JP4867145B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4867145B2
JP4867145B2 JP2004241849A JP2004241849A JP4867145B2 JP 4867145 B2 JP4867145 B2 JP 4867145B2 JP 2004241849 A JP2004241849 A JP 2004241849A JP 2004241849 A JP2004241849 A JP 2004241849A JP 4867145 B2 JP4867145 B2 JP 4867145B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
electrode active
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241849A
Other languages
Japanese (ja)
Other versions
JP2006059732A (en
Inventor
伸一郎 田原
幸宏 五反田
真一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004241849A priority Critical patent/JP4867145B2/en
Publication of JP2006059732A publication Critical patent/JP2006059732A/en
Application granted granted Critical
Publication of JP4867145B2 publication Critical patent/JP4867145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Description

本発明は金属リチウムあるいはその合金を負極活物質とし、フッ化黒鉛を正極活物質とする非水電解液電池に関するものである。   The present invention relates to a nonaqueous electrolyte battery using metallic lithium or an alloy thereof as a negative electrode active material and fluorinated graphite as a positive electrode active material.

金属リチウムあるいはこの合金を負極活物質とし、フッ化黒鉛を正極活物質とするフッ化黒鉛リチウム電池は、正極活物質に用いるフッ化黒鉛が864mAh/gという電気容量密度を有し、熱的、化学的にも安定で、電解液にも溶解しないので、長期保存特性の優れた電池系として知られている。このフッ化黒鉛リチウム電池は、常温で10年以上という長期の保存特性に優れていることから、各種メータの主電源やメモリーバックアップ電源として広く用いられている。また、最近では、自動車,産業機器等で高温域から低温域までという幅広い使用温度域を必要とする用途へ要望されている。   A lithium fluoride graphite battery using metallic lithium or an alloy thereof as a negative electrode active material and fluorinated graphite as a positive electrode active material has an electric capacity density of 864 mAh / g as a positive electrode active material. Since it is chemically stable and does not dissolve in the electrolyte, it is known as a battery system with excellent long-term storage characteristics. This fluorinated graphite lithium battery is widely used as a main power source and a memory backup power source for various meters because of its excellent long-term storage characteristics of 10 years or more at room temperature. Recently, there is a demand for applications that require a wide operating temperature range from a high temperature range to a low temperature range in automobiles, industrial equipment, and the like.

しかし、フッ化黒鉛は非水電解液との濡れ性が良くないために、正極の有効反応面積が小さい。このため、従来のフッ化黒鉛リチウム電池では、100m2/g程度の比表面積の大きいフッ化黒鉛を正極活物質として用いている(例えば、非特許文献1を参照)。ところが、比表面積の大きいフッ化黒鉛を正極活物質として用いると、自動車,産業機器等で高温域から低温域までという幅広い使用温度域を必要とする用途に使用される場合には、高温域で電解液の分解が起こり、電池の内部抵抗が上昇するという問題があった。 However, fluorinated graphite does not have good wettability with a non-aqueous electrolyte, so that the effective reaction area of the positive electrode is small. For this reason, in a conventional fluorinated graphite lithium battery, fluorinated graphite having a large specific surface area of about 100 m 2 / g is used as a positive electrode active material (see, for example, Non-Patent Document 1). However, when fluorinated graphite with a large specific surface area is used as the positive electrode active material, when used in applications that require a wide operating temperature range from high temperature to low temperature in automobiles, industrial equipment, etc., There was a problem that the electrolytic solution was decomposed and the internal resistance of the battery increased.

リチウムイオン二次電池では、正極活物質の比表面積を小さくして正極活物質と非水電解液との濡れ性を改善することが提案されている(例えば特許文献1)。
飯島ら:電気化学,p.496−499,53巻,1985年7月 特開2001−291517号公報
In the lithium ion secondary battery, it has been proposed to improve the wettability between the positive electrode active material and the non-aqueous electrolyte by reducing the specific surface area of the positive electrode active material (for example, Patent Document 1).
Iijima et al .: Electrochemistry, p. 496-499, 53, July 1985 JP 2001-291517 A

フッ化黒鉛リチウム電池では、正極活物質であるフッ化黒鉛の比表面積を小さくすると、正極の反応面積が小さくなり、低温での放電特性が低下するという課題が生じる。   In the fluorinated graphite lithium battery, when the specific surface area of the fluorinated graphite as the positive electrode active material is reduced, the reaction area of the positive electrode is reduced, resulting in a problem that the discharge characteristics at a low temperature are lowered.

