ07 HJ14
Claims (1)
なるシート状正極板と、アルカリ金属もしくはその合金
からなるシート状負極板とを、セパレータを介して巻回
してなる渦巻状電極群を有する有機電解質電池におい
て、正極作用物質として、温度380〜460℃の範囲
で熱処理し比表面積を40〜80m2 /gとした電解二
酸化マンガンAと、温度350〜430℃の範囲で熱処
理し比表面積を15〜20m2 /gとした電解二酸化マ
ンガンBとの2種類の二酸化マンガンを用い、そのうち
の電解二酸化マンガンAの割合が10〜40wt%の範
囲であることを特徴とする有機電解質電池。1. A spiral electrode group formed by winding a sheet-shaped positive plate made of a positive electrode active substance, a conductive agent and a binder, and a sheet-shaped negative plate made of an alkali metal or an alloy thereof through a separator. In the organic electrolyte battery having a positive electrode active material, electrolytic manganese dioxide A having a specific surface area of 40 to 80 m 2 / g by heat treatment at a temperature of 380 to 460 ° C. and a specific surface area of heat treatment at a temperature of 350 to 430 ° C. An organic electrolyte battery using two types of manganese dioxide, namely, electrolytic manganese dioxide B having a concentration of 15 to 20 m 2 / g, and the ratio of electrolytic manganese dioxide A in the range of 10 to 40 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10202636A JP2000036302A (en) | 1998-07-17 | 1998-07-17 | Organic electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10202636A JP2000036302A (en) | 1998-07-17 | 1998-07-17 | Organic electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000036302A true JP2000036302A (en) | 2000-02-02 |
Family
ID=16460628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10202636A Pending JP2000036302A (en) | 1998-07-17 | 1998-07-17 | Organic electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000036302A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006079883A (en) * | 2004-09-08 | 2006-03-23 | Hitachi Maxell Ltd | Nonaqueous electrolyte solution battery |
JP2011251862A (en) * | 2010-06-01 | 2011-12-15 | Tosoh Corp | Manganese oxide and method for producing the same |
CN114843704A (en) * | 2022-04-20 | 2022-08-02 | 天津大学 | Manganese-containing fluoride thermal battery |
-
1998
- 1998-07-17 JP JP10202636A patent/JP2000036302A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006079883A (en) * | 2004-09-08 | 2006-03-23 | Hitachi Maxell Ltd | Nonaqueous electrolyte solution battery |
JP2011251862A (en) * | 2010-06-01 | 2011-12-15 | Tosoh Corp | Manganese oxide and method for producing the same |
CN114843704A (en) * | 2022-04-20 | 2022-08-02 | 天津大学 | Manganese-containing fluoride thermal battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4002829B2 (en) | Electrode element electrode material, method for producing the same, and electrochemical element | |
JP2013134838A (en) | Negative electrode mixture for iron-air secondary battery, negative electrode mixture slurry, negative electrode for iron-air secondary battery, method of manufacturing the same, and iron-air secondary battery | |
JP2002373648A (en) | Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode | |
JP2019019048A (en) | Manufacturing method of carbonaceous coated graphite particle, carbonaceous coated graphite particle, anode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3768026B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005293960A (en) | Anode for lithium ion secondary battery, and lithium ion secondary battery | |
JPH0745304A (en) | Organic electrolyte secondary battery | |
JP2000036302A (en) | Organic electrolyte battery | |
JP3216451B2 (en) | Non-aqueous electrolyte battery | |
JP3239267B2 (en) | Organic electrolyte battery | |
JP3152307B2 (en) | Lithium secondary battery | |
JP4867145B2 (en) | Non-aqueous electrolyte battery | |
JP3451602B2 (en) | Non-aqueous electrolyte battery | |
JP2000294231A (en) | Organic electrolyte battery | |
JP3378787B2 (en) | Non-aqueous electrolyte battery | |
JP2000235860A (en) | Organic electrolyte battery | |
JP2845069B2 (en) | Organic electrolyte secondary battery | |
JPS6110863A (en) | Nonaqueous electrolyte batter | |
JP2777383B2 (en) | Non-aqueous electrolyte battery | |
JP2812943B2 (en) | Organic electrolyte battery | |
JPS63138646A (en) | Cylindrical nonaqueous electrolyte cell | |
JP2698103B2 (en) | Non-aqueous electrolyte primary battery | |
JPH02239572A (en) | Polyaniline battery | |
JPH11265709A (en) | Manufacture of paste composition for positive electrode and manufacture of positive electrode and lithium secondary battery | |
JP3211086B2 (en) | Lithium battery |