本発明は、フッ化黒鉛リチウム電池において、正極活物質であるフッ化黒鉛の比表面積を小さくても低温放電特性の良好な電池を提供することを目的とする。   An object of the present invention is to provide a battery having good low-temperature discharge characteristics even if the specific surface area of fluorinated graphite as a positive electrode active material is small in a fluorinated graphite lithium battery.

上記課題を解決するため、本発明の非水電解液電池は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、前記フッ化黒鉛はオゾン処理、コロナ処理のうちのいずれかにより表面に水酸基またはカルボキシル基が形成されていることを特徴とする。 In order to solve the above problems, a non-aqueous electrolyte battery of the present invention includes a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte. in the nonaqueous electrolyte battery, the graphite fluoride, characterized in that the hydroxyl group or carboxyl group is formed on the surface by any of the ozone treatment, of corona treatment.

また、本発明は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池の製造方法において、前記フッ化黒鉛はあらかじめオゾン処理、コロナ処理のうちのいずれかにより表面に水酸基またはカルボキシル基が形成されることを特徴とする。 The present invention also relates to a method for producing a nonaqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using graphite fluoride as a positive electrode active material, and a nonaqueous electrolyte. graphite fluoride is characterized by preliminarily ozone treatment, a hydroxyl group or carboxyl group on the surface by any of the corona treatment is formed.

また、本発明は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池の製造方法において、前記正極は前記フッ化黒鉛を含む正極合剤を正極支持体に充填圧延して正極板に構成され、前記正極板をオゾン処理、コロナ処理のうちのいずれかの処理を行うことにより前記フッ化黒鉛の表面に水酸基またはカルボキシル基が形成されることを特徴とする。 The present invention also relates to a method for producing a nonaqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using graphite fluoride as a positive electrode active material, and a nonaqueous electrolyte. the positive electrode is constructed in the filling rolled to a positive electrode plate a positive electrode mixture containing the fluorinated graphite in the positive electrode substrate, wherein the positive electrode plate ozone treatment, said by performing any of the processes of the corona treatment fluoride A hydroxyl group or a carboxyl group is formed on the surface of the graphite oxide.

金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、正極活物質であるフッ化黒鉛の表面に水酸基またはカルボキシル基が形成され、正極構成材の濡れ性が改善される。その結果、正極の有効反応面積が大きくなり、低温での放電においても電圧降下を少なくすることができる。また、正極構成材の濡れ性を与えるだけの改良であるために、高温域での保存特性に大きな影響を与えることがない。   The surface of fluorinated graphite, which is a positive electrode active material, in a nonaqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using graphite fluoride as a positive electrode active material, and a nonaqueous electrolyte Thus, a hydroxyl group or a carboxyl group is formed, and the wettability of the positive electrode constituent material is improved. As a result, the effective reaction area of the positive electrode is increased, and the voltage drop can be reduced even during discharge at a low temperature. In addition, since the improvement is only to give wettability of the positive electrode constituent material, the storage characteristics in the high temperature range are not greatly affected.

本発明によれば、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池の正極活物質の濡れ性を改善できる。したがって、非水電解液電池の電池特性を向上させることができ、特に低温下での大電流パルス放電による電圧降下を少なくできるという顕著な効果を得ることができる。   According to the present invention, wetting of a positive electrode active material of a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte solution. Can improve sex. Therefore, the battery characteristics of the non-aqueous electrolyte battery can be improved, and a remarkable effect that the voltage drop due to the large current pulse discharge at a low temperature can be reduced can be obtained.

正極活物質に用いるフッ化黒鉛は、コークスや黒鉛などの炭素材料とフッ素ガスとを250〜650℃程度の温度で反応させることにより得ることができる。フッ素化処理に応じて、(CFxn(但し、x=0.5〜1)、(C2F)nあるいはこれらの混合物を得ることができる。非水電解液との組み合わせにおいて、フッ化黒鉛に特段の限定はないが、平均粒子径は10μm以上で比表面積が200m2/g以下であると高温域での保存特性の点で好ましい。また、正極を構成するにあたって、公知の導電助剤やフッ素樹脂などの結着剤を使用することができる。円筒形や角型などの電池用電極を構成する際には、前述の正極材料を練合した正極合剤を支持体(芯材)に充填圧延することによって正極板が作製される。 The fluorinated graphite used for the positive electrode active material can be obtained by reacting a carbon material such as coke or graphite with fluorine gas at a temperature of about 250 to 650 ° C. Depending on the fluorination treatment, (CF x ) n (where x = 0.5 to 1), (C 2 F) n or a mixture thereof can be obtained. In combination with a non-aqueous electrolyte, there is no particular limitation on graphite fluoride, but an average particle size of 10 μm or more and a specific surface area of 200 m 2 / g or less are preferable in terms of storage characteristics in a high temperature range. Moreover, in constituting the positive electrode, a known conductive aid or a binder such as a fluororesin can be used. When a battery electrode having a cylindrical shape or a square shape is configured, a positive electrode plate is produced by filling and rolling a positive electrode mixture obtained by kneading the above-described positive electrode material on a support (core material).

この正極板は、オゾン気流中にさらした後、亜鉛触媒の元で水蒸気で還元することによって、正極活物質であるフッ化黒鉛の表面に水酸基またはカルボキシル基を形成される。正極板にこのオゾン処理する代わりに、正極合剤を練合する前にあらかじめフッ化黒鉛をオゾン処理し、オゾン処理したフッ化黒鉛を用いて正極合剤を練合し、これで正極板を構成することもできる。正極板に構成せず、正極合剤を練合しペレット状に正極を構成する場合にも、ペレット状の正極をオゾン処理しても、あらかじめオゾン処理したフッ化黒鉛を用いて正極合剤を練合してペレット状の正極を構成してもどちらでもよい。   This positive electrode plate is exposed to an ozone stream and then reduced with water vapor under a zinc catalyst, whereby a hydroxyl group or a carboxyl group is formed on the surface of fluorinated graphite as a positive electrode active material. Instead of this ozone treatment to the positive electrode plate, the graphite fluoride is ozone-treated in advance before kneading the positive electrode mixture, and the positive electrode mixture is kneaded using the ozone-treated graphite fluoride. It can also be configured. Even when the positive electrode mixture is kneaded and the positive electrode is formed into a pellet shape without forming the positive electrode plate, even if the pellet-shaped positive electrode is subjected to ozone treatment, the positive electrode mixture is prepared using pre-ozone-treated fluorinated graphite. Either may be kneaded to form a pellet-like positive electrode.

また、オゾン処理の代わりに、空気中で電極間に高周波、高電圧を印加し、発生した電子を樹脂表面と衝突させるコロナ処理を行っても、フッ化黒鉛の表面に水酸基またはカルボキシル基を形成することができる。 Further, instead of the ozone treatment, between the electrodes in the air frequency, a high voltage is applied, also the generated electrons subjected to corona treatment of colliding with the resin surface, a hydroxyl group or a carboxyl group on the surface of the fluorinated graphite Can be formed.

負極は、金属リチウム、Li−Al、Li−Sn、Li−NiSi、Li−Pbなどのリチウム合金が用いられる。     As the negative electrode, lithium alloys such as metallic lithium, Li—Al, Li—Sn, Li—NiSi, and Li—Pb are used.

非水電解液に用いる溶媒としては、γ−ブチルラクトン、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどを使用することができる。好ましくは、γ−ブチルラクトンである。   As a solvent used for the nonaqueous electrolytic solution, γ-butyllactone, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, and the like can be used. Preferred is γ-butyllactone.

非水電解液を構成する支持電解質には、ホウフッ化リチウム、リチウム六フッ化リン、トリフルオロメタンスルホン酸リチウム、および分子構造内にイミド結合を有するLiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)などを用いることができる。中でもホウフッ化リチウムはフッ化黒鉛との相性もよく、安定した放電特性を発揮することができるため好ましい。 The supporting electrolyte constituting the non-aqueous electrolyte includes lithium borofluoride, lithium phosphorus hexafluoride, lithium trifluoromethanesulfonate, LiN (CF 3 SO 2 ) 2 having a imide bond in the molecular structure, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), or the like can be used. Among these, lithium borofluoride is preferable because it has good compatibility with graphite fluoride and can exhibit stable discharge characteristics.

その他電池を構成するにあたり、セパレータ、正極缶、負極缶、ガスケットなどは公知の材料を使用することができ、その形状や寸法には限定されないが、正極缶としてより好ましいのはステンレス鋼SUS444である。また電池形状はコイン型、ピン型、円筒形、角型などの形状を採用でき、その形状に限定されるものではない。   In configuring other batteries, known materials can be used for the separator, the positive electrode can, the negative electrode can, the gasket, and the like, and the shape and dimensions thereof are not limited, but stainless steel SUS444 is more preferable as the positive electrode can. . The battery shape may be a coin shape, pin shape, cylindrical shape, square shape, or the like, and is not limited to that shape.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例にかかる非水電解液電池の断面図であり、この非水電解液電池を下記のように作成した。   FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery according to one embodiment of the present invention, and this non-aqueous electrolyte battery was prepared as follows.

正極活物質となるフッ化黒鉛は、平均粒子径20μm、比表面積が10m2/gの炭素粉末をフッ素化処理したものを用いた。このフッ化黒鉛100重量部と、導電剤としてのカーボン粉末10重量部と結着剤としてのPTFE15重量部とを高速攪拌型ミキサで乾式混合し、これに、純水50重量部を加えて混練し、湿潤状態の正極合剤を作製した。この湿潤状態の正極合剤を厚み0.4mmのチタン製エキスパンドメタルとともに等速回転を行う2本の回転ロール間を通して、正極合剤をチタン製エキスパンドメタルに充填後、乾燥、圧延してシートを作製した。得られたシートを、一定寸法に裁断し、中央部には合剤剥離部分を設け、チタン製リードを溶接し、正極板とした。 As the fluorinated graphite serving as the positive electrode active material, a fluorinated carbon powder having an average particle diameter of 20 μm and a specific surface area of 10 m 2 / g was used. 100 parts by weight of this graphite fluoride, 10 parts by weight of carbon powder as a conductive agent, and 15 parts by weight of PTFE as a binder are dry-mixed with a high-speed stirring mixer, and 50 parts by weight of pure water is added thereto and kneaded. A wet cathode mixture was prepared. This wet positive electrode mixture is passed through two rotating rolls that rotate at a constant speed together with a 0.4 mm thick titanium expanded metal, the positive electrode mixture is filled into the titanium expanded metal, dried and rolled to obtain a sheet. Produced. The obtained sheet was cut into a certain size, a mixture peeling portion was provided at the center, and a titanium lead was welded to obtain a positive electrode plate.

この正極板をオゾン気流中にさらした後、亜鉛触媒の元で水蒸気で還元することによって、正極板のフッ化黒鉛の表面にカルボキシル基または水酸基を形成した。これにより、正極板は親水性を有するようになった。このオゾン処理を行う前と後の正極板に対してSEM観察を行ったところ、オゾン処理後の正極板はオゾン処理前の正極板に対して、フッ化黒鉛の表面が一様に変化しており、フッ化黒鉛の表面が均一に改質されていることが確認できた。   The positive electrode plate was exposed to an ozone stream and then reduced with water vapor under a zinc catalyst to form carboxyl groups or hydroxyl groups on the surface of the fluorinated graphite of the positive electrode plate. Thereby, the positive electrode plate came to have hydrophilicity. When SEM observation was performed on the positive electrode plate before and after the ozone treatment, the positive electrode plate after the ozone treatment had a uniform change in the surface of the fluorinated graphite relative to the positive electrode plate before the ozone treatment. It was confirmed that the surface of the fluorinated graphite was uniformly modified.

負極2には、金属リチウムを使用し、上記正極1、負極2をポリプロピレン製の微多孔膜セパレータ3を介して渦巻き状に巻き取り、これを2/3Aサイズの外装缶4に装入した。そして、上記缶4に、γ−ブチルラクトンにホウフッ化リチウムを1mol/l溶解させた非水電解液を注液し、その後封口して円筒形電池を作製し実施例1の電池とした。   As the negative electrode 2, metallic lithium was used, and the positive electrode 1 and the negative electrode 2 were wound in a spiral shape through a microporous membrane separator 3 made of polypropylene, and loaded into a 2 / 3A size outer can 4. Then, a non-aqueous electrolyte solution in which 1 mol / l of lithium borofluoride was dissolved in γ-butyllactone was poured into the can 4 and then sealed to produce a cylindrical battery, whereby a battery of Example 1 was obtained.

上記実施例1の電池の作製において、正極板のオゾン処理をせず、正極活物資であるフッ化黒鉛にあらかじめ同様のオゾン処理をして用いた以外は、実施例1の電池と同様にして電池を作製し、これを実施例2の電池とした。   In the production of the battery of Example 1, the positive electrode plate was not subjected to ozone treatment, and the same ozone treatment was applied to the fluorinated graphite as the positive electrode active material in advance. A battery was produced and used as the battery of Example 2.

上記実施例1の電池の作製において、正極板をオゾン処理しなかった以外は、実施例1の電池と同様にして電池を作製し、これを比較例1の電池とした。   In the production of the battery of Example 1, a battery was produced in the same manner as the battery of Example 1 except that the positive electrode plate was not subjected to ozone treatment.

上記実施例1の電池の作製において、正極活物質となるフッ化黒鉛に、平均粒子径20μm、比表面積が900m2/gの炭素粉末をフッ素化処理したものを用いた以外は、実施例1の電池と同様にして電池を作製し、これを実施例3の電池とした。 In the production of the battery of Example 1, Example 1 was used except that fluorinated graphite serving as a positive electrode active material was fluorinated with carbon powder having an average particle size of 20 μm and a specific surface area of 900 m 2 / g. A battery was produced in the same manner as the battery of Example 3 and used as the battery of Example 3.

以上のようにして作製した各電池について100℃−1週間の保存試験を行い、この保
存試験の前後で電池の内部抵抗を測定し、その結果を(表1)に示す。また、−20℃において、負荷抵抗300Ωで放電を行い、放電カーブを求め、その結果を図2に示す。
Each battery produced as described above was subjected to a storage test at 100 ° C. for 1 week, and the internal resistance of the battery was measured before and after the storage test. The results are shown in Table 1. Moreover, discharge was performed at −20 ° C. with a load resistance of 300Ω to obtain a discharge curve, and the result is shown in FIG.

図2からわかるように、本発明の実施例にかかる電池はいずれも、比較例の電池に比べて放電電圧が向上しており、正極活物質となるフッ化黒鉛の比表面積が小さい場合においても、放電電圧の向上が見られる。これは、オゾン処理によって、正極活物質となるフッ化黒鉛の表面に水酸基またはカルボキシル基が形成され、これによってフッ化黒鉛と非水電解液との濡れ性が向上して正極の有効反応面積が大きくなったことによるものと推察される。また、(表1)の結果から、実施例3の電池は、他の電池に比べて、保存試験後の内部抵抗がやや大きく、高温域の保存特性の点からは、正極活物質となるフッ化黒鉛は比表面積の小さいものが好ましい。   As can be seen from FIG. 2, the batteries according to the examples of the present invention all have an improved discharge voltage compared to the battery of the comparative example, and even when the specific surface area of the fluorinated graphite serving as the positive electrode active material is small. The discharge voltage is improved. This is because the ozone treatment forms a hydroxyl group or a carboxyl group on the surface of the fluorinated graphite serving as the positive electrode active material, thereby improving the wettability between the fluorinated graphite and the non-aqueous electrolyte, thereby increasing the effective reaction area of the positive electrode. This is probably due to the fact that it has grown. In addition, from the results of (Table 1), the battery of Example 3 has a slightly larger internal resistance after the storage test than other batteries, and is a fluorine active material that serves as a positive electrode active material in terms of storage characteristics in a high temperature range. Graphitized graphite preferably has a small specific surface area.

Figure 0004867145
Figure 0004867145

オゾン処理の代わりに、空気中で電極間に高周波、高電圧を印加し、発生した電子を樹脂表面と衝突させるコロナ処理を行って、同様の評価を行った。コロナ処理においても、フッ化黒鉛の表面に水酸基またはカルボキシル基が形成されることが確認され、また、オゾン処理した場合と同様に、低温での放電特性が良好であった。 Instead of the ozone treatment, a high frequency, a high voltage is applied between the electrodes in the air, the generated electrons subjected to corona treatment to collide with the surface of the resin was evaluated in the same manner. Also in the corona treatment, it was confirmed that a hydroxyl group or a carboxyl group was formed on the surface of the fluorinated graphite, and the discharge characteristics at low temperature were good as in the case of the ozone treatment.

本発明の非水電解液電池は、自動車,産業機器等で高温域から低温域までという幅広い使用温度域を必要とする用途に用いられる電池として有用である。   The non-aqueous electrolyte battery of the present invention is useful as a battery used in applications requiring a wide use temperature range from a high temperature range to a low temperature range in automobiles, industrial equipment and the like.

本発明の実施例にかかる非水電解液電池の断面図Sectional drawing of the non-aqueous electrolyte battery concerning the Example of this invention −20℃における電池の放電カーブを示すグラフThe graph which shows the discharge curve of the battery in -20 degreeC

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 外装缶
1 Positive electrode 2 Negative electrode 3 Separator 4 Exterior can

Claims (4)

金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、前記フッ化黒鉛はオゾン処理、コロナ処理のうちのいずれかにより表面に水酸基またはカルボキシル基が形成されていることを特徴とする非水電解液電池。 And metallic lithium or a negative electrode with negative electrode active material the alloy, a positive electrode for a graphite fluoride as the positive electrode active material, the nonaqueous electrolyte battery comprising a nonaqueous electrolytic solution, wherein the graphite fluoride ozone treatment, corona nonaqueous electrolyte batteries, characterized in that the hydroxyl group or carboxyl group is formed on the surface by any of the processing. 非水電解液はγ−ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンのいずれかを主成分とする非水溶媒を含む請求項1記載の非水電解液電池。 The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte includes a non-aqueous solvent mainly comprising any one of γ-butyrolactone, propylene carbonate, ethylene carbonate, and 1,2-dimethoxyethane. 金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池の製造方法において、前記フッ化黒鉛はあらかじめオゾン処理、コロナ処理のうちのいずれかにより表面に水酸基またはカルボキシル基が形成されることを特徴とする非水電解液電池の製造方法。 In a method for producing a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte, treatment, corona nonaqueous electrolyte method for producing a battery, characterized in that either a hydroxyl group or carboxyl group on the surface by is formed of treatment. 金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池の製造方法において、前記正極は前記フッ化黒鉛を含む正極合剤を正極支持体に充填圧延して正極板に構成され、前記正極板をオゾン処理、コロナ処理のうちのいずれかの処理を行うことにより前記フッ化黒鉛の表面に水酸基またはカルボキシル基が形成されることを特徴とする非水電解液電池の製造方法。 In a method of manufacturing a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte, the positive electrode is the graphite fluoride. configured the positive electrode mixture to the positive electrode plate filled rolled to the cathode support comprising, hydroxyl groups on the surface of the fluorinated graphite the positive electrode plate ozone treatment, by performing any one of the processes of the corona treatment Or a carboxyl group is formed, The manufacturing method of the nonaqueous electrolyte battery characterized by the above-mentioned.
JP2004241849A 2004-08-23 2004-08-23 Non-aqueous electrolyte battery Expired - Fee Related JP4867145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241849A JP4867145B2 (en) 2004-08-23 2004-08-23 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241849A JP4867145B2 (en) 2004-08-23 2004-08-23 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006059732A JP2006059732A (en) 2006-03-02
JP4867145B2 true JP4867145B2 (en) 2012-02-01

Family

ID=36107016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241849A Expired - Fee Related JP4867145B2 (en) 2004-08-23 2004-08-23 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4867145B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994181B1 (en) * 2006-10-31 2010-11-15 주식회사 엘지화학 Enhancement of electro-conductivity of conducting material in lithium ion battery
JP4510912B2 (en) 2007-09-06 2010-07-28 パナソニック株式会社 Non-aqueous electrolyte battery
JP5358938B2 (en) * 2007-12-17 2013-12-04 パナソニック株式会社 Flat nonaqueous electrolyte battery
JP5309550B2 (en) * 2007-12-18 2013-10-09 パナソニック株式会社 Graphite lithium primary battery
JP6932589B2 (en) 2017-09-19 2021-09-08 デンカ株式会社 Carbon black for batteries, coating liquid for batteries, positive electrode for non-aqueous batteries and non-aqueous batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826457A (en) * 1981-08-11 1983-02-16 Matsushita Electric Ind Co Ltd Manufacture of positive pole active substance for non-acqueous electrolytic cell
JPS5918107A (en) * 1982-07-19 1984-01-30 Central Glass Co Ltd Modified graphite fluoride
JPS5986155A (en) * 1982-11-10 1984-05-18 Matsushita Electric Ind Co Ltd Manufacture of positive active substance for organic electrolyte battery
JP2004039443A (en) * 2002-07-03 2004-02-05 Mitsubishi Electric Corp Battery and its manufacturing method

Also Published As

Publication number Publication date
JP2006059732A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP4725585B2 (en) Negative electrode active material, lithium secondary battery, and method for producing negative electrode active material
US20140272610A1 (en) Porous graphene nanocages for battery applications
US20090081545A1 (en) HIGH CAPACITY AND HIGH RATE LITHIUM CELLS WITH CFx-MnO2 HYBRID CATHODE
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
JP2004185810A (en) Electrode material for lithium secondary battery, electrode structural body with the electrode material, secondary battery with the electrode structure, manufacturing method of the electrode material, manufacturing method of the electrode structural body, and manufacturing method of the secondary battery
JP6408463B2 (en) Positive electrode material and manufacturing method thereof
JP2007172858A (en) Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JP2013134838A (en) Negative electrode mixture for iron-air secondary battery, negative electrode mixture slurry, negative electrode for iron-air secondary battery, method of manufacturing the same, and iron-air secondary battery
JP2020105063A (en) Doped titanium niobate and battery
JP4563398B2 (en) Batteries containing aluminum members
WO2014091687A1 (en) Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JP2013254647A (en) Lithium ion-lithium air composite secondary battery, charging/discharging method using the same, and cathode material for lithium ion-lithium air composite secondary battery
JP2004288644A (en) Manufacturing method of cathode active material, manufacturing method of anode active material, and manufacturing method of secondary battery utilizing lithium
US20140234709A1 (en) THREE DIMENSIONAL POSITIVE ELECTRODE FOR LiCFx TECHNOLOGY PRIMARY ELECTROCHEMICAL GENERATOR
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
JP4867145B2 (en) Non-aqueous electrolyte battery
JP5533110B2 (en) Lithium primary battery
JP7331597B2 (en) Negative electrode active material powder, negative electrode, and lithium ion secondary battery used for lithium ion secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP3877147B2 (en) Method for producing positive electrode for lithium battery
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2003007303A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